WO2016047120A1 - Operation condition determination device, operation condition determination method, control system, and computer-readable recording medium - Google Patents

Operation condition determination device, operation condition determination method, control system, and computer-readable recording medium Download PDF

Info

Publication number
WO2016047120A1
WO2016047120A1 PCT/JP2015/004760 JP2015004760W WO2016047120A1 WO 2016047120 A1 WO2016047120 A1 WO 2016047120A1 JP 2015004760 W JP2015004760 W JP 2015004760W WO 2016047120 A1 WO2016047120 A1 WO 2016047120A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
timing
pressure
operation amount
pipeline network
Prior art date
Application number
PCT/JP2015/004760
Other languages
French (fr)
Japanese (ja)
Inventor
孝寛 久村
学 楠本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016549950A priority Critical patent/JPWO2016047120A1/en
Publication of WO2016047120A1 publication Critical patent/WO2016047120A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B1/00Methods or layout of installations for water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means

Definitions

  • the present invention relates to an operation condition determination device, an operation condition determination method, a control system, and a computer-readable recording medium.
  • a change in flow is caused by a rapid change in pressure or the like (hereinafter referred to as “excessive pressure wave”) compared to the case where the fluid flows constantly in the fluid flowing through the pipeline. May be caused).
  • An excessive pressure wave may also occur when controlling the flow of fluid flowing through a pipeline using a pump, a valve, or the like. An excessive pressure wave places a load on the pipeline. Therefore, deterioration or rupture of the pipeline may occur due to excessive pressure waves.
  • Patent Document 1 describes an open / close control device for a discharge valve and the like.
  • the open / close control device described in Patent Document 1 controls the timing of the opening / closing timing of the discharge valve so that the pressure propagated from the upper water layer to the discharge valve and the water pressure fluctuation caused by the opening / closing of the discharge valve cancel each other. To do.
  • Patent Document 2 describes a pressure control device and the like in a water distribution network.
  • the pump all-stop-time determination unit determines the distribution pressure from the distribution flow rate, the distribution pressure, and the pump rotation speed.
  • the pressure control apparatus of patent document 2 is a 1st water distribution equipment by opening a return valve before a return valve opening degree controller becomes non-water-feeding from the determination result of this pump all-unit stop time determination device. The discharge pressure and the pushing pressure of the second drainage equipment are controlled to escape to the pump well.
  • Patent Document 1 or 2 The technology described in Patent Document 1 or 2 is intended for pipelines with simple piping connections. That is, it may be difficult to apply the technique described in Patent Document 1 or 2 to a pipeline network in which a plurality of pipes are complicatedly connected.
  • the present invention has been made to solve the above-described problems, and provides an operation condition determination device and the like that can control fluctuations in pressure generated in a fluid flowing through a pipeline network without impairing responsiveness.
  • the main purpose is to solve the above-described problems, and provides an operation condition determination device and the like that can control fluctuations in pressure generated in a fluid flowing through a pipeline network without impairing responsiveness.
  • An operation condition determining device is configured to detect an operation amount specifying unit that specifies an operation amount for at least one actuator that controls a flow of fluid in a pipeline network, and a difference in operation timing for each of at least one actuator. Timing specifying means for specifying.
  • the operation condition determination method specifies an operation amount for at least one actuator that controls the flow of fluid in the pipeline network, and specifies a difference in operation timing for each of the at least one actuator.
  • a process for specifying an operation amount for at least one actuator that controls a flow of fluid in a pipeline network and a difference between operation timings for at least one actuator are stored in the computer.
  • an operation condition determining device that can control fluctuations in pressure generated in a fluid flowing through a pipeline network without impairing responsiveness.
  • each component of each device represents a functional unit block.
  • Each component of each device can be realized by any combination of an information processing device 1000 and software as shown in FIG. 9, for example.
  • the information processing apparatus 1000 includes the following configuration as an example.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • a storage device 1005 that stores the program 1004
  • a drive device 1007 that reads and writes the recording medium 1006
  • a communication interface 1008 connected to the communication network 1009 -I / O interface 1010 for inputting / outputting data -Bus 1011 connecting each component
  • Each component of each device in each embodiment is realized by the CPU 1001 acquiring and executing a program 1004 that realizes these functions.
  • the program 1004 that realizes the function of each component of each device is stored in advance in the storage device 1005 or the RAM 1003, for example, and is read out by the CPU 1001 as necessary.
  • the program 1004 may be supplied to the CPU 1001 via the communication network 1009, or may be stored in the recording medium 1006 in advance, and the drive device 1007 may read the program and supply it to the CPU 1001.
  • each device may be realized by an arbitrary combination of an information processing device 1000 and a program that are different for each component.
  • a plurality of components included in each device may be realized by any combination of one information processing device 1000 and a program.
  • each device is realized by other general-purpose or dedicated circuit boards, processors, etc., or combinations thereof. These may be constituted by a single chip cage or may be constituted by a plurality of chip cages connected via a bus. Part or all of each component of each device may be realized by a combination of the above-described circuit and the like and a program.
  • the plurality of information processing devices and circuits may be centrally arranged or distributedly arranged. Also good.
  • the information processing apparatus, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
  • a communication network such as a client and server system and a cloud computing system.
  • FIG. 2 is a diagram showing a relationship between a valve operation method and a fluctuation in pressure of fluid flowing through the piping network when a valve provided in the piping network related to each embodiment of the present invention is operated.
  • FIG. 3 is a diagram showing an example of a step response of the valve operating pressure observed at one node of the piping network related to each embodiment of the present invention.
  • the actuator is an element that controls the flow of fluid flowing through the pipeline network. That is, the actuator controls the pressure and flow rate of the fluid flowing through the pipeline network.
  • the actuator is a pump provided in a pipeline, or any kind of valve or plug (hereinafter collectively referred to as “valve”).
  • valve any kind of valve or plug
  • the actuator is not limited to the example described above. Any element that controls the flow of fluid through the conduit network is included in the actuator.
  • the pipeline network 50 shown in FIG. 1 is configured by connecting pipelines 500 at nodes 511 to 522.
  • the pipeline network 50 is provided with tanks 541 and 542.
  • Tanks 541 and 542 supply fluid to the conduit 500.
  • the valves 531 to 534 and the pumps 535 and 536 control the pressure and flow rate of the fluid flowing through the pipe line 500.
  • the valves 531 to 534 and the pumps 535 and 536 are adjusted so that the pressure, flow rate, and the like at each of the nodes 511 to 522 are set to target values corresponding to the amount of fluid consumed.
  • the operation of the opening of the valves 531 to 534 is used as the operation of the actuator.
  • the pressure fluctuation due to the operation of the actuator is similarly applied when the pump 535 or 536 is operated.
  • FIG. 2 is a diagram showing the relationship between the operation of the valves 531 to 534 and the pressure fluctuation of the fluid flowing through the pipe line 500 when the opening degrees of the valves 531 to 534 are changed in various procedures.
  • the graphs on the left side of each of (A) to (C) show the relationship between the valve opening degree and time in each of the valves 531 to 534. That is, in these graphs, the horizontal axis represents time, and the vertical axis represents the opening of the valve. In addition, in each graph, when the length of a horizontal axis is the same, it represents the same time.
  • 2A to 2C show the pressure of the fluid flowing in the pipeline network when each of the valves 531 to 534 is operated along the left graph. In these graphs, the horizontal axis represents time, and the vertical axis represents pressure.
  • all of the valves 531 to 534 included in the pipeline network 50 are operated so as to have a desired opening degree at the same time.
  • each of the valves 531 to 534 is operated in a stepped manner, that is, to reach a desired opening at a time.
  • the time required for operating the valves 531 to 534 is shortened.
  • the pressure of the fluid flowing in the pipe network 50 varies greatly. That is, according to the graph shown in FIG. 2A, a large excessive pressure wave is generated in the pipeline network 50.
  • each of the valves 531 to 534 included in the pipeline network 50 is gradually and slowly operated until a desired opening degree is obtained.
  • the pressure fluctuation of the fluid flowing in the pipeline network 50 becomes small.
  • the time required for operating the valves 531 to 534 is longer than that shown in FIG.
  • each of the valves 531 to 534 included in the pipeline network 50 is operated at different times.
  • Each of the valves 531 to 534 is operated at a time so as to have a desired opening degree.
  • the pressure fluctuation of the fluid flowing in the pipeline network 50 becomes smaller than that shown in FIG.
  • the time required for operating the valves 531 to 534 is smaller than that in the case shown in FIG.
  • the pressure fluctuation of the fluid flowing in the pipeline network 50 is reduced when each of the valves 531 to 534 is gradually operated until a desired opening degree is reached as shown in FIG. .
  • the time required for operating the valves 531 to 534 becomes longer. Therefore, in this case, it may be difficult to cope with a case where the control target values of the valves 531 to 534 are changed according to disturbances such as when the amount of consumption of the fluid flowing through the pipeline network 50 fluctuates. is there.
  • the pressure fluctuation of the fluid flowing in the pipeline network 50 is reduced compared to the case shown in FIG.
  • the time required for operating the valves 531 to 534 is shortened as compared with the case shown in FIG. That is, by operating the valves 531 to 534 as shown in FIG. 2C, the pressure fluctuation of the fluid flowing in the pipeline network 50 is reduced, and the time required for operating the valves 531 to 534 is shortened. Can be achieved. Further, by reducing the time required for operating the valves 531 to 534, it becomes easy to cope with the case where the control target value of the valves 531 to 534 is changed according to the occurrence of the above-described disturbance or the like.
  • FIG. 3 is a diagram showing the fluid pressure fluctuation at the node 518 when each or all of the valves 531 to 534 are operated.
  • the horizontal axis represents time
  • the vertical axis represents the magnitude of fluid pressure.
  • the pressure fluctuation shown in each of (1) to (4) in FIG. 3 is a pressure fluctuation when the opening degree of each of the valves 531 to 534 is operated by a reference amount at the node 518.
  • the pressure fluctuation at the node 518 has a waveform as shown in FIG.
  • the waveform shown in FIG. 3 (5) is an example of a combined wave obtained by adding the pressure fluctuations shown in FIGS. 3 (1) to (4) in this case. Therefore, when the opening degree of each of the valves 531 to 534 is manipulated by shifting the time, the pressure fluctuation at the node 518 is added with the pressure fluctuation shown in FIGS. 3 (1) to (4) by shifting the time, for example. The fluctuation is close to the synthesized wave.
  • the operation condition determination device or the like in the embodiment of the present invention determines the condition for operating the actuator so that the fluctuation of the pressure of the fluid flowing through the pipeline network becomes small using the above-described properties.
  • the operation condition determination device or the like specifies a difference in timing for operating each of the actuators.
  • the difference in timing is a difference in timing for operating each of the actuators to be specified from the reference time.
  • the operation condition determining device or the like performs scheduling of the timing for operating the actuator.
  • the above description is related to fluctuations in piping pressure when a valve in the pipeline network is operated.
  • the contents of the above description also apply to fluctuations in the flow rate of the fluid flowing through the pipeline network when a valve in the pipeline network is operated. That is, by operating the actuator in accordance with the above description, for example, an undesired rapid fluctuation in the flow rate of fluid flowing through the pipeline network can be reduced.
  • FIG. 4 is a diagram illustrating the configuration of the operation condition determination device and the like according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an example of a configuration of a control system including an operation condition determination device and a pipeline network controlled by the control system according to the first embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a procedure in the case where a difference in operation amount and operation timing for each of a plurality of actuators is determined by the operation condition determination device in the first embodiment of the present invention.
  • FIG. 7 is a flowchart showing the operation of the operation condition determining apparatus according to the first embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a procedure in the case where a difference in operation amount and operation timing for each of the plurality of actuators is determined by the operation condition determination device according to the modification of the first embodiment of the present invention.
  • the operation condition determining apparatus 100 includes an operation amount specifying unit 110 and a timing specifying unit 120.
  • the operation amount specifying unit 110 specifies an operation amount for at least one actuator that controls the flow of fluid in the pipeline network.
  • the timing specifying unit 120 specifies a difference in each operation timing with respect to at least one actuator.
  • FIG. 5 shows a configuration example of the control system 10.
  • the control system 10 controls the flow of fluid in the pipeline network 51.
  • the pipeline network 51 is configured by connecting a pipeline 500 via nodes 511 to 522.
  • the pipeline network 51 is provided with tanks 541 and 542. Tanks 541 and 542 supply fluid to the conduit 500.
  • Actuators 551 to 556 control the pressure and flow rate of the fluid flowing through the pipe line 500.
  • the actuators 551 to 556 are, for example, pumps or valves that control the fluid pressure, flow rate, and the like flowing through the pipe line 500.
  • the control unit 101 operates the actuators 551 to 556 included in the pipeline network 51.
  • the control unit 101 can operate the actuators 551 to 556 based on the conditions determined by the operation condition determining apparatus 100, for example.
  • the operation condition determining apparatus 100 can determine the conditions for controlling the actuators 551 to 556 using information related to the control that the control unit 101 intends to perform on each of the actuators 551 to 556.
  • the control unit 101 can accept information of any type of sensor (not shown) that detects the pressure and flow rate of the fluid flowing through the pipeline network 51, vibration of the pipeline 500, and the like.
  • the operation amount specifying unit 110 determines an operation amount for at least one actuator that controls the flow rate of the fluid flowing through the pipeline network by various methods.
  • the operation amount specifying unit 110 can determine the operation amount for at least one actuator so that the pressure or flow rate of the fluid flowing through the pipeline network 51 corresponds to the consumption amount of the fluid.
  • the operation amount specifying unit 110 can accept an operation amount for at least one actuator determined externally and use it as an operation amount for the at least one actuator.
  • the operation amount specifying unit 110 can use the operation amount for at least one actuator determined by the control unit 101 as it is. That is, in the above case, the operation amount specifying unit 110 can be a means for receiving an operation amount for at least one actuator determined outside the operation condition determining device 100.
  • the operation amount specifying unit 110 internally derives the operation amount for at least one actuator based on the consumption amount of the fluid flowing through the pipeline network and other information necessary for determining the operation amount. it can.
  • the operation amount specified by the operation amount specifying unit 110 is, for example, an operation amount (hereinafter referred to as “reference operation amount”) normalized with respect to an operation amount that is a predetermined reference for the actuator (hereinafter referred to as “reference operation amount”). Normalized operation amount ”).
  • the reference operation amount may be the same operation amount for all the actuators, or may be different for each actuator.
  • the operation amount specifying unit 110 can obtain an operation amount for at least one actuator so as to be in a format suitable for specifying the timing by the timing specifying unit 120 described later. Further, the operation amount specifying unit 110 can represent the operation amount in a format different from the normalized operation amount described above.
  • the actuators for which the operation amount is specified by the operation amount specifying unit 110 can be all actuators existing in the pipeline network. Further, the actuator that is the target of the operation amount specified by the operation amount specifying unit 110 can be limited to the operation amount for a part of the actuators existing in the pipeline network.
  • the operation amount specifying unit 110 can appropriately select an actuator to be specified for the operation amount in accordance with the control contents for the actuator required in the pipeline network.
  • the timing identification unit 120 clarifies the difference in operation timing for each of at least one actuator by various methods.
  • the actuator whose timing is specified by the timing specifying unit 120 is, for example, an actuator whose operation amount is determined by the operation amount specifying unit 110.
  • the difference in operation timing specified by the timing specifying unit 120 is a relative deviation from the time serving as a reference for the time for operating the actuator that is the specification target. That is, the timing specifying unit 120 schedules the operation timing of the actuator.
  • the difference in the operation timing is determined based on, for example, a period in which the pressure fluctuation caused by the operation occurs in the fluid flowing through the pipeline network when the actuator that is the specific target of the difference is operated.
  • the difference in the operation timing is based on the period until the pressure fluctuation generated in the fluid flowing through the pipeline network is settled due to the operation of the actuator (the pressure fluctuation is smaller than the reference magnitude). Determined.
  • the difference in operation timing is determined based on the design parameters of the actuators. When the actuator is operated during the above-described period, the pressure fluctuation generated in the fluid flowing through the pipeline network may be canceled by each operation.
  • the timing specifying unit 120 specifies the difference in the operation timing so that the operation timing of the target actuator is included in the above-described period.
  • the timing identifying unit 120 identifies the difference in the operation timing as described above, thereby reducing the combined wave of the pressure wave generated in the fluid by each operation, as compared with the case of simultaneously operating a plurality of actuators. enable.
  • the timing specifying unit 120 operates each of the plurality of actuators so as to reduce the variation in the pressure of the fluid generated in the pipeline network by specifying the difference in the operation timing of each of the at least one actuator. Can be possible.
  • the timing specifying unit 120 can obtain a difference in each operation timing with respect to at least one actuator so that the pressure fluctuation in the pipeline network satisfies a predetermined condition.
  • specification part 120 enables it to operate so that the fluctuation
  • the timing specifying unit 120 can determine the difference in operation timing so that the fluctuation of the pressure and the flow rate in the pipeline network becomes smaller than a predetermined magnitude.
  • size is defined according to the structure of a pipe network, etc., for example.
  • the predetermined size is sufficiently small as compared to fluctuations in pressure and flow rate when a plurality of actuators are operated simultaneously (so as to be close to when a fluid constantly flows through a pipeline network). can do. By determining in this way, it is possible to reduce the load applied to the pipeline network.
  • the timing specifying unit 120 is configured so that the fluctuation of the pressure and flow rate in the pipeline network is minimized within a range that can be controlled by the actuator (or, for example, the fluctuation is smaller than a predetermined magnitude). The difference between the operation timings can be determined. (Operation of the operating condition determination device) Next, an example of the operation of the operation condition determining apparatus 100 in the present embodiment will be described using the flowchart shown in FIG.
  • the operation amount specifying unit 110 specifies an operation amount for at least one actuator (step S101).
  • the operation amount specifying unit 110 can represent the operation amount in a format corresponding to the timing specifying method performed by the timing specifying unit 120 in the subsequent step S102.
  • the timing specifying unit 120 specifies a difference in each operation timing with respect to at least one actuator (step S102).
  • the timing specifying unit 120 can obtain a time shift related to the operation of the actuator, for example, by solving a nonlinear optimization problem related to Equation (3), as will be described later.
  • the timing specifying unit 120 can obtain a difference in operation timing for each of at least one actuator based on the obtained time shift.
  • the operation condition determination device 100 in this embodiment may be included in the control system 10 that controls the flow of fluid in the pipeline network.
  • the control system 10 can operate the actuator, for example, based on the difference in the operation amount and operation timing for the actuator specified by the above-described operation of the operation condition determining device 100.
  • Example of determining operation timing A specific example in the case where the timing specifying unit 120 determines the difference in operation timing for each of a plurality of actuators in the operation condition determination device 100 of the present embodiment will be described with reference to FIG.
  • the number of actuators to be operated is K.
  • the number of nodes of the pipeline network is N.
  • the operation amount specifying unit 110 performs operations related to each of the plurality of actuators based on the operation content determined by the control unit 101 included in the control system 10 according to, for example, the consumption amount of the fluid flowing through the pipeline network. Suppose that the quantity is used. Then, it is assumed that the operation amount specifying unit 110 obtains the normalized operation amount with respect to the reference operation amount as the operation amount related to each of the plurality of actuators.
  • the normalized operation amount for each of the plurality of actuators is represented as a k .
  • a k is referred to as a weighting factor.
  • the timing specifying unit 120 changes the fluid pressure at a node of the pipeline network obtained by some means when the operation corresponding to the reference operation amount is performed on each of the plurality of actuators (hereinafter referred to as “reference pressure”).
  • Step response represents a state in which the fluid pressure at the node changes when each actuator is operated in a step-like manner (that is, the actuator is not operated until a certain time but is operated until a reference operation amount at a certain time).
  • the timing specifying unit 120 obtains K ⁇ N reference pressure step responses (that is, a reference pressure step response when each of the K actuators is operated with respect to each of the N nodes). (In this embodiment, the symbol “ ⁇ ” indicates multiplication). This is shown in FIG. 6 (1).
  • the timing specifying unit 120 may use a reference pressure step response obtained in advance, or may obtain and use a reference pressure step response as necessary.
  • the reference pressure step response can be obtained by various methods.
  • the reference pressure step response is obtained based on, for example, a signal measured in an actual pipeline network.
  • the reference pressure step response is determined based on a signal derived by simulation.
  • the step response is determined by integrating the impulse response. Therefore, the reference pressure step response can also be obtained by obtaining an impulse response related to the operation of each actuator by measurement, simulation, or the like, and integrating the impulse response.
  • the timing specifying unit 120 can specify the reference pressure step response by obtaining it by any means.
  • the timing specifying unit 120 acquires the normalized operation amount related to each of the plurality of actuators obtained by the operation amount specifying unit 110.
  • the timing specifying unit 120 can obtain the timing for operating each of the plurality of actuators so as to satisfy an arbitrary condition.
  • the timing specifying unit 120 for example, each of the plurality of actuators so that a sum of amplitudes of pressure fluctuations generated at each of a plurality of nodes in the pipeline network (hereinafter referred to as “pressure step response composite signal”) satisfies a predetermined condition.
  • the predetermined condition is, for example, a condition that minimizes the pressure step response composite signal.
  • the conditions for minimizing the pressure step response composite signal are not strictly limited to the conditions for minimizing the pressure step response composite signal, but the pressure step response composite signal is minimized within a range that can be controlled by the operation of the actuator described above.
  • the condition may be as follows.
  • the timing specifying unit 120 determines the timing for operating each of the plurality of actuators based on a condition that minimizes the pressure step response composite signal, the timing is derived as follows, for example.
  • the timing specifying unit 120 obtains a deviation from the reference time for operating each of the plurality of actuators (hereinafter, this shift is referred to as “time shift”).
  • Time shifts in the case of operating the actuator A k is a t k with respect to serving as a reference time t (operated from time t to t k staggered time) in the case, the reference pressure step response caused to the node N x Is expressed as s Nx, Ak (t ⁇ t k ).
  • a reference pressure step response caused to the node N x is s Nx, denoted Ak (t-t k).
  • the operation amount for the actuator A k is multiplied by the normalization operation amount to the reference pressure step response, a k ⁇ SNX, denoted Ak (t-t k).
  • the pressure step response composite signal y Nx at the node N x is expressed by, for example, Expression (1).
  • ⁇ k t ⁇ t k .
  • a wave height that is a difference between the maximum value and the minimum value of the amplitude related to the change in the pressure is expressed as a function PTP (y Nx ), for example.
  • ⁇ shift which is the amount of time shift that minimizes f ( ⁇ ), which is the sum of the wave heights related to all nodes in the above-described pipe network, is expressed as in Expression (3).
  • the problem of obtaining a time shift that minimizes the evaluation function using the difference between the maximum value and the minimum value of the pressure step response composite signal as an evaluation function, as in Expression (3), is a nonlinear optimization problem.
  • Such a nonlinear optimization problem can be solved by an optimization method that repeats random selection and an evaluation function. That is, the calculation of the value of the random selection and expression of t k is a deviation from the reference time t of the time for operating the actuator A k (2) is repeated. And the value which becomes the smallest among the values of Formula (2) repeatedly calculated is taken as the solution of Formula (3).
  • a technique such as a genetic algorithm or particle swarm optimization is used.
  • Equation (3) can also be obtained by a method different from the method described above.
  • a method such as a quasi-Newton method is used to derive the solution of Equation (3).
  • the timing specifying unit 120 can determine the difference in operation timing for each of the plurality of actuators based on ⁇ shift obtained as a solution of the expression (3). As an example, when four actuators A 1 to A 4 are operation targets, the operation timing for each of the actuators A 1 to A 4 is obtained by the timing specifying unit 120 as described below, for example.
  • the timing specifying unit 120 obtains a solution of ⁇ shift shown in the above-described equation (3).
  • timing specifying unit 120 first determines the operation timing to operate the actuator A 2. Subsequently, the timing specifying unit 120, the timing for operating the actuator A 4, on the basis of the difference between tau A4, Shif t and tau A2, Shift, the timing to operate after 0.1 seconds of the actuator A 2 decide. Similarly, timing specifying unit 120, the timing for operating the actuators A 1, based on the difference between tau A1, Shift and tau A2, Shift, determined to operate after 1.4 seconds of the actuator A 2. The timing specifying unit 120, the timing for operating the actuator A 3, based on the difference between tau A3, Shift and tau A2, Shift, determined to operate after 2.1 seconds of the actuator A 2.
  • the operation condition determination device 100 specifies the operation amount for at least one actuator in the pipeline network and the difference in each operation timing.
  • the operation described above can shorten the time required for the operation as compared with the case where each of the actuators is gradually operated until a desired operation amount is obtained. Therefore, when operating the actuator in the pipeline network, by using the operation condition determining device 100 in the present embodiment, it is possible to control the fluctuation of the pressure generated in the fluid flowing through the pipeline network without impairing the responsiveness. Become.
  • the operation condition determination device 100 assumes that each operation of a plurality of actuators is performed in a plurality of stages, and the difference in operation amount and operation timing of the actuators. Can be specified.
  • the operation amount specifying unit 110 equally divides the operation amount required for each of the plurality of actuators as shown in FIG. 8 (1) into M stages as shown in FIG. 8 (2). Can be manipulated. And the timing specific
  • the pressure step response composite signal for each normalized manipulated variable a k / M equally divided into M stages is similar to the above-described equation (1), for example, as in the following equation (4): (In this embodiment, the symbol “/” indicates division). This example is shown, for example, in FIG.
  • specification part 120 is the quantity of the time shift with respect to each of a some actuator using Formula (2) and Formula (3) mentioned above based on the pressure step response synthetic
  • the operation amount specifying unit 110 can specify the operation amount, assuming that the operation amount required for each of the plurality of actuators is operated in an arbitrary stage different from the above-described example.
  • the operation amount specifying unit 110 can specify the operation amount that is required for each of the plurality of actuators as being operated in different stages for each actuator.
  • the operation amount specifying unit 110 is operated such that the operation amounts required for some of the plurality of actuators are operated at once, and the operation amounts required for the remaining actuators are operated in arbitrary stages.
  • the operation amount can be specified.
  • the timing specifying unit 120 determines the operation timing for each of the plurality of actuators based on the same idea as the method described with reference to the expressions (1) to (4) described above, for example. Differences can be identified.
  • the operation condition determining apparatus 100 can identify a difference in the operation amount and operation timing of the actuator so that the pressure fluctuation satisfies a predetermined condition, assuming that the operation of one actuator is performed in a plurality of times. . That is, when operating the single actuator in a plurality of times, the operation condition determining device 100 is configured so that the combined amount of pressure fluctuations generated by each operation satisfies a predetermined condition, Identify timing.
  • the operation amount specifying unit 110 obtains the operation amount for each operation when the number of operations is given.
  • the operation amount in each of the plurality of operations may be the same or different.
  • the required operation amount may be an operation for increasing or decreasing the flow rate in the actuator.
  • the timing specifying unit 120 obtains a difference in operation timing so that a combined wave of pressure fluctuations generated by each operation satisfies a predetermined condition. it can.
  • the predetermined condition includes, for example, a condition that the synthesized wave is smaller than a predetermined magnitude, a condition that the magnitude of the synthesized wave is minimum, and the like.
  • the operation condition determining device 100 may target a plurality of actuators.
  • the number of operations for each of the plurality of actuators may be the same or different.
  • specification part 120 can obtain
  • the operation condition determination device 100 can change conditions relating to the specification when specifying the difference in the operation amount and operation timing of the actuator.
  • the timing specifying unit 120 determines the difference in operation timing for each of at least one actuator based on the amount of time shift that minimizes the sum of the wave heights.
  • the timing specifying unit 120 can obtain a difference in each operation timing for the actuator based on an arbitrary reference different from this.
  • the timing specifying unit 120 may determine a difference in each operation timing for at least one actuator based on a condition that minimizes the maximum value of the wave height at each of the plurality of nodes.
  • the operation condition determination apparatus 100 calculates
  • the timing specifying unit 120 determines a difference in each operation timing for at least one actuator based on, for example, the wave height of the fluid flowing through the nodes of the pipeline network.
  • the timing specifying unit 120 of the operation condition determining apparatus 100 can determine the difference in operation timing based on the state of the fluid pressure, flow rate, and the like at any other part of the pipeline network.
  • the timing specifying unit 120 can determine the difference in operation timing based on the state of the fluid pressure, flow rate, and the like at a location where a pressure sensor, a flow rate sensor, and the like are installed in the pipeline network.
  • the operation condition determination device 100 determines the difference in the operation amount and operation timing for at least one actuator so that the fluctuation of the pressure of the fluid flowing through the pipeline network is reduced.
  • the operation condition determining apparatus 100 can determine the difference in the operation amount and operation timing for at least one actuator so that the fluctuation of any factor related to the impact applied to the pipeline network is reduced.
  • An arbitrary factor related to the impact applied to the pipeline network is, for example, the flow rate of the fluid flowing through the pipeline network.
  • the timing specifying unit 120 determines the difference in the operation timing for each actuator according to the operation amount for each of the at least one actuator previously determined by the operation amount specifying unit 110.
  • the operation condition specifying device 100 in the present embodiment is not limited to the configuration described above. That is, in the operation condition specifying device 100, the operation amount specifying unit 110 calculates the operation amount for the actuator in accordance with the difference in operation timing for each of the at least one actuator predetermined by the timing specifying unit 120. It is good also as a structure.
  • Control system 50 51 Pipe network 100 Operation condition determination apparatus 101 Control part 110 Operation amount specific part 120 Timing specific part 500 Pipe line 511,512,513,514,515,516,517,518,519,520,521 522 Node 531, 532, 533, 534 Valve 535, 536 Pump 551, 552, 553, 554, 555, 556 Actuator 1000 Information processing device 1001 CPU 1002 ROM 1003 RAM 1004 Program 1005 Storage device 1006 Recording medium 1007 Drive device 1008 Communication interface 1009 Communication network 1010 Input / output interface 1011 Bus

Abstract

Provided is an operation condition determination device and the like capable of controlling pressure variations caused in a fluid flowing in a pipe line network without degrading responsiveness. An operation condition determination device (100) is provided with: an operation amount specifying means (110) that specifies an operation amount with respect to at least one actuator (551-556) for controlling the flow of a fluid in a pipe line network (51); and a timing specifying means (120) that specifies the difference between respective operation timings with respect to the at least one actuator (551-556).

Description

操作条件決定装置、操作条件決定方法、制御システム及びコンピュータ読み取り可能記録媒体Operating condition determining device, operating condition determining method, control system, and computer-readable recording medium
 本発明は、操作条件決定装置、操作条件決定方法、制御システム及びコンピュータ読み取り可能記録媒体に関する。 The present invention relates to an operation condition determination device, an operation condition determination method, a control system, and a computer-readable recording medium.
 上水道網等のような流体を流す管路において、流れの変化は、管路を流れる流体内に、流体が定常的に流れる場合と比較して急激な圧力等の変動(以下、「過大圧力波」と呼ぶ)を引き起こす場合がある。過大圧力波は、ポンプやバルブ等を用いて管路を流れる流体の流れを制御する場合にも生じる場合がある。過大圧力波は、管路に負荷を与える。そのため、過大圧力波によって、管路の劣化や破裂が生じる場合がある。 In a pipeline that flows fluid such as a water supply network, a change in flow is caused by a rapid change in pressure or the like (hereinafter referred to as “excessive pressure wave”) compared to the case where the fluid flows constantly in the fluid flowing through the pipeline. May be caused). An excessive pressure wave may also occur when controlling the flow of fluid flowing through a pipeline using a pump, a valve, or the like. An excessive pressure wave places a load on the pipeline. Therefore, deterioration or rupture of the pipeline may occur due to excessive pressure waves.
 過大圧力波を抑制するための対策として、ポンプやバルブ等を緩やかに制御することが行われる。しかしながら、このような制御は、管路を流れる流体の消費量が変化する場合等への応答性を損なう可能性がある。したがって、制御の応答性を損なわずに管路の圧力変動を抑制するように制御する技術が開発されている。 ポ ン プ As a measure to suppress excessive pressure waves, pumps and valves are controlled gently. However, such control may impair the responsiveness when the consumption of the fluid flowing through the pipeline changes. Therefore, a technology has been developed for controlling so as to suppress pressure fluctuations in the pipeline without impairing control responsiveness.
 特許文献1には、放流弁の開閉制御装置等が記載されている。特許文献1に記載の開閉制御装置は、上水層から放流弁まで伝搬された圧力と、放流弁の開閉により生じた水圧変動とが互いに打ち消しあうように、放流弁の開閉時期のタイミングを制御する。 Patent Document 1 describes an open / close control device for a discharge valve and the like. The open / close control device described in Patent Document 1 controls the timing of the opening / closing timing of the discharge valve so that the pressure propagated from the upper water layer to the discharge valve and the water pressure fluctuation caused by the opening / closing of the discharge valve cancel each other. To do.
 特許文献2には、配水網内における圧力制御装置等が記載されている。特許文献2の圧力制御装置は、ポンプ全台停止時期判定器が、配水流量、配水圧力、ポンプ回転数から配水の押合いを判定する。そして、特許文献2の圧力制御装置は、返送弁開度制御機が、該ポンプ全台停止時期判定器の判定結果から、無送水となる前に返送弁を開動作して第1の配水設備の吐出圧力及び第2の排水設備の押込圧力をポンプ井へ逃がすように制御する。 Patent Document 2 describes a pressure control device and the like in a water distribution network. In the pressure control device of Patent Document 2, the pump all-stop-time determination unit determines the distribution pressure from the distribution flow rate, the distribution pressure, and the pump rotation speed. And the pressure control apparatus of patent document 2 is a 1st water distribution equipment by opening a return valve before a return valve opening degree controller becomes non-water-feeding from the determination result of this pump all-unit stop time determination device. The discharge pressure and the pushing pressure of the second drainage equipment are controlled to escape to the pump well.
特開平8-177708号公報JP-A-8-177708 特開2010-277376号公報JP 2010-277376 A
 特許文献1又は2に記載の技術は、配管の接続関係が単純な管路を対象としている。すなわち、複数の配管が複雑に接続された管路網に対して特許文献1又は2に記載の技術を適用することは困難な場合がある。 The technology described in Patent Document 1 or 2 is intended for pipelines with simple piping connections. That is, it may be difficult to apply the technique described in Patent Document 1 or 2 to a pipeline network in which a plurality of pipes are complicatedly connected.
 本発明は、上記課題を解決するためになされたものであって、応答性を損なうことなく、管路網を流れる流体に生じる圧力の変動を制御することができる操作条件決定装置等を提供することを主たる目的とする。 The present invention has been made to solve the above-described problems, and provides an operation condition determination device and the like that can control fluctuations in pressure generated in a fluid flowing through a pipeline network without impairing responsiveness. The main purpose.
 本発明の一態様における操作条件決定装置は、管路網における流体の流れを制御する少なくとも一つのアクチュエータに対する操作量を特定する操作量特定手段と、少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を特定するタイミング特定手段とを備える。 An operation condition determining device according to an aspect of the present invention is configured to detect an operation amount specifying unit that specifies an operation amount for at least one actuator that controls a flow of fluid in a pipeline network, and a difference in operation timing for each of at least one actuator. Timing specifying means for specifying.
 本発明の一態様における操作条件決定方法は、管路網における流体の流れを制御する少なくとも一つのアクチュエータに対する操作量を特定し、少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を特定する。 The operation condition determination method according to an aspect of the present invention specifies an operation amount for at least one actuator that controls the flow of fluid in the pipeline network, and specifies a difference in operation timing for each of the at least one actuator.
 本発明の一態様におけるコンピュータ読み取り可能記録媒体は、コンピュータに、管路網における流体の流れを制御する少なくとも一つのアクチュエータに対する操作量を特定する処理と、少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を特定する処理とを実行させるプログラムを非一時的に格納する。 In the computer-readable recording medium according to one embodiment of the present invention, a process for specifying an operation amount for at least one actuator that controls a flow of fluid in a pipeline network and a difference between operation timings for at least one actuator are stored in the computer. Non-temporarily storing a program that executes processing for specifying
 本発明によると、応答性を損なうことなく、管路網を流れる流体に生じる圧力の変動を制御することができる操作条件決定装置等を提供することができる。 According to the present invention, it is possible to provide an operation condition determining device that can control fluctuations in pressure generated in a fluid flowing through a pipeline network without impairing responsiveness.
本発明の各実施形態に関連する管路網の一例を示す図である。It is a figure which shows an example of the pipeline network relevant to each embodiment of this invention. 本発明の各実施形態に関連する配管網に備えられるバルブを操作した場合におけるバルブの操作方法と配管網を流れる流体の圧力の変動との関係を示す図である。It is a figure which shows the relationship between the fluctuation | variation of the pressure of the fluid which flows through the operation method of a valve | bulb when the valve with which the piping network relevant to each embodiment of this invention is equipped is operated. 本発明の各実施形態に関連する配管網の一つの節点にて観測されるバルブ操作圧力のステップ応答に関する例を示す図である。It is a figure which shows the example regarding the step response of the valve operating pressure observed in one node of the piping network relevant to each embodiment of this invention. 本発明の第1の実施形態における操作条件決定装置等の構成を示す図である。It is a figure which shows the structure of the operation condition determination apparatus etc. in the 1st Embodiment of this invention. 本発明の第1の実施形態における操作条件決定装置を含む制御システム及び当該制御システムによって制御される管路網の構成の例を示す図である。It is a figure which shows the example of a structure of the control system containing the operation condition determination apparatus in the 1st Embodiment of this invention, and the pipeline network controlled by the said control system. 本発明の第1の実施形態における操作条件決定装置によって複数のアクチュエータの各々に対する操作量及び操作タイミングの相違が決定される場合の手順を示す図である。It is a figure which shows the procedure in case the difference in the operation amount and operation timing with respect to each of a some actuator is determined by the operation condition determination apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態における操作条件決定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the operation condition determination apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態の変形例における操作条件決定装置によって複数のアクチュエータの各々に対する操作量及び操作タイミングの相違が決定される場合の手順を示す図である。It is a figure which shows the procedure in case the difference in the operation amount and operation timing with respect to each of several actuators is determined by the operation condition determination apparatus in the modification of the 1st Embodiment of this invention. 本発明の実施形態における操作条件決定装置等を実現する情報処理装置の一例を示す図である。It is a figure which shows an example of the information processing apparatus which implement | achieves the operation condition determination apparatus etc. in embodiment of this invention.
 本発明の各実施形態について、添付の図面を参照して説明する。最初に、管路網におけるアクチュエータの操作による圧力の変動等について説明し、その後、本発明の各実施形態について説明する。 Embodiments of the present invention will be described with reference to the accompanying drawings. First, the fluctuation of pressure due to the operation of the actuator in the pipeline network will be described, and then each embodiment of the present invention will be described.
 なお、本発明の各実施形態において、各装置の各構成要素は、機能単位のブロックを示している。各装置の各構成要素は、例えば図9に示すような情報処理装置1000とソフトウェアとの任意の組み合わせにより実現することができる。情報処理装置1000は、一例として、以下のような構成を含む。 In each embodiment of the present invention, each component of each device represents a functional unit block. Each component of each device can be realized by any combination of an information processing device 1000 and software as shown in FIG. 9, for example. The information processing apparatus 1000 includes the following configuration as an example.
  ・CPU(Central Processing Unit)1001
  ・ROM(Read Only Memory)1002
  ・RAM(Ramdom Access Memory)1003
  ・RAM1003にロードされるプログラム1004
  ・プログラム1004を格納する記憶装置1005
  ・記録媒体1006の読み書きを行うドライブ装置1007
  ・通信ネットワーク1009と接続する通信インターフェース1008
  ・データの入出力を行う入出力インターフェース1010
  ・各構成要素を接続するバス1011
 各実施形態における各装置の各構成要素は、これらの機能を実現するプログラム1004をCPU1001が取得して実行することで実現される。各装置の各構成要素の機能を実現するプログラム1004は、例えば、予め記憶装置1005やRAM1003に格納されており、必要に応じてCPU1001が読み出す。なお、プログラム1004は、通信ネットワーク1009を介してCPU1001に供給されてもよいし、予め記録媒体1006に格納されており、ドライブ装置1007が当該プログラムを読み出してCPU1001に供給してもよい。
CPU (Central Processing Unit) 1001
ROM (Read Only Memory) 1002
RAM (Random Access Memory) 1003
A program 1004 loaded into the RAM 1003
A storage device 1005 that stores the program 1004
A drive device 1007 that reads and writes the recording medium 1006
A communication interface 1008 connected to the communication network 1009
-I / O interface 1010 for inputting / outputting data
-Bus 1011 connecting each component
Each component of each device in each embodiment is realized by the CPU 1001 acquiring and executing a program 1004 that realizes these functions. The program 1004 that realizes the function of each component of each device is stored in advance in the storage device 1005 or the RAM 1003, for example, and is read out by the CPU 1001 as necessary. The program 1004 may be supplied to the CPU 1001 via the communication network 1009, or may be stored in the recording medium 1006 in advance, and the drive device 1007 may read the program and supply it to the CPU 1001.
 各装置の実現方法には、様々な変形例がある。例えば、各装置は、構成要素毎にそれぞれ別個の情報処理装置1000とプログラムとの任意の組み合わせにより実現されてもよい。また、各装置が備える複数の構成要素が、一つの情報処理装置1000とプログラムとの任意の組み合わせにより実現されてもよい。 There are various modifications to the method of realizing each device. For example, each device may be realized by an arbitrary combination of an information processing device 1000 and a program that are different for each component. In addition, a plurality of components included in each device may be realized by any combination of one information processing device 1000 and a program.
 また、各装置の各構成要素の一部又は全部は、その他の汎用または専用の回路 、プロセッサ等やこれらの組み合わせによって実現される。これらは、単一のチップ によって構成されてもよいし、バスを介して接続される複数のチップ によって構成されてもよい。各装置の各構成要素の一部又は全部は、上述した回路等とプログラムとの組み合わせによって実現されてもよい。 Also, some or all of the components of each device are realized by other general-purpose or dedicated circuit boards, processors, etc., or combinations thereof. These may be constituted by a single chip cage or may be constituted by a plurality of chip cages connected via a bus. Part or all of each component of each device may be realized by a combination of the above-described circuit and the like and a program.
 各装置の各構成要素の一部又は全部が複数の情報処理装置や回路等により実現される場合には、複数の情報処理装置や回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、情報処理装置や回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。
 まず、本発明の各実施形態における操作条件決定装置等に関連する、管路網におけるアクチュエータの操作による管路網を流れる流体の圧力等の変動など(以下、「圧力変動」とする)について説明する。図1は、本発明の各実施形態に関連する管路網の一例を示す図である。図2は、本発明の各実施形態に関連する配管網に備えられるバルブを操作した場合におけるバルブの操作方法と配管網を流れる流体の圧力の変動との関係を示す図である。図3は、本発明の各実施形態に関連する配管網の一つの節点にて観測されるバルブ操作圧力のステップ応答に関する例を示す図である。
When some or all of the constituent elements of each device are realized by a plurality of information processing devices and circuits, the plurality of information processing devices and circuits may be centrally arranged or distributedly arranged. Also good. For example, the information processing apparatus, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
First, a description will be given of fluctuations in the pressure and the like of fluid flowing through a pipeline network due to an operation of an actuator in the pipeline network (hereinafter referred to as “pressure fluctuation”) related to the operation condition determination device in each embodiment of the present invention. To do. FIG. 1 is a diagram showing an example of a pipeline network related to each embodiment of the present invention. FIG. 2 is a diagram showing a relationship between a valve operation method and a fluctuation in pressure of fluid flowing through the piping network when a valve provided in the piping network related to each embodiment of the present invention is operated. FIG. 3 is a diagram showing an example of a step response of the valve operating pressure observed at one node of the piping network related to each embodiment of the present invention.
 なお、本説明又は本発明の各実施形態等において、アクチュエータは、管路網を流れる流体の流れを制御する要素である。すなわち、アクチュエータは、管路網を流れる流体の圧力や流量等を制御する。例えば、アクチュエータは、管路に設けられたポンプや、任意の種類の弁や栓(以下、まとめて「バルブ」とする)である。ただし、アクチュエータは、上述した例に限られない。管路網を流れる流体の流れを制御する任意の要素がアクチュエータに含まれる。 In this description or each embodiment of the present invention, the actuator is an element that controls the flow of fluid flowing through the pipeline network. That is, the actuator controls the pressure and flow rate of the fluid flowing through the pipeline network. For example, the actuator is a pump provided in a pipeline, or any kind of valve or plug (hereinafter collectively referred to as “valve”). However, the actuator is not limited to the example described above. Any element that controls the flow of fluid through the conduit network is included in the actuator.
 図1に示す管路網の例を用いて、アクチュエータの操作について説明する。図1に示す管路網50は、管路500が節点511~522にて接続されることで構成されている。また、管路網50にはタンク541及び542が供えられている。タンク541及び542は、管路500に流体を供給する。バルブ531~534並びにポンプ535及び536は、管路500を流れる流体の圧力や流量等を制御する。バルブ531~534並びにポンプ535及び536は、例えば、節点511~522の各々における圧力や流量等を、流体の消費量等に応じた目標値に設定するように調整される。 The operation of the actuator will be described using the example of the pipeline network shown in FIG. The pipeline network 50 shown in FIG. 1 is configured by connecting pipelines 500 at nodes 511 to 522. The pipeline network 50 is provided with tanks 541 and 542. Tanks 541 and 542 supply fluid to the conduit 500. The valves 531 to 534 and the pumps 535 and 536 control the pressure and flow rate of the fluid flowing through the pipe line 500. For example, the valves 531 to 534 and the pumps 535 and 536 are adjusted so that the pressure, flow rate, and the like at each of the nodes 511 to 522 are set to target values corresponding to the amount of fluid consumed.
 なお、以下に示す例では、アクチュエータの操作として、バルブ531~534の開度を操作する場合が用いられる。しかしながら、アクチュエータの操作による圧力変動は、ポンプ535又は536を操作する場合にも同様に当てはまる。 In the example shown below, the operation of the opening of the valves 531 to 534 is used as the operation of the actuator. However, the pressure fluctuation due to the operation of the actuator is similarly applied when the pump 535 or 536 is operated.
 最初に、バルブ531~534を操作する手順と管路500を流れる流体の圧力変動との関係について説明する。図2は、バルブ531~534の開度を種々の手順にて変更した場合の各々におけるバルブ531~534の操作の様子と管路500を流れる流体の圧力変動との関係を示す図である。図2に示す例では、(A)から(C)各々の左側のグラフは、バルブ531~534の各々におけるバルブ開度と時間との関係を示す。すなわち、これらのグラフでは、横軸は時間であり、縦軸はバルブの開度を表す。なお、各々のグラフにおいて、横軸の長さが同じ場合には同じ時間を表す。また、図2の(A)から(C)の各々の右側のグラフは、それぞれ左側のグラフに沿ってバルブ531~534の各々を操作した場合における管路網内を流れる流体の圧力を示す。これらのグラフでは、横軸は時間であり、縦軸は圧力を表す。 First, the relationship between the procedure for operating the valves 531 to 534 and the pressure fluctuation of the fluid flowing through the conduit 500 will be described. FIG. 2 is a diagram showing the relationship between the operation of the valves 531 to 534 and the pressure fluctuation of the fluid flowing through the pipe line 500 when the opening degrees of the valves 531 to 534 are changed in various procedures. In the example shown in FIG. 2, the graphs on the left side of each of (A) to (C) show the relationship between the valve opening degree and time in each of the valves 531 to 534. That is, in these graphs, the horizontal axis represents time, and the vertical axis represents the opening of the valve. In addition, in each graph, when the length of a horizontal axis is the same, it represents the same time. 2A to 2C show the pressure of the fluid flowing in the pipeline network when each of the valves 531 to 534 is operated along the left graph. In these graphs, the horizontal axis represents time, and the vertical axis represents pressure.
 図2(A)に示す例では、管路網50に含まれるバルブ531~534の全てが同時に所望の開度となるように操作される。この場合には、バルブ531~534の各々は、ステップ状に、すなわち、所望の開度まで一度に到達するように操作される。この例においては、バルブ531~534の操作に要する時間は短くなる。しかしながら、図2(A)の右側のグラフに示されるように、管路網50内を流れる流体の圧力は大きく変動する。すなわち、図2(A)に示すグラフによると、管路網50に大きな過大圧力波が発生している。 In the example shown in FIG. 2A, all of the valves 531 to 534 included in the pipeline network 50 are operated so as to have a desired opening degree at the same time. In this case, each of the valves 531 to 534 is operated in a stepped manner, that is, to reach a desired opening at a time. In this example, the time required for operating the valves 531 to 534 is shortened. However, as shown in the graph on the right side of FIG. 2A, the pressure of the fluid flowing in the pipe network 50 varies greatly. That is, according to the graph shown in FIG. 2A, a large excessive pressure wave is generated in the pipeline network 50.
 一方、図2(B)に示す例では、管路網50に含まれるバルブ531~534の各々が所望の開度となるまで徐々にゆっくりと操作される。この場合には、図2(B)の右側のグラフに示されるように、管路網50内を流れる流体の圧力変動は小さくなる。しかしながら、この場合には、バルブ531~534の操作に要する時間は、図2(A)に示す場合と比較して長くなる。 On the other hand, in the example shown in FIG. 2B, each of the valves 531 to 534 included in the pipeline network 50 is gradually and slowly operated until a desired opening degree is obtained. In this case, as shown in the graph on the right side of FIG. 2B, the pressure fluctuation of the fluid flowing in the pipeline network 50 becomes small. However, in this case, the time required for operating the valves 531 to 534 is longer than that shown in FIG.
 これに対して、図2(C)に示す例では、管路網50に含まれるバルブ531~534の各々が時間をずらして操作される。バルブ531~534の各々は、所望の開度となるように一度に操作される。この場合には、図2(C)の右側のグラフに示されるように、管路網50内を流れる流体の圧力変動は、図2(A)に示す場合と比較して小さくなる。また、バルブ531~534の操作に要する時間は、図2(B)に示す場合と比較して小さくなる。 On the other hand, in the example shown in FIG. 2C, each of the valves 531 to 534 included in the pipeline network 50 is operated at different times. Each of the valves 531 to 534 is operated at a time so as to have a desired opening degree. In this case, as shown in the graph on the right side of FIG. 2C, the pressure fluctuation of the fluid flowing in the pipeline network 50 becomes smaller than that shown in FIG. Further, the time required for operating the valves 531 to 534 is smaller than that in the case shown in FIG.
 すなわち、管路網50内を流れる流体の圧力変動が小さくなるのは、図2(B)に示すように、バルブ531~534の各々を所望の開度となるまで徐々に操作する場合である。しかし、この場合においては、バルブ531~534の操作に要する時間が長くなる。したがって、この場合には、管路網50を流れる流体の消費量が変動する場合等の外乱に応じてバルブ531~534の制御目標値が変更された場合等への対応が困難となる場合がある。 That is, the pressure fluctuation of the fluid flowing in the pipeline network 50 is reduced when each of the valves 531 to 534 is gradually operated until a desired opening degree is reached as shown in FIG. . However, in this case, the time required for operating the valves 531 to 534 becomes longer. Therefore, in this case, it may be difficult to cope with a case where the control target values of the valves 531 to 534 are changed according to disturbances such as when the amount of consumption of the fluid flowing through the pipeline network 50 fluctuates. is there.
 これに対して、図2(C)に示す場合は、図2(A)に示す場合と比較して、管路網50内を流れる流体の圧力変動が低減されている。また、この場合は、図2(B)に示す場合と比較して、バルブ531~534の操作に要する時間が短縮される。すなわち、図2(C)に示す場合のようにバルブ531~534を操作することによって、管路網50内を流れる流体の圧力変動の低減と、バルブ531~534の操作に要する時間の短縮との両立が可能となる。そして、バルブ531~534の操作に要する時間が短縮されることによって、上述した外乱などの発生に応じてバルブ531~534の制御目標値が変更された場合等への対応が容易になる。 On the other hand, in the case shown in FIG. 2C, the pressure fluctuation of the fluid flowing in the pipeline network 50 is reduced compared to the case shown in FIG. In this case, the time required for operating the valves 531 to 534 is shortened as compared with the case shown in FIG. That is, by operating the valves 531 to 534 as shown in FIG. 2C, the pressure fluctuation of the fluid flowing in the pipeline network 50 is reduced, and the time required for operating the valves 531 to 534 is shortened. Can be achieved. Further, by reducing the time required for operating the valves 531 to 534, it becomes easy to cope with the case where the control target value of the valves 531 to 534 is changed according to the occurrence of the above-described disturbance or the like.
 次に、バルブ531~534に含まれる複数のバルブの操作と、節点518における流体の圧力との関係を説明する。図3は、バルブ531~534の各々又は全てを操作した場合における節点518での流体の圧力変動を示す図である。なお、図3に示すグラフの各々について、横軸は時間を表し、縦軸は流体の圧力の大きさを表す。 Next, the relationship between the operation of a plurality of valves included in the valves 531 to 534 and the fluid pressure at the node 518 will be described. FIG. 3 is a diagram showing the fluid pressure fluctuation at the node 518 when each or all of the valves 531 to 534 are operated. For each of the graphs shown in FIG. 3, the horizontal axis represents time, and the vertical axis represents the magnitude of fluid pressure.
 バルブ531~534の各々の開度をステップ状に基準量だけ操作した場合に、バルブの操作によって管路500を流れる流体に発生した圧力の変動は、管路500を伝搬して各々の節点511~522に伝わる。各々の節点511~522で観測される圧力変動には、管路網50の構成が反映される。
図3の(1)から(4)の各々に示す圧力変動は、節点518における、バルブ531~534の各々の開度を基準量だけ操作した場合に関する圧力変動である。
When the opening degree of each of the valves 531 to 534 is operated by a reference amount in a stepwise manner, the fluctuation of the pressure generated in the fluid flowing through the pipe line 500 by the operation of the valve propagates through the pipe line 500 and each node 511. To 522. The pressure fluctuation observed at each of the nodes 511 to 522 reflects the configuration of the pipeline network 50.
The pressure fluctuation shown in each of (1) to (4) in FIG. 3 is a pressure fluctuation when the opening degree of each of the valves 531 to 534 is operated by a reference amount at the node 518.
 そして、バルブ531~534の各々の開度をステップ状に同時に変更するように操作した場合において、節点518における圧力変動は、例えば図3(5)に示すような波形になる。図3(5)に示す波形は、この場合における図3(1)~(4)に示す圧力変動を加算した合成波の例である。したがって、時間をずらしてバルブ531~534の各々の開度を操作した場合において、節点518における圧力変動は、例えば当該時間分をずらして図3(1)~(4)に示す圧力変動を加算した合成波に近い変動となる。 Then, when the valves 531 to 534 are operated so as to change the opening degree of each of the valves simultaneously in steps, the pressure fluctuation at the node 518 has a waveform as shown in FIG. The waveform shown in FIG. 3 (5) is an example of a combined wave obtained by adding the pressure fluctuations shown in FIGS. 3 (1) to (4) in this case. Therefore, when the opening degree of each of the valves 531 to 534 is manipulated by shifting the time, the pressure fluctuation at the node 518 is added with the pressure fluctuation shown in FIGS. 3 (1) to (4) by shifting the time, for example. The fluctuation is close to the synthesized wave.
 すなわち、管路網50のように、複数のポンプやバルブ等が存在する管路網にて、当該ポンプやバルブ等のうち2つ以上が操作されると、各々の操作によって生じる圧力波が、管路網50の各所において重ね合わされて合成波となる。 That is, when two or more of the pumps, valves, etc. are operated in a pipe network in which a plurality of pumps, valves, etc. exist, as in the pipe network 50, the pressure waves generated by each operation are It is superimposed at various points in the pipeline network 50 to form a composite wave.
 この場合において、図2(C)に示す圧力変動は、時間をずらしてバルブ531~534の各々を操作することによって、管路網50を流れる流体の圧力変動が打ち消されている。したがって、図2(C)に示す圧力の変動は、図2(A)に示す圧力の変動と比較して小さくなっている。 In this case, the pressure fluctuation shown in FIG. 2 (C) is canceled out by operating each of the valves 531 to 534 while shifting the time. Therefore, the pressure fluctuation shown in FIG. 2C is smaller than the pressure fluctuation shown in FIG.
 すなわち、時間をずらしてバルブ531~534の各々が操作されることで、管路網50を流れる流体の圧力変動が打ち消されて小さくなる場合がある。そのため、バルブ等の操作タイミングを適切にずらして操作することで、図2(A)及び図2(C)を用いて説明したように、管路網に生じる圧力変動を抑制することが可能となる。バルブ等の操作の仕方に応じて、図2(A)のように、流体が定常的に管路網を流れる場合と比較して相対的に大きな圧力変動が発生する場合がある。一方で、そのような相対的に大きな圧力変動を抑制して図2(C)のような圧力変動とすることが可能となる。言い換えると、バルブ等の操作タイミングを適切にずらして操作することで、管路網における上述したような相対的に大きな圧力変動を抑制し、管路網への負荷を小さくすることが可能となる。バルブ等の操作タイミングを適切に設定することで、抑制対象となる圧力変動やその抑制量は、ある程度自由に選択可能である。管路網において相対的に小さな圧力変動が問題になる可能性は小さいと考えられるが、そのような圧力変動を抑制するようにバルブ等の操作タイミングを設定することは可能である。そして、このようなバルブ等の操作は、当該バルブ等が備えられている管路網が図1に示す管路網50と比較して複雑である場合にも適用することができる。 That is, when each of the valves 531 to 534 is operated at different times, the pressure fluctuation of the fluid flowing through the pipeline network 50 may be canceled and reduced. Therefore, it is possible to suppress pressure fluctuations that occur in the pipeline network, as described with reference to FIGS. 2A and 2C, by appropriately shifting the operation timing of valves and the like. Become. Depending on how the valve or the like is operated, as shown in FIG. 2A, a relatively large pressure fluctuation may occur as compared with the case where the fluid constantly flows through the pipeline network. On the other hand, such a relatively large pressure fluctuation can be suppressed to obtain a pressure fluctuation as shown in FIG. In other words, by appropriately shifting the operation timing of the valve or the like, it is possible to suppress the relatively large pressure fluctuation as described above in the pipeline network and reduce the load on the pipeline network. . By appropriately setting the operation timing of the valve or the like, the pressure fluctuation to be suppressed and the suppression amount can be freely selected to some extent. Although it is considered unlikely that relatively small pressure fluctuations will be a problem in the pipeline network, it is possible to set the operation timing of valves and the like so as to suppress such pressure fluctuations. And such operation of a valve etc. can be applied also when the pipe network provided with the valve etc. is complicated compared with the pipe network 50 shown in FIG.
 したがって、本発明の実施形態における操作条件決定装置等は、上述した性質を利用して、管路網を流れる流体の圧力等の変動が小さくなるように、アクチュエータを操作する条件を決定する。操作条件決定装置等は、アクチュエータの各々を操作するタイミングの相違を特定する。本発明の実施形態において、タイミングの相違とは、基準となる時刻からの特定対象であるアクチュエータの各々を操作するタイミングのずれである。操作条件決定装置等は、すなわち、アクチュエータを操作するタイミングのスケジューリングを行う。 Therefore, the operation condition determination device or the like in the embodiment of the present invention determines the condition for operating the actuator so that the fluctuation of the pressure of the fluid flowing through the pipeline network becomes small using the above-described properties. The operation condition determination device or the like specifies a difference in timing for operating each of the actuators. In the embodiment of the present invention, the difference in timing is a difference in timing for operating each of the actuators to be specified from the reference time. The operation condition determining device or the like performs scheduling of the timing for operating the actuator.
 また、上述した説明は、管路網におけるバルブを操作した場合における配管の圧力の変動に関する説明である。しかし、上述した説明の内容は、管路網におけるバルブを操作した場合における管路網を流れる流体の流量の変動に関しても当てはまる。すなわち、上述した説明に沿ってアクチュエータを操作することで、例えば管路網を流れる流体流量の望ましくない急激な変動を小さくすることができる。 Also, the above description is related to fluctuations in piping pressure when a valve in the pipeline network is operated. However, the contents of the above description also apply to fluctuations in the flow rate of the fluid flowing through the pipeline network when a valve in the pipeline network is operated. That is, by operating the actuator in accordance with the above description, for example, an undesired rapid fluctuation in the flow rate of fluid flowing through the pipeline network can be reduced.
 (第1の実施形態)
 続いて、本発明の第1の実施形態について説明する。図4は、本発明の第1の実施形態における操作条件決定装置等の構成を示す図である。図5は、本発明の第1の実施形態における操作条件決定装置を含む制御システム及び当該制御システムによって制御される管路網の構成の例を示す図である。図6は、本発明の第1の実施形態における操作条件決定装置によって複数のアクチュエータの各々に対する操作量及び操作タイミングの相違が決定される場合の手順を示す図である。図7は、本発明の第1の実施形態における操作条件決定装置の動作を示すフローチャートである。図8は、本発明の第1の実施形態の変形例における操作条件決定装置によって複数のアクチュエータの各々に対する操作量及び操作タイミングの相違が決定される場合の手順を示す図である。
(First embodiment)
Subsequently, a first embodiment of the present invention will be described. FIG. 4 is a diagram illustrating the configuration of the operation condition determination device and the like according to the first embodiment of the present invention. FIG. 5 is a diagram illustrating an example of a configuration of a control system including an operation condition determination device and a pipeline network controlled by the control system according to the first embodiment of the present invention. FIG. 6 is a diagram illustrating a procedure in the case where a difference in operation amount and operation timing for each of a plurality of actuators is determined by the operation condition determination device in the first embodiment of the present invention. FIG. 7 is a flowchart showing the operation of the operation condition determining apparatus according to the first embodiment of the present invention. FIG. 8 is a diagram illustrating a procedure in the case where a difference in operation amount and operation timing for each of the plurality of actuators is determined by the operation condition determination device according to the modification of the first embodiment of the present invention.
 図4に示すとおり、本発明の第1の実施形態における操作条件決定装置100は、操作量特定部110と、タイミング特定部120とを備える。操作量特定部110は、管路網における流体の流れを制御する少なくとも一つのアクチュエータに対する操作量を特定する。タイミング特定部120は、少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を特定する。 As shown in FIG. 4, the operation condition determining apparatus 100 according to the first embodiment of the present invention includes an operation amount specifying unit 110 and a timing specifying unit 120. The operation amount specifying unit 110 specifies an operation amount for at least one actuator that controls the flow of fluid in the pipeline network. The timing specifying unit 120 specifies a difference in each operation timing with respect to at least one actuator.
 また、本実施形態においては、操作条件決定装置100と、制御部101とを備える制御システム10が構成される。図5は、制御システム10の構成例を示す。制御システム10は、管路網51の流体の流れを制御する。管路網51は、管路500が節点511~522を介して接続されることで構成されている。また、管路網51にはタンク541及び542が備えられている。タンク541及び542は、管路500に流体を供給する。アクチュエータ551~556は、管路500を流れる流体の圧力や流量等を制御する。なお、アクチュエータ551~556は、上述したように、例えば、管路500を流れる流体圧力や流量等を制御するポンプやバルブ等である。 In the present embodiment, a control system 10 including the operation condition determining device 100 and the control unit 101 is configured. FIG. 5 shows a configuration example of the control system 10. The control system 10 controls the flow of fluid in the pipeline network 51. The pipeline network 51 is configured by connecting a pipeline 500 via nodes 511 to 522. The pipeline network 51 is provided with tanks 541 and 542. Tanks 541 and 542 supply fluid to the conduit 500. Actuators 551 to 556 control the pressure and flow rate of the fluid flowing through the pipe line 500. As described above, the actuators 551 to 556 are, for example, pumps or valves that control the fluid pressure, flow rate, and the like flowing through the pipe line 500.
 制御システム10において、制御部101は、管路網51が有するアクチュエータ551~556を操作する。制御部101は、アクチュエータ551~556を操作する場合に、例えば操作条件決定装置100にて決定された条件に基づいて、アクチュエータ551~556を操作することができる。また、操作条件決定装置100は、制御部101がアクチュエータ551~556の各々に対して行おうとする制御に関する情報を用いて、アクチュエータ551~556を制御する条件を決定することができる。また、制御部101は、管路網51を流れる流体の圧力や流量、管路500の振動等を検知する図示しない任意の種類のセンサの情報を受付けることができる。 In the control system 10, the control unit 101 operates the actuators 551 to 556 included in the pipeline network 51. When operating the actuators 551 to 556, the control unit 101 can operate the actuators 551 to 556 based on the conditions determined by the operation condition determining apparatus 100, for example. Further, the operation condition determining apparatus 100 can determine the conditions for controlling the actuators 551 to 556 using information related to the control that the control unit 101 intends to perform on each of the actuators 551 to 556. Further, the control unit 101 can accept information of any type of sensor (not shown) that detects the pressure and flow rate of the fluid flowing through the pipeline network 51, vibration of the pipeline 500, and the like.
 次に、本実施形態における操作条件決定装置100の各構成要素について説明する。 Next, each component of the operation condition determining apparatus 100 in this embodiment will be described.
 操作量特定部110は、先に説明したとおり、管路網を流れる流体の流量を制御する少なくとも一つのアクチュエータに対する操作量を種々の方法で定める。操作量特定部110は、管路網51を流れる流体の圧力や流量が、その流体の消費量等に対応するように少なくとも一つのアクチュエータに対する操作量を定めることができる。 As described above, the operation amount specifying unit 110 determines an operation amount for at least one actuator that controls the flow rate of the fluid flowing through the pipeline network by various methods. The operation amount specifying unit 110 can determine the operation amount for at least one actuator so that the pressure or flow rate of the fluid flowing through the pipeline network 51 corresponds to the consumption amount of the fluid.
 操作量特定部110は、外部で決定された少なくとも一つのアクチュエータに対する操作量を受付けて、当該少なくとも一つのアクチュエータに対する操作量として用いることができる。例えば、操作条件決定装置100が制御システム10の構成要素である場合、操作量特定部110は、制御部101にて決定された少なくとも一つのアクチュエータに対する操作量をそのまま使用することができる。すなわち、上述のような場合において、操作量特定部110は、操作条件決定装置100の外部にて決定された少なくとも一つのアクチュエータに対する操作量を受付ける手段となることができる。 The operation amount specifying unit 110 can accept an operation amount for at least one actuator determined externally and use it as an operation amount for the at least one actuator. For example, when the operation condition determining device 100 is a component of the control system 10, the operation amount specifying unit 110 can use the operation amount for at least one actuator determined by the control unit 101 as it is. That is, in the above case, the operation amount specifying unit 110 can be a means for receiving an operation amount for at least one actuator determined outside the operation condition determining device 100.
 また、操作量特定部110は、管路網を流れる流体の消費量や、その他の操作量を決定する際に必要な情報に基づいて、少なくとも一つのアクチュエータに対する操作量を内部で導出することもできる。 Further, the operation amount specifying unit 110 internally derives the operation amount for at least one actuator based on the consumption amount of the fluid flowing through the pipeline network and other information necessary for determining the operation amount. it can.
 操作量特定部110にて特定される操作量は、例えば、アクチュエータに対して予め定められた基準となる操作量(以下「基準操作量」とする)に対して正規化した操作量(以下「正規化操作量」とする)の形式とすることができる。基準操作量は、全てのアクチュエータに対して同じ操作量であってもよいし、アクチュエータ毎に異なっていてもよい。この場合のように、操作量特定部110は、例えば、少なくとも一つのアクチュエータに対する操作量を、後述するタイミング特定部120にてタイミングを特定する際に適した形式となるように求めることができる。また、操作量特定部110は、上述した正規化操作量と異なる形式にて操作量を表すことができる。 The operation amount specified by the operation amount specifying unit 110 is, for example, an operation amount (hereinafter referred to as “reference operation amount”) normalized with respect to an operation amount that is a predetermined reference for the actuator (hereinafter referred to as “reference operation amount”). Normalized operation amount ”). The reference operation amount may be the same operation amount for all the actuators, or may be different for each actuator. As in this case, for example, the operation amount specifying unit 110 can obtain an operation amount for at least one actuator so as to be in a format suitable for specifying the timing by the timing specifying unit 120 described later. Further, the operation amount specifying unit 110 can represent the operation amount in a format different from the normalized operation amount described above.
 なお、操作量特定部110にて操作量の特定対象となるアクチュエータは、管路網に存在するすべてのアクチュエータとすることができる。また、操作量特定部110にて操作量の特定対象となるアクチュエータは、管路網に存在する一部のアクチュエータに対する操作量に限ることができる。操作量特定部110は、管路網において必要とされるアクチュエータに対する制御内容等に応じて、操作量の特定対象となるアクチュエータを適宜選択することができる。 It should be noted that the actuators for which the operation amount is specified by the operation amount specifying unit 110 can be all actuators existing in the pipeline network. Further, the actuator that is the target of the operation amount specified by the operation amount specifying unit 110 can be limited to the operation amount for a part of the actuators existing in the pipeline network. The operation amount specifying unit 110 can appropriately select an actuator to be specified for the operation amount in accordance with the control contents for the actuator required in the pipeline network.
 タイミング特定部120は、少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を種々の方法にて明らかにする。タイミング特定部120においてタイミングの特定対象となるアクチュエータは、例えば操作量特定部110において操作量が定められるアクチュエータである。また、タイミング特定部120が特定する操作タイミングの相違は、特定対象であるアクチュエータを操作する時間の基準となる時刻からの相対的なずれである。すなわち、タイミング特定部120は、アクチュエータの操作タイミングのスケジューリングを行う。 The timing identification unit 120 clarifies the difference in operation timing for each of at least one actuator by various methods. The actuator whose timing is specified by the timing specifying unit 120 is, for example, an actuator whose operation amount is determined by the operation amount specifying unit 110. Further, the difference in operation timing specified by the timing specifying unit 120 is a relative deviation from the time serving as a reference for the time for operating the actuator that is the specification target. That is, the timing specifying unit 120 schedules the operation timing of the actuator.
 なお、操作タイミングの相違は、例えば、当該相違の特定対象であるアクチュエータを操作した場合において、管路網を流れる流体に当該操作に起因する圧力の変動が生じている期間に基づいて定められる。この場合において、操作タイミングの相違は、当該アクチュエータの操作に起因して、管路網を流れる流体に生じる圧力の変動が収まる(圧力の変動が基準となる大きさより小さくなる)までの期間に基づいて定められる。また、操作タイミングの相違は、当該アクチュエータの各々の設計パラメータ等に基づいて定められる。上述した期間においてアクチュエータが操作されることで、各々の操作によって管路網を流れる流体に生じる圧力変動が打ち消される場合がある。すなわち、タイミング特定部120は、対象となるアクチュエータの操作タイミングが、上述した期間に含まれるように操作タイミングの相違を特定する。タイミング特定部120は、このように操作タイミングの相違を特定することで、複数のアクチュエータを同時に操作する場合と比較して、各々の操作によって当該流体に生じる圧力波の合成波を小さくすることを可能にする。 The difference in the operation timing is determined based on, for example, a period in which the pressure fluctuation caused by the operation occurs in the fluid flowing through the pipeline network when the actuator that is the specific target of the difference is operated. In this case, the difference in the operation timing is based on the period until the pressure fluctuation generated in the fluid flowing through the pipeline network is settled due to the operation of the actuator (the pressure fluctuation is smaller than the reference magnitude). Determined. The difference in operation timing is determined based on the design parameters of the actuators. When the actuator is operated during the above-described period, the pressure fluctuation generated in the fluid flowing through the pipeline network may be canceled by each operation. That is, the timing specifying unit 120 specifies the difference in the operation timing so that the operation timing of the target actuator is included in the above-described period. The timing identifying unit 120 identifies the difference in the operation timing as described above, thereby reducing the combined wave of the pressure wave generated in the fluid by each operation, as compared with the case of simultaneously operating a plurality of actuators. enable.
 先の説明のように、管路網における複数のアクチュエータの各々が時間をずらして所望の操作量を操作される場合に、管路網に生じる流体の圧力等の変動は、当該アクチュエータが同時に操作される場合と比較して小さくなる場合がある。例えば、管路網における複数のアクチュエータの各々が時間をずらして所望の操作量を操作されることで、当該操作に起因する圧力変動が打ち消しあう場合がある。タイミング特定部120は、少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を特定することによって、管路網に生じる流体の圧力等の変動が小さくなるように、複数のアクチュエータの各々を操作することを可能にすることができる。 As described above, when each of a plurality of actuators in the pipeline network is operated at a desired operation amount while shifting the time, fluctuations in the fluid pressure and the like occurring in the pipeline network are simultaneously controlled by the actuators. It may be smaller than the case where it is done. For example, when each of a plurality of actuators in the pipeline network is operated at a desired operation amount while shifting time, pressure fluctuations caused by the operation may cancel each other. The timing specifying unit 120 operates each of the plurality of actuators so as to reduce the variation in the pressure of the fluid generated in the pipeline network by specifying the difference in the operation timing of each of the at least one actuator. Can be possible.
 タイミング特定部120は、管路網における圧力変動が所定の条件を満たすように、少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を求めることができる。このようにすることで、タイミング特定部120は、上述のように、少なくとも一つのアクチュエータを、管路網に生じる流体の圧力等の変動が小さくなるように操作することを可能にする。 The timing specifying unit 120 can obtain a difference in each operation timing with respect to at least one actuator so that the pressure fluctuation in the pipeline network satisfies a predetermined condition. By doing in this way, the timing specific | specification part 120 enables it to operate so that the fluctuation | variation of the pressure etc. of the fluid which arises in a pipeline network may become small as mentioned above.
 この所定の条件の一つの例として、タイミング特定部120は、管路網における圧力や流量の変動が所定の大きさより小さくなるように、操作タイミングの相違を決定することができる。そして、この所定の大きさは、例えば、管路網の構造等に応じて定められる。一例として、所定の大きさは、複数のアクチュエータを同時に操作した場合における圧力や流量の変動と比較して十分に小さい(管路網を流体が定常的に流れる場合に近くなるような)大きさとすることができる。このように定めることで、管路網に加えられる負荷を小さくすることが可能になる。また、タイミング特定部120は、管路網における圧力や流量の変動が、アクチュエータによって制御可能な範囲において最小となる(又は、例えば当該変動が予め定めた大きさより小さくなる)ように、当該アクチュエータに対する各々の操作タイミングの相違を決定することができる。
(操作条件決定装置の動作)
 続いて、図7に示すフローチャートを用いて、本実施形態における操作条件決定装置100の動作の一例を説明する。
As an example of the predetermined condition, the timing specifying unit 120 can determine the difference in operation timing so that the fluctuation of the pressure and the flow rate in the pipeline network becomes smaller than a predetermined magnitude. And this predetermined magnitude | size is defined according to the structure of a pipe network, etc., for example. As an example, the predetermined size is sufficiently small as compared to fluctuations in pressure and flow rate when a plurality of actuators are operated simultaneously (so as to be close to when a fluid constantly flows through a pipeline network). can do. By determining in this way, it is possible to reduce the load applied to the pipeline network. In addition, the timing specifying unit 120 is configured so that the fluctuation of the pressure and flow rate in the pipeline network is minimized within a range that can be controlled by the actuator (or, for example, the fluctuation is smaller than a predetermined magnitude). The difference between the operation timings can be determined.
(Operation of the operating condition determination device)
Next, an example of the operation of the operation condition determining apparatus 100 in the present embodiment will be described using the flowchart shown in FIG.
 最初に、操作量特定部110は、少なくとも一つのアクチュエータに対する操作量を特定する(ステップS101)。先に説明したとおり、操作量特定部110は、後のステップS102において、タイミング特定部120によって行われるタイミングの特定手法に応じた形式にて操作量を表すことができる。 First, the operation amount specifying unit 110 specifies an operation amount for at least one actuator (step S101). As described above, the operation amount specifying unit 110 can represent the operation amount in a format corresponding to the timing specifying method performed by the timing specifying unit 120 in the subsequent step S102.
 次に、タイミング特定部120は、少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を特定する(ステップS102)。このステップにおいて、タイミング特定部120は、例えば、後述するように、式(3)に関する非線形な最適化問題を解くことによって、アクチュエータの操作に関する時間シフトを求めることができる。そして、この場合に、タイミング特定部120は、当該求めた時間シフトに基づいて、少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を求めることができる。 Next, the timing specifying unit 120 specifies a difference in each operation timing with respect to at least one actuator (step S102). In this step, the timing specifying unit 120 can obtain a time shift related to the operation of the actuator, for example, by solving a nonlinear optimization problem related to Equation (3), as will be described later. In this case, the timing specifying unit 120 can obtain a difference in operation timing for each of at least one actuator based on the obtained time shift.
 本実施形態における操作条件決定装置100は、管路網における流体の流れを制御する制御システム10に含まれる場合がある。その場合には、制御システム10は、操作条件決定装置100の上述した動作にて特定されたアクチュエータに対する操作量及び操作タイミングの相違に基づいて、例えば、当該アクチュエータを操作することができる。 The operation condition determination device 100 in this embodiment may be included in the control system 10 that controls the flow of fluid in the pipeline network. In this case, the control system 10 can operate the actuator, for example, based on the difference in the operation amount and operation timing for the actuator specified by the above-described operation of the operation condition determining device 100.
 (操作タイミングの決定例)
 図6を用いて、本実施形態の操作条件決定装置100において、タイミング特定部120が複数のアクチュエータの各々に対する操作タイミングの相違を決定する場合の具体的な一例を示す。なお、この例において、操作対象とされるアクチュエータの数はK個であるとする。また、管路網の節点の数はN個であるとする。
(Example of determining operation timing)
A specific example in the case where the timing specifying unit 120 determines the difference in operation timing for each of a plurality of actuators in the operation condition determination device 100 of the present embodiment will be described with reference to FIG. In this example, it is assumed that the number of actuators to be operated is K. Further, it is assumed that the number of nodes of the pipeline network is N.
 また、操作量特定部110は、例えば管路網を流れる流体の消費量などに応じて、制御システム10に含まれる制御部101等で決定された操作内容に基づいて複数のアクチュエータの各々に関する操作量を用いたとする。そして、操作量特定部110は、基準操作量に対する正規化操作量を、複数のアクチュエータの各々に関する操作量として求めたとする。なお、複数のアクチュエータの各々に対する正規化操作量はaとして表される。例えば、あるアクチュエータの正規化操作量aが2.0である場合には、当該アクチュエータの操作量は、基準操作量の2.0倍であることを意味する。なお、本実施形態において、aは、重み係数と呼称することとする。 Further, the operation amount specifying unit 110 performs operations related to each of the plurality of actuators based on the operation content determined by the control unit 101 included in the control system 10 according to, for example, the consumption amount of the fluid flowing through the pipeline network. Suppose that the quantity is used. Then, it is assumed that the operation amount specifying unit 110 obtains the normalized operation amount with respect to the reference operation amount as the operation amount related to each of the plurality of actuators. The normalized operation amount for each of the plurality of actuators is represented as a k . For example, when the normalized operation amount ak of a certain actuator is 2.0, it means that the operation amount of the actuator is 2.0 times the reference operation amount. In the present embodiment, a k is referred to as a weighting factor.
 タイミング特定部120は、複数のアクチュエータの各々に基準操作量に相当する操作が行われる場合について、何らかの手段によって求められた管路網の節点において流体の圧力が変動する様子(以下、「基準圧力ステップ応答」とする)を用いる。基準圧力ステップ応答は、個々のアクチュエータを、ステップ状に操作する(すなわち、ある時刻までは操作せず、ある時刻において基準操作量まで操作する)場合に関する節点における流体の圧力が変動する様子を表す。この例においては、タイミング特定部120は、K・N個の基準圧力ステップ応答(すなわち、N個の節点の各々に対してK個のアクチュエータの各々を操作した場合における基準圧力ステップ応答)を求める(なお、本実施形態において「・」の記号は乗算を示す)。この様子は、図6(1)に示されている。タイミング特定部120は、事前に求められた基準圧力ステップ応答を用いてもよいし、必要に応じて基準圧力ステップ応答を求めて用いてもよい。 The timing specifying unit 120 changes the fluid pressure at a node of the pipeline network obtained by some means when the operation corresponding to the reference operation amount is performed on each of the plurality of actuators (hereinafter referred to as “reference pressure”). Step response ”). The reference pressure step response represents a state in which the fluid pressure at the node changes when each actuator is operated in a step-like manner (that is, the actuator is not operated until a certain time but is operated until a reference operation amount at a certain time). . In this example, the timing specifying unit 120 obtains K · N reference pressure step responses (that is, a reference pressure step response when each of the K actuators is operated with respect to each of the N nodes). (In this embodiment, the symbol “·” indicates multiplication). This is shown in FIG. 6 (1). The timing specifying unit 120 may use a reference pressure step response obtained in advance, or may obtain and use a reference pressure step response as necessary.
 なお、基準圧力ステップ応答は、種々の方法で求められる。一例として、基準圧力ステップ応答は、例えば、実際の管路網にて計測された信号に基づいて求められる。別の例として、基準圧力ステップ応答は、シミュレーションによって導出された信号に基づいて求められる。一般に、ステップ応答は、インパルス応答を積分することによって求められる。そのため、基準圧力ステップ応答は、個々のアクチュエータの操作に関するインパルス応答を計測やシミュレーション等によって求め、当該インパルス応答を積分することによっても求められる。タイミング特定部120は、基準圧力ステップ応答を任意の手段で求めることによって特定することができる。 The reference pressure step response can be obtained by various methods. As an example, the reference pressure step response is obtained based on, for example, a signal measured in an actual pipeline network. As another example, the reference pressure step response is determined based on a signal derived by simulation. In general, the step response is determined by integrating the impulse response. Therefore, the reference pressure step response can also be obtained by obtaining an impulse response related to the operation of each actuator by measurement, simulation, or the like, and integrating the impulse response. The timing specifying unit 120 can specify the reference pressure step response by obtaining it by any means.
 また、タイミング特定部120は、図6(2)に示されているように、操作量特定部110にて求められた、複数のアクチュエータの各々に関する正規化操作量を取得する。 Further, as shown in FIG. 6 (2), the timing specifying unit 120 acquires the normalized operation amount related to each of the plurality of actuators obtained by the operation amount specifying unit 110.
 基準圧力ステップ応答が求められると、タイミング特定部120は、任意の条件を満たすように、複数のアクチュエータの各々を操作するタイミングを求めることができる。タイミング特定部120は、例えば管路網における複数の節点の各々に生じる圧力変動の振幅の和(以下、「圧力ステップ応答合成信号」とする)が所定の条件を満たすよう、複数のアクチュエータの各々を操作するタイミングを決定する。この場合、所定の条件は、例えば、圧力ステップ応答合成信号を最小にするような条件である。なお、圧力ステップ応答合成信号を最小にするような条件は、厳密に圧力ステップ応答合成信号を最小とする条件に限られず、上述したアクチュエータの操作によって制御可能な範囲で圧力ステップ応答合成信号を最小とする条件であってもよい。タイミング特定部120が圧力ステップ応答合成信号を最小とするような条件に基づいて複数のアクチュエータの各々を操作するタイミングを決定する場合において、当該タイミングは例えば以下のように導出される。 When the reference pressure step response is obtained, the timing specifying unit 120 can obtain the timing for operating each of the plurality of actuators so as to satisfy an arbitrary condition. The timing specifying unit 120, for example, each of the plurality of actuators so that a sum of amplitudes of pressure fluctuations generated at each of a plurality of nodes in the pipeline network (hereinafter referred to as “pressure step response composite signal”) satisfies a predetermined condition. Decide when to operate. In this case, the predetermined condition is, for example, a condition that minimizes the pressure step response composite signal. The conditions for minimizing the pressure step response composite signal are not strictly limited to the conditions for minimizing the pressure step response composite signal, but the pressure step response composite signal is minimized within a range that can be controlled by the operation of the actuator described above. The condition may be as follows. When the timing specifying unit 120 determines the timing for operating each of the plurality of actuators based on a condition that minimizes the pressure step response composite signal, the timing is derived as follows, for example.
 タイミング特定部120は、図6(3)に示すとおり、複数のアクチュエータの各々を操作する時刻の基準となる時刻からのズレ(以下、このずれを「時間シフト」とする)を求める。アクチュエータAを操作する場合における時間シフトが、基準となる時刻tに対してtである(時刻tからtずらした時刻に操作される)場合において、節点Nに生じる基準圧力ステップ応答がsNx,Ak(t-t)と表されるとする。アクチュエータAを基準となる時刻tからtだけずらした時刻に操作した場合において、節点Nに生じる基準圧力ステップ応答がsNx,Ak(t-t)と表されるとする。この場合に、アクチュエータAに対する操作量は、この基準圧力ステップ応答に正規化操作量を乗じて、ak・sNx,Ak(t-t)と表される。この値を用いると、節点Nにおける圧力ステップ応答合成信号yNxは、例えば式(1)のように表される。

Figure JPOXMLDOC01-appb-I000001
As shown in FIG. 6 (3), the timing specifying unit 120 obtains a deviation from the reference time for operating each of the plurality of actuators (hereinafter, this shift is referred to as “time shift”). Time shifts in the case of operating the actuator A k is a t k with respect to serving as a reference time t (operated from time t to t k staggered time) in the case, the reference pressure step response caused to the node N x Is expressed as s Nx, Ak (t−t k ). In the case where the actuator A k from time t as a reference was operated at a time shifted by t k, a reference pressure step response caused to the node N x is s Nx, denoted Ak (t-t k). In this case, the operation amount for the actuator A k is multiplied by the normalization operation amount to the reference pressure step response, a k · SNX, denoted Ak (t-t k). When this value is used, the pressure step response composite signal y Nx at the node N x is expressed by, for example, Expression (1).

Figure JPOXMLDOC01-appb-I000001
 アクチュエータAに関する上述の時間シフトは、τと表される。すなわち、τ=t-tである。操作の対象となるK個のアクチュエータの各々に対するτは、ベクトルτとして表される。すなわち、τ=[τ,τ,...,τである。Tはベクトルの転置を表す。また、アクチュエータの操作によって節点Nを流れる流体の圧力が変動した場合に、当該圧力の変動に関する振幅の最大値と最小値との差である波高は、例えば関数PTP(yNx)として表される。管路網における全ての節点に関する波高の和であるf(τ)は、この関数PTP(yNx)を用いると、以下の式(2)にて表される。なお、(2)式において、k=1,2,...,Kであり、τは、τのK個の要素を略した記載である。

Figure JPOXMLDOC01-appb-I000002

The time shift described above for actuator A k is denoted τ k . That is, τ k = t−t k . Τ k for each of the K actuators to be manipulated is represented as a vector τ. That is, τ = [τ 1 , τ 2 ,. . . , Τ K ] T. T represents vector transposition. Further, when the pressure of the fluid flowing through the node N x is changed by the operation of the actuator, a wave height that is a difference between the maximum value and the minimum value of the amplitude related to the change in the pressure is expressed as a function PTP (y Nx ), for example. The When this function PTP (y Nx ) is used, f (τ), which is the sum of wave heights for all nodes in the pipeline network, is expressed by the following equation (2). In the equation (2), k = 1, 2,. . . , K, and τ k is an abbreviation for K elements of τ.

Figure JPOXMLDOC01-appb-I000002

 そして、上述した管路網におけるすべての節点に関する波高の和であるf(τ)を最小とするような時間シフトの量であるτshiftは、式(3)のように表される。

Figure JPOXMLDOC01-appb-I000003
Then, τ shift , which is the amount of time shift that minimizes f (τ), which is the sum of the wave heights related to all nodes in the above-described pipe network, is expressed as in Expression (3).

Figure JPOXMLDOC01-appb-I000003
 式(3)のように、圧力ステップ応答合成信号の最大値と最小値との差を評価関数として、当該評価関数を最小とするような時間シフトを求める問題は、非線形な最適化問題である。このような非線形の最適化問題は、ランダム選択と評価関数を繰り返す最適化手法で解が求められる。すなわち、アクチュエータAを操作する時刻の基準時刻tからのずれであるtのランダムな選択と式(2)の値の算出が繰り返される。そして、繰り返し算出された式(2)の値のうち、最も小さくなる値が式(3)の解とされる。このような最適化手法として、遺伝的アルゴリズム(Genetic Algorithm)や、粒子群最適化(Particle Swarm Optimization)等の手法が用いられる。 The problem of obtaining a time shift that minimizes the evaluation function using the difference between the maximum value and the minimum value of the pressure step response composite signal as an evaluation function, as in Expression (3), is a nonlinear optimization problem. . Such a nonlinear optimization problem can be solved by an optimization method that repeats random selection and an evaluation function. That is, the calculation of the value of the random selection and expression of t k is a deviation from the reference time t of the time for operating the actuator A k (2) is repeated. And the value which becomes the smallest among the values of Formula (2) repeatedly calculated is taken as the solution of Formula (3). As such an optimization technique, a technique such as a genetic algorithm or particle swarm optimization is used.
 なお、式(3)の解は、上述した手法と異なる手法によっても求められる。例えば、式(3)の解の導出には、準ニュートン法等の手法が用いられる。 Note that the solution of equation (3) can also be obtained by a method different from the method described above. For example, a method such as a quasi-Newton method is used to derive the solution of Equation (3).
 タイミング特定部120は、図6(4)に示すように、式(3)の解として求められたτshiftに基づいて、複数のアクチュエータの各々に対する操作タイミングの相違を求めることができる。一例として、アクチュエータAからAの4つが操作対象である場合に、アクチュエータAからAの各々に対する操作タイミングは、タイミング特定部120によって、例えば以下に説明されるように求められる。 As shown in FIG. 6 (4), the timing specifying unit 120 can determine the difference in operation timing for each of the plurality of actuators based on τ shift obtained as a solution of the expression (3). As an example, when four actuators A 1 to A 4 are operation targets, the operation timing for each of the actuators A 1 to A 4 is obtained by the timing specifying unit 120 as described below, for example.
 まず、タイミング特定部120は、上述した式(3)に示すτshiftの解を求める。例えば、求められたτshiftの値が、例えば、τshift=[τA1,shift,τA2,shift,τA3,shift,τA4,shift=[1.5,0.1,2.2,0.2]であるとする。 First, the timing specifying unit 120 obtains a solution of τ shift shown in the above-described equation (3). For example, the obtained value of τ shift is, for example, τ shift = [τ A1, shift , τ A2, shift , τ A3, shift , τ A4, shift ] T = [1.5, 0.1, 2.. 2,0.2] T.
 この場合に、タイミング特定部120は、最初にアクチュエータAを動作するように操作タイミングを決定する。続いて、タイミング特定部120は、アクチュエータAを操作するタイミングを、τA4,shiftとτA2,shiftとの相違に基づいて、アクチュエータAの0.1秒後に操作するようにタイミングを決定する。同様に、タイミング特定部120は、アクチュエータAを操作するタイミングを、τA1,shiftとτA2,shiftとの相違に基づいて、アクチュエータAの1.4秒後に操作するように決定する。そして、タイミング特定部120は、アクチュエータAを操作するタイミングを、τA3,shiftとτA2,shiftとの相違に基づいて、アクチュエータAの2.1秒後に操作するように決定する。 In this case, timing specifying unit 120 first determines the operation timing to operate the actuator A 2. Subsequently, the timing specifying unit 120, the timing for operating the actuator A 4, on the basis of the difference between tau A4, Shif t and tau A2, Shift, the timing to operate after 0.1 seconds of the actuator A 2 decide. Similarly, timing specifying unit 120, the timing for operating the actuators A 1, based on the difference between tau A1, Shift and tau A2, Shift, determined to operate after 1.4 seconds of the actuator A 2. The timing specifying unit 120, the timing for operating the actuator A 3, based on the difference between tau A3, Shift and tau A2, Shift, determined to operate after 2.1 seconds of the actuator A 2.
 以上のとおり、本実施形態における操作条件決定装置100は、管路網における少なくとも一つのアクチュエータに対する操作量と、各々の操作タイミングの相違とを特定する。管路網におけるアクチュエータの各々が時間をずらして必要な操作量を一度に操作される場合に、管路網に生じる流体の圧力等の変動は、当該操作に起因する圧力変動が打ち消しあうことによって小さくなる場合がある。また、上述するような操作は、アクチュエータの各々を所望の操作量となるまで徐々に操作する場合と比較して、操作に要する時間を短くすることができる。したがって、管路網におけるアクチュエータの操作に際して、本実施形態における操作条件決定装置100を用いることにより、応答性を損なうことなく、管路網を流れる流体に生じる圧力の変動を制御することが可能となる。 As described above, the operation condition determination device 100 according to the present embodiment specifies the operation amount for at least one actuator in the pipeline network and the difference in each operation timing. When each of the actuators in the pipeline network is operated at the same time with the required operation amount shifted, fluctuations in the fluid pressure, etc. occurring in the pipeline network are caused by the pressure fluctuations caused by the operation canceling each other out. May be smaller. Further, the operation described above can shorten the time required for the operation as compared with the case where each of the actuators is gradually operated until a desired operation amount is obtained. Therefore, when operating the actuator in the pipeline network, by using the operation condition determining device 100 in the present embodiment, it is possible to control the fluctuation of the pressure generated in the fluid flowing through the pipeline network without impairing the responsiveness. Become.
 (第1の実施形態の変形例)
 本実施形態における操作条件決定装置100は、種々の変形例が考えられる。
(Modification of the first embodiment)
Various modification examples can be considered for the operation condition determining apparatus 100 in the present embodiment.
 一つの変形例として、図8に示すように、操作条件決定装置100は、複数のアクチュエータの各々の操作を複数の段階に分けて行うと仮定して、当該アクチュエータの操作量及び操作タイミングの相違を特定することができる。 As one modification, as shown in FIG. 8, the operation condition determination device 100 assumes that each operation of a plurality of actuators is performed in a plurality of stages, and the difference in operation amount and operation timing of the actuators. Can be specified.
 例えば、操作量特定部110は、図8(1)に示すような複数のアクチュエータの各々に関して必要とされる操作量について、図8(2)に示すように、それぞれM段階に等分して操作されるとすることができる。そして、タイミング特定部120は、例えば以下のように分けられた操作タイミングの相違を求めることができる。この場合に、M段階に等分された各々の正規化操作量a/Mに関する圧力ステップ応答合成信号は、上述した式(1)と同様にして、例えば以下の式(4)のように表される(なお、本実施形態において「/」の記号は除算を示す)。この例は、例えば図8(3)のように示される。

Figure JPOXMLDOC01-appb-I000004
For example, the operation amount specifying unit 110 equally divides the operation amount required for each of the plurality of actuators as shown in FIG. 8 (1) into M stages as shown in FIG. 8 (2). Can be manipulated. And the timing specific | specification part 120 can obtain | require the difference in the operation timing divided, for example as follows. In this case, the pressure step response composite signal for each normalized manipulated variable a k / M equally divided into M stages is similar to the above-described equation (1), for example, as in the following equation (4): (In this embodiment, the symbol “/” indicates division). This example is shown, for example, in FIG.

Figure JPOXMLDOC01-appb-I000004
 そして、タイミング特定部120は、式(4)にて求められた圧力ステップ応答合成信号に基づいて、上述した式(2)や式(3)を用いて複数のアクチュエータの各々に対する時間シフトの量を求めることができる。なお、この場合においても、式(3)の解は、先に説明した手順と同様に求められる。このようにすることで、タイミング特定部120は、複数のアクチュエータの各々に対する操作量がM段階に等分された場合における当該アクチュエータに対する操作タイミングの相違を求めることができる。 And the timing specific | specification part 120 is the quantity of the time shift with respect to each of a some actuator using Formula (2) and Formula (3) mentioned above based on the pressure step response synthetic | combination signal calculated | required by Formula (4). Can be requested. Even in this case, the solution of equation (3) is obtained in the same manner as the procedure described above. By doing in this way, the timing specific | specification part 120 can obtain | require the difference in the operation timing with respect to the said actuator in case the operation amount with respect to each of a some actuator is equally divided into M steps.
 また、操作量特定部110は、複数のアクチュエータの各々に関して必要とされる操作量を、上述した例と異なる任意の段階に分けて操作されるとして当該操作量を特定することができる。例えば、操作量特定部110は、複数のアクチュエータの各々に関して必要とされる操作量を、アクチュエータ毎に異なる段階に分けて操作されるとして当該操作量を特定することができる。操作量特定部110は、複数のアクチュエータの一部に関して必要とされる操作量が一度に操作され、また、残りのアクチュエータに関して必要とされる操作量を任意の段階に分けて操作されるとして、当該操作量を特定することできる。いずれの場合においても、タイミング特定部120は、例えば先に説明した式(1)から式(4)を示して説明した求め方と同様の考え方に基づいて、複数のアクチュエータの各々に対する操作タイミングの相違を特定することができる。 Further, the operation amount specifying unit 110 can specify the operation amount, assuming that the operation amount required for each of the plurality of actuators is operated in an arbitrary stage different from the above-described example. For example, the operation amount specifying unit 110 can specify the operation amount that is required for each of the plurality of actuators as being operated in different stages for each actuator. The operation amount specifying unit 110 is operated such that the operation amounts required for some of the plurality of actuators are operated at once, and the operation amounts required for the remaining actuators are operated in arbitrary stages. The operation amount can be specified. In any case, the timing specifying unit 120 determines the operation timing for each of the plurality of actuators based on the same idea as the method described with reference to the expressions (1) to (4) described above, for example. Differences can be identified.
 また、操作条件決定装置100は、一つのアクチュエータの操作を複数回に分けて行うとして、圧力変動が所定の条件を満たすように、当該アクチュエータの操作量及び操作タイミングの相違を特定することができる。すなわち、操作条件決定装置100は、当該一つのアクチュエータを複数回に分けて操作する場合に、各々の操作によって生じる圧力変動の合成波が所定の条件を満たすように、各々の操作における操作量及びタイミングを特定する。 Further, the operation condition determining apparatus 100 can identify a difference in the operation amount and operation timing of the actuator so that the pressure fluctuation satisfies a predetermined condition, assuming that the operation of one actuator is performed in a plurality of times. . That is, when operating the single actuator in a plurality of times, the operation condition determining device 100 is configured so that the combined amount of pressure fluctuations generated by each operation satisfies a predetermined condition, Identify timing.
 この場合の一例として、操作量特定部110は、操作回数が与えられた場合に、各々の操作に対する操作量を求める。この場合において、複数回の操作の各々における操作量は、それぞれ同じでもよいし、異なっていてもよい。また、求められる操作量は、当該アクチュエータにおける流量を増やす操作でもよいし、減らす操作でもよい。タイミング特定部120は、操作量特定部110によって決定された操作量を操作する場合に、各々の操作によって生じる圧力変動の合成波が所定の条件を満たすように、操作タイミングの相違を求めることができる。なお、所定の条件としては、例えば、合成波が所定の大きさより小さくなるような条件や、合成波の大きさが最小となるような条件等がある。 As an example of this case, the operation amount specifying unit 110 obtains the operation amount for each operation when the number of operations is given. In this case, the operation amount in each of the plurality of operations may be the same or different. Further, the required operation amount may be an operation for increasing or decreasing the flow rate in the actuator. When operating the operation amount determined by the operation amount specifying unit 110, the timing specifying unit 120 obtains a difference in operation timing so that a combined wave of pressure fluctuations generated by each operation satisfies a predetermined condition. it can. The predetermined condition includes, for example, a condition that the synthesized wave is smaller than a predetermined magnitude, a condition that the magnitude of the synthesized wave is minimum, and the like.
 また、上述した例において、操作条件決定装置100は、複数のアクチュエータを対象としてもよい。この場合において、複数のアクチュエータの各々に対する操作回数は、それぞれ同じでもよいし、異なっていてもよい。そして、タイミング特定部120は、当該複数のアクチュエータの各々の複数回の操作によって生じる圧力変動の合成波が所定の条件を満たすように、操作タイミングの相違を求めることができる。 In the above-described example, the operation condition determining device 100 may target a plurality of actuators. In this case, the number of operations for each of the plurality of actuators may be the same or different. And the timing specific | specification part 120 can obtain | require the difference in operation timing so that the synthetic | combination wave of the pressure fluctuation | variation which arises by each operation of the said several actuator of the said several actuator may satisfy | fill predetermined conditions.
 更に別の変形例として、操作条件決定装置100は、アクチュエータの操作量及び操作タイミングの相違を特定する場合において、これらの特定に関する条件を変えることができる。例えば、上述の例においては、タイミング特定部120は、波高の和を最小とするような時間シフトの量に基づいて、少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を決定した。しかしながら、タイミング特定部120は、これと異なる任意の基準に基づいて、アクチュエータに対する各々の操作タイミングの相違を求めることができる。例えば、タイミング特定部120は、複数の節点の各々における波高の最大値を最小とするような条件に基づいて、少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を決定してもよい。このようにすることで、操作条件決定装置100は、波高が大きくなる、すなわち、大きな過大圧力波が加えられる節点の発生を抑制するように、少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を求めることができる。 As yet another modification, the operation condition determination device 100 can change conditions relating to the specification when specifying the difference in the operation amount and operation timing of the actuator. For example, in the above-described example, the timing specifying unit 120 determines the difference in operation timing for each of at least one actuator based on the amount of time shift that minimizes the sum of the wave heights. However, the timing specifying unit 120 can obtain a difference in each operation timing for the actuator based on an arbitrary reference different from this. For example, the timing specifying unit 120 may determine a difference in each operation timing for at least one actuator based on a condition that minimizes the maximum value of the wave height at each of the plurality of nodes. By doing in this way, the operation condition determination apparatus 100 calculates | requires the difference of each operation timing with respect to at least 1 actuator so that generation | occurrence | production of the node to which a wave height may become large, ie, a big excessive pressure wave, may be suppressed. be able to.
 また、上述した実施形態の説明において、タイミング特定部120は、例えば、管路網の節点を流れる流体の波高に基づいて、少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を求めるとした。しかしながら、操作条件決定装置100のタイミング特定部120は、これ以外の管路網の任意の箇所における流体の圧力や流量等の状態に基づいて、操作タイミングの相違を求めることができる。例えば、タイミング特定部120は、管路網において圧力センサや流量センサ等が設置された箇所における流体の圧力や流量等の状態に基づいて、操作タイミングの相違を求めることができる。 Further, in the description of the above-described embodiment, the timing specifying unit 120 determines a difference in each operation timing for at least one actuator based on, for example, the wave height of the fluid flowing through the nodes of the pipeline network. However, the timing specifying unit 120 of the operation condition determining apparatus 100 can determine the difference in operation timing based on the state of the fluid pressure, flow rate, and the like at any other part of the pipeline network. For example, the timing specifying unit 120 can determine the difference in operation timing based on the state of the fluid pressure, flow rate, and the like at a location where a pressure sensor, a flow rate sensor, and the like are installed in the pipeline network.
 上述した実施形態において、操作条件決定装置100は、一例として、管路網を流れる流体の圧力等の変動が小さくなるように、少なくとも一つのアクチュエータに対する操作量及び操作タイミングの相違を決定した。しかしながら、操作条件決定装置100は、管路網に加えられる衝撃に関連する任意の要因の変動が小さくなるように、少なくとも一つのアクチュエータに対する操作量及び操作タイミングの相違を決定することができる。管路網に加えられる衝撃に関連する任意の要因は、例えば、管路網を流れる流体の流量等である。 In the above-described embodiment, as an example, the operation condition determination device 100 determines the difference in the operation amount and operation timing for at least one actuator so that the fluctuation of the pressure of the fluid flowing through the pipeline network is reduced. However, the operation condition determining apparatus 100 can determine the difference in the operation amount and operation timing for at least one actuator so that the fluctuation of any factor related to the impact applied to the pipeline network is reduced. An arbitrary factor related to the impact applied to the pipeline network is, for example, the flow rate of the fluid flowing through the pipeline network.
 また、これまでの説明においては、予め操作量特定部110にて定められた少なくとも一つのアクチュエータの各々に対する操作量に応じて、タイミング特定部120が当該アクチュエータに対する各々の操作タイミングの相違を求める例が用いられた。しかしながら、本実施形態における操作条件特定装置100は、上述する構成に限られない。すなわち、操作条件特定装置100は、予めタイミング特定部120にて定められた少なくとも一つのアクチュエータに対する各々の操作タイミングの相違に応じて、操作量特定部110が、当該アクチュエータに対する操作量を求めるような構成としてもよい。 In the above description, the timing specifying unit 120 determines the difference in the operation timing for each actuator according to the operation amount for each of the at least one actuator previously determined by the operation amount specifying unit 110. Was used. However, the operation condition specifying device 100 in the present embodiment is not limited to the configuration described above. That is, in the operation condition specifying device 100, the operation amount specifying unit 110 calculates the operation amount for the actuator in accordance with the difference in operation timing for each of the at least one actuator predetermined by the timing specifying unit 120. It is good also as a structure.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、各実施形態における構成は、本発明のスコープを逸脱しない限りにおいて、互いに組み合わせることが可能である。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. The configurations in the embodiments can be combined with each other without departing from the scope of the present invention.
 この出願は、2014年09月26日に出願された日本出願特願2014-197160を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-197160 filed on Sep. 26, 2014, the entire disclosure of which is incorporated herein.
 10  制御システム
 50、51  管路網
 100  操作条件決定装置
 101  制御部
 110  操作量特定部
 120  タイミング特定部
 500  管路
 511、512、513、514、515、516、517、518、519、520、521、522  節点
 531、532、533、534  バルブ
 535、536  ポンプ
 551、552、553、554、555、556  アクチュエータ
 1000  情報処理装置
 1001  CPU
 1002  ROM
 1003  RAM
 1004  プログラム
 1005  記憶装置
 1006  記録媒体
 1007  ドライブ装置
 1008  通信インターフェース
 1009  通信ネットワーク
 1010  入出力インターフェース
 1011  バス
DESCRIPTION OF SYMBOLS 10 Control system 50, 51 Pipe network 100 Operation condition determination apparatus 101 Control part 110 Operation amount specific part 120 Timing specific part 500 Pipe line 511,512,513,514,515,516,517,518,519,520,521 522 Node 531, 532, 533, 534 Valve 535, 536 Pump 551, 552, 553, 554, 555, 556 Actuator 1000 Information processing device 1001 CPU
1002 ROM
1003 RAM
1004 Program 1005 Storage device 1006 Recording medium 1007 Drive device 1008 Communication interface 1009 Communication network 1010 Input / output interface 1011 Bus

Claims (10)

  1.  管路網における流体の流れを制御する少なくとも一つのアクチュエータに対する操作量を特定する操作量特定手段と、
     前記少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を特定するタイミング特定手段とを備える、操作条件決定装置。
    An operation amount specifying means for specifying an operation amount for at least one actuator that controls a flow of fluid in the pipeline network;
    An operation condition determining apparatus comprising: a timing specifying unit that specifies a difference in each operation timing with respect to the at least one actuator.
  2. 前記タイミング特定手段は、前記流体の圧力の変動が所定の条件を満たすように前記操作タイミングの相違を特定する、請求項1に記載の操作条件決定装置。 The operation condition determination device according to claim 1, wherein the timing specifying unit specifies a difference in the operation timing so that a change in pressure of the fluid satisfies a predetermined condition.
  3.  前記所定の条件は、前記管路網に含まれる所定の箇所における前記流体の圧力の変動の大きさの和に基づいて定められる、請求項2に記載の操作条件決定装置。 3. The operation condition determining apparatus according to claim 2, wherein the predetermined condition is determined based on a sum of magnitudes of fluctuations in the pressure of the fluid at a predetermined location included in the pipeline network.
  4.  前記所定の条件は、前記管路網に含まれる所定の箇所における前記流体の圧力の変動の大きさの最大値に基づいて定められる、請求項2に記載の操作条件決定装置。 3. The operation condition determining device according to claim 2, wherein the predetermined condition is determined based on a maximum value of a magnitude of a fluctuation in the pressure of the fluid at a predetermined location included in the pipeline network.
  5. 前記タイミング特定手段は、前記少なくとも一つのアクチュエータに対する各々の操作タイミングが、前記少なくとも一つのアクチュエータに対する操作の後、前記流体に生じる圧力の変動が所定の条件を満たすまでの期間に含まれるように前記操作タイミングの相違を特定する、請求項1から4のいずれか一項に記載の操作条件判定装置。 The timing specifying means is configured so that each operation timing with respect to the at least one actuator is included in a period until a change in pressure generated in the fluid satisfies a predetermined condition after the operation with respect to the at least one actuator. The operation condition determination device according to any one of claims 1 to 4, wherein a difference in operation timing is specified.
  6.  前記操作量特定手段は、前記少なくとも一つのアクチュエータの一つに関して、複数回の操作が行われることとして前記操作量を特定し、
     前記タイミング特定手段は、前記複数回の操作の各々に関する前記操作タイミングの相違を特定する、請求項1から5のいずれか一項に記載の操作条件決定装置。
    The operation amount specifying means specifies the operation amount as a plurality of operations are performed on one of the at least one actuator,
    The operation condition determination device according to any one of claims 1 to 5, wherein the timing specifying unit specifies a difference in the operation timing with respect to each of the plurality of operations.
  7.  前記タイミング特定手段は、前記複数回の操作が行われる前記アクチュエータの各々について、該アクチュエータに対する前記複数回の操作を行った場合における前記流体の圧力の変動が前記所定の条件を満たすように前記操作タイミングの相違を特定する、請求項6に記載の操作条件決定装置。 For each of the actuators that are operated a plurality of times, the timing specifying unit is configured so that a change in pressure of the fluid when the plurality of operations are performed on the actuator satisfies the predetermined condition. The operation condition determining apparatus according to claim 6, wherein a timing difference is specified.
  8.  請求項1から6のいずれか一項に記載の操作条件決定装置と、
     前記操作条件決定装置にて決定された前記操作量及び前記操作タイミングに基づいて、前記少なくとも一つのアクチュエータを制御する制御装置とを備える、制御システム。
    The operation condition determining device according to any one of claims 1 to 6,
    A control system comprising: a control device that controls the at least one actuator based on the operation amount and the operation timing determined by the operation condition determination device.
  9.  管路網における流体の流れを制御する少なくとも一つのアクチュエータに対する操作量を特定し、
     前記少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を特定する、操作条件決定方法。
    Identify the manipulated variable for at least one actuator that controls fluid flow in the pipeline network;
    An operation condition determining method for specifying a difference in operation timing for each of the at least one actuator.
  10.  コンピュータに、
     管路網における流体の流れを制御する少なくとも一つのアクチュエータに対する操作量を特定する処理と、
     前記少なくとも一つのアクチュエータに対する各々の操作タイミングの相違を特定する処理とを実行させるプログラムを格納した、コンピュータ読み取り可能記録媒体。
    On the computer,
    A process for specifying an operation amount for at least one actuator that controls a flow of fluid in the pipeline network;
    A computer-readable recording medium storing a program for executing a process for identifying a difference in operation timing for each of the at least one actuator.
PCT/JP2015/004760 2014-09-26 2015-09-17 Operation condition determination device, operation condition determination method, control system, and computer-readable recording medium WO2016047120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016549950A JPWO2016047120A1 (en) 2014-09-26 2015-09-17 Operating condition determining device, operating condition determining method, control system, and computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-197160 2014-09-26
JP2014197160 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047120A1 true WO2016047120A1 (en) 2016-03-31

Family

ID=55580667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004760 WO2016047120A1 (en) 2014-09-26 2015-09-17 Operation condition determination device, operation condition determination method, control system, and computer-readable recording medium

Country Status (2)

Country Link
JP (1) JPWO2016047120A1 (en)
WO (1) WO2016047120A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163610A (en) * 1986-12-26 1988-07-07 Toshiba Corp Control system for network of water distribution pipe
JPH01251211A (en) * 1988-03-31 1989-10-06 Toshiba Corp Controller for water distribution pipe network
JP2004220237A (en) * 2003-01-14 2004-08-05 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Method for stably supplying gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163610A (en) * 1986-12-26 1988-07-07 Toshiba Corp Control system for network of water distribution pipe
JPH01251211A (en) * 1988-03-31 1989-10-06 Toshiba Corp Controller for water distribution pipe network
JP2004220237A (en) * 2003-01-14 2004-08-05 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Method for stably supplying gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAHIRO KUMURA: "Mizu Shigen no Yuko Riyo o ICT de Jitsugen suru Smart Water Management Gijutsu no Kenkyu Kaihatsu", NEC TECHNICAL JOURNAL, vol. 67, no. 1, 14 November 2014 (2014-11-14) *

Also Published As

Publication number Publication date
JPWO2016047120A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
CN107820556B (en) Method and system for determining characteristic parameters of a hydraulic network
TWI591490B (en) Vector computation unit in a neural network processor
Prescott et al. Improved control of pressure reducing valves in water distribution networks
WO2012127783A1 (en) Water distribution pressure control system
CN113272759A (en) Mass flow controller and controller algorithm
JP2017059199A (en) Method for determining output flow rate of flow rate controller
Jahanshahi et al. Anti-slug control based on a virtual flow measurement
JP7101806B2 (en) Methods and corresponding devices for controlling valves
JP7045857B2 (en) Systems and methods for superior performance with respect to highest performance values in model predictive control applications
WO2016047120A1 (en) Operation condition determination device, operation condition determination method, control system, and computer-readable recording medium
WO2017141884A1 (en) Control device, control system, control method, and computer-readable recording medium
NO20180778A1 (en) Calibration device and sensitivity determining device for virtual flow meter and associated methods
US11193690B2 (en) Shared parameterization of differential pressure set points in heating, ventilation, and air-conditioning systems
US20100063946A1 (en) Method of performing parallel search optimization
JP4991036B2 (en) Method for designing controller for vibration reducing device, controller for vibration reducing device, and vibration reducing device
WO2010070288A3 (en) Fluid transmission control system and method
KR20170020165A (en) Method and apparatus for pipi support decision of marine structure
KR20190106146A (en) System and method for estimating fluid flow in pipe network
WO2017154301A1 (en) Plant evaluation device and plant evaluation method
Kowalczuk et al. Analytical steady-state model of the pipeline flow process
US20110184535A1 (en) Apparatus and Method for Simulating a Control Program
CN113272758A (en) Mass flow controller, controller algorithm and setpoint filter
JP6585997B2 (en) Steam system
WO2017154761A1 (en) Diagnostic device, diagnostic system, diagnostic method, and computer-readable recording medium
Sasaki et al. A framework for closed-loop flow control using the parabolized stability equations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016549950

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843617

Country of ref document: EP

Kind code of ref document: A1