JPS62117699A - Electrolytic dehydrating method for sewage sludge, night soil sludge or the like - Google Patents

Electrolytic dehydrating method for sewage sludge, night soil sludge or the like

Info

Publication number
JPS62117699A
JPS62117699A JP60257332A JP25733285A JPS62117699A JP S62117699 A JPS62117699 A JP S62117699A JP 60257332 A JP60257332 A JP 60257332A JP 25733285 A JP25733285 A JP 25733285A JP S62117699 A JPS62117699 A JP S62117699A
Authority
JP
Japan
Prior art keywords
sludge
electrolytic
dehydration
treatment
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60257332A
Other languages
Japanese (ja)
Inventor
Hideaki Kameyama
英明 亀山
Kenzo Tojo
東條 健造
Tatsu Sugimura
杉村 達
Yoshihiko Takagi
高木 良彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Mechanical Industry Co Ltd
Original Assignee
Ishigaki Mechanical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Mechanical Industry Co Ltd filed Critical Ishigaki Mechanical Industry Co Ltd
Priority to JP60257332A priority Critical patent/JPS62117699A/en
Publication of JPS62117699A publication Critical patent/JPS62117699A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit chemical-less dehydration of sludge and to make filtration power higher than the filtration power of the conventional method by using an iron material for an anode and a stainless steel material for a cathode to make treatment and subjecting the treated sludge to the filtration and dehydration after such treatment in the stage of subjecting sewage or night soil sludge, etc., to an electrolytic treatment. CONSTITUTION:The hardly filterable sludge contg. a large amt. of org. material generated in sewage and night soil treatment plants is electrolytically treated and is then subjected to the dehydration treatment. The iron material is used for the cathode and the stainless steel material for the anode as the electrode materials for making the above-mentioned electrolytic treatment and after the sludge is electrolytically treated for 60-120min, the slude is subjected to the filtration and dehydration. As a result, the use of ferric chloride and slacked lime is not required and the electrode consumption and chemical cost are made lower than in the conventional electrolytic dehydration method without the need for the addition of the antioxidant for the electrodes and without the need for a mechanical cleaning operation for the electrodes. The installation for adjusting the sludge is simple and the electrolytic dehydration method of the easy operation is made possible.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、下水及びし尿処理場等で発生する生汚泥、
消化汚泥、余剰汚泥、混合生汚泥等の有機質分を多量に
含む難ろ過性汚泥の電解p過脱水方法に関するもので、
特に、この発明は、濾過脱水する前の汚泥調整法として
の°電解処理方法を改良し、従来、至難とされていた汚
泥の無薬注脱水を可能にし、従来の薬注脱水法及び電解
処理法に比べて、濾過能力を大巾に向上させ、しかも、
経済的に安価な方法を提供せんとするものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" This invention is applicable to
This relates to an electrolytic p-superdehydration method for difficult-to-filter sludge containing a large amount of organic matter such as digested sludge, surplus sludge, mixed raw sludge, etc.
In particular, this invention improves the electrolytic treatment method used as a sludge preparation method before filtration and dewatering, and enables chemical-free dewatering of sludge, which was previously considered to be extremely difficult. Compared to the conventional method, the filtration capacity is greatly improved, and
The aim is to provide an economically inexpensive method.

「従来の技術」 非常に親水性の高い有機性または無機性の微粒子及びコ
ロイド粒子等を含有し、しかも、多値の有機物質を溶解
及び@濁した粘性の高い下水及びし尿汚泥などを脱水処
理する場合は、p材上に形成されるケーキの濾過抵抗が
大きく、P液の通過を阻止し、非常に極く低能率の濾過
しかできず、従来、凝集剤及び濾過助剤等の使用なくし
ては、加圧脱水機、真空脱水、ベルトプレス及び遠心分
離機等での濾過脱水は不可能とされていた。
``Prior art'' Dewatering of highly viscous sewage and human waste sludge, which contain highly hydrophilic organic or inorganic fine particles and colloidal particles, and which have dissolved and clouded multivalued organic substances. In this case, the filtration resistance of the cake formed on the P material is large and blocks the passage of the P solution, resulting in very low efficiency filtration. Therefore, it was considered impossible to perform filtration and dehydration using pressure dehydrators, vacuum dehydrators, belt presses, centrifuges, etc.

これらの汚泥の一過脱水上の問題を改着するために、現
状では濾過脱水前の汚泥調整方法として、汚泥に塩化第
二鉄、硫酸鉄、ポリ」■化アμミニウムなどの無帳性凝
集剤や、ポリアクリルアミド糸、各種アミン、ホルムア
ルデヒド縮合物糸等々の有機性高分子凝集剤などを用い
、更eこ、消石灰や珪藻土などの濾過助Aなどを添加混
合し、汚泥の脱水I!f、を容易にして一過脱水を行う
楽注脱水法がほとんどである。
In order to solve these problems with temporary dewatering of sludge, the current method of preparing sludge before filtration and dewatering is to add non-containing substances such as ferric chloride, iron sulfate, and aluminum chloride to the sludge. Using flocculants, organic polymer flocculants such as polyacrylamide threads, various amines, formaldehyde condensate threads, etc., and adding and mixing filter aid A such as slaked lime and diatomaceous earth, dewatering of sludge can be carried out. Most of the methods use the Rakuchu dehydration method, which facilitates temporary dehydration.

また、薬注脱水を行う代りに、鉄材を陽極とし、アルミ
材を陰極として、また、この逆の陽極としてアルミ材を
、t!3極として鉄材を用いて電解処理したのち、無薬
注にて一過脱水する方法があるが、電極材としてアルミ
材を用いた場合は、″6L極表面に酸化皮膜が形成され
、通電性が低下し、電解効率が低下したり、アルミニウ
ムの消耗量が多大で、ランニングコストが高価となる欠
点がめる「発明が解決しようとする問題点」 前記のように、無機性または有機性凝集剤や、v5過助
剤を使用する朶注脱水法は、これらの添加物のために、
−過脱水以後の固液両方K、諸々の問題点が生じてくる
のである。すなわち、無機性凝集剤が酸性であったり、
消石灰はアルカリ性で不燃性でちる等のため、脱水ケー
キボリウムが増大し、脱水p液及びケーキ浸出液などを
中利する必要があったり、また、焼却処分する場合には
、ケーキの保有熱量が低下し、燃料が増加し、焼却残滓
の発生が多くなったプ、有害物質が発生するなどの問題
点がある。また、有機系高分子凝集剤については、一応
無害とされているものの、渋年月に渡る自然環境下での
蓄積及び分解が未解決であるまま、脱水P液、ケーキの
両方に含有されて排′出されている等の問題点がある。
In addition, instead of performing chemical injection dehydration, iron material is used as an anode and aluminum material is used as a cathode, or vice versa, aluminum material is used as an anode. There is a method of electrolysis treatment using iron material as the three electrodes, followed by temporary dehydration without chemical injection, but when aluminum material is used as the electrode material, an oxide film is formed on the surface of the ``6L electrode, resulting in poor conductivity. ``Problems to be solved by the invention'' include drawbacks such as a decrease in electrolysis efficiency, a large amount of aluminum consumption, and high running costs.As mentioned above, inorganic or organic flocculants and Because of these additives, the pouring dehydration method using v5 superaid,
- After excessive dehydration, various problems arise in both solid and liquid K. In other words, the inorganic flocculant is acidic,
Because slaked lime is alkaline, nonflammable, and dusts, the volume of dehydrated cake increases, making it necessary to use dehydrated p-liquid and cake leachate, and when disposing of it by incineration, the amount of heat retained by the cake decreases. However, there are problems such as increased amount of fuel, increased amount of incineration residue, and generation of harmful substances. Furthermore, although organic polymer flocculants are considered to be harmless, their accumulation and decomposition in the natural environment over many years remains unresolved, and they are contained in both the dehydrated P solution and the cake. There are problems such as being discharged.

これ等、楽剤を用いない電解脱水法においても、″ft
、極材として、陰、陽極のどちらか一方にアルミ材を電
極材として用いる場合に、まず、陽極材としてアμミを
用いる場合は、アルミニウムの浴出量が多大であり、そ
の消耗費用が高価となるとともに、電極表面に酸化皮膜
が形成され、通電性を阻害し、電解効率を低下させ、弗
化力μシウム、食塩等を添加し、酸化皮膜の形−成を抑
制するか、ブラシまたは超音波などで機械的に除去しな
ければ電解がa続されなくなる。
Even in these electrolytic dehydration methods that do not use drugs, ``ft.
When aluminum is used as an electrode material for either the negative or anode, first of all, when aluminum is used as the anode material, a large amount of aluminum is extracted, and its consumption costs are high. In addition to being expensive, an oxide film is formed on the electrode surface, which inhibits electrical conductivity and reduces electrolytic efficiency. Alternatively, electrolysis will not continue unless it is mechanically removed using ultrasound or the like.

また、陰極材としてアルミニウムを用いる場合、一般的
には、陰極は溶出しないのであるが、陰極がアルミニウ
ムの場合は、アルミニウムが両性金属であるため、陰極
付近の水の電解によって生成するOH−と反応し、化学
溶解してアμミン酸を生成して陰極消耗を生じる。そし
て、陰極材としてアルミニウムを用いる場合は、陽極と
して用いる場合よりはその消耗量は少ないが、脱水性良
好な汚泥に改質するまで電解処理を行う場合には、この
陰((アルミニウムの消耗量も経済的には無視できない
費用となり、陰極材としては、消耗しないのに越したこ
とはないのである。
In addition, when aluminum is used as the cathode material, the cathode generally does not elute, but when the cathode is aluminum, since aluminum is an amphoteric metal, OH- generated by electrolysis of water near the cathode Reacts and chemically dissolves to produce amic acid, resulting in cathode depletion. When aluminum is used as a cathode material, the consumption amount is smaller than when it is used as an anode material. From an economic standpoint, this is a non-negligible cost, and as a cathode material, it would be better if it did not wear out.

「問題的を解決するための手段」 そこで、発明者等は、斯る問題点を解決するため、従来
の薬注脱水方法とは全く異なる手段、すなわち、汚泥を
電解処理したのち、種々の脱水機にて一過脱水する電解
脱水法を用いて、前述のように、下水汚泥の無楽江濾過
脱水に、従来の薬注方法及び電解法と比べて脱水能力が
向上し、しかも、経済的に安価で、その設備及び運転操
作が而易な電解脱水法に成功したのである。
"Means for solving the problem" Therefore, in order to solve the problem, the inventors developed a method completely different from the conventional chemical injection dewatering method, that is, after electrolytically treating the sludge, various dewatering methods were used. As mentioned above, using the electrolytic dehydration method, which temporarily dehydrates sewage sludge in a machine, the dehydration capacity is improved compared to the conventional chemical injection method and electrolysis method, and it is also economical. They succeeded in developing an electrolytic dehydration method that was inexpensive and easy to use and operate.

その要旨とするところは、下水またはし尿汚泥等を一過
脱水する前の処理として、陽極材として鉄材を、陰融材
としてステンレス材を用いた゛イ解槽にて直流゛イ流を
負荷し、汚泥を60〜120分間電解処理することによ
って、汚泥の一過性を改善し、凝集剤などの楽剤か濾過
助剤を使用することなく、加圧脱水Jaまたは真空脱水
機などで効率良く一過脱水ができるようにしたものであ
る。
The gist of this is that, as a treatment before temporary dehydration of sewage or human waste sludge, etc., a direct current is applied in a decomposition tank using iron as the anode material and stainless steel as the negative material. By electrolytically treating the sludge for 60 to 120 minutes, the transient nature of the sludge is improved, and the sludge can be efficiently dehydrated using a pressure dehydrator or a vacuum dehydrator without using agents such as flocculants or filter aids. It is designed to allow excessive dehydration.

従来、この分野での電気分解法は、槙々の廃水の水処理
方法として、廃水浄化法、電解浮上濃縮法などとして用
いられているが、下水またはし尿汚泥の一過脱水の汚泥
A%’E法として用いられている実施例は末だないので
ある。
Conventionally, electrolysis in this field has been used as a water treatment method for wastewater, such as wastewater purification and electrolytic flotation concentration. There are countless examples of the E method being used.

これを更に詳述すると、陽極材として用いる鉄材より電
解反応によって鉄イオンが溶出し、この溶出した鉄イオ
ンが水と反応して水酸化鉄を生成する。この水酸化鉄が
汚泥の凝集作用を起し、汚泥フロックを生成する。生成
した凝集フロックは、両極間に流れている直流によって
、酸化、還元、分解、析出などの種々の電解反応を連続
的、かつ、重複して受け、脱水容易な疎水性のフロック
へと改質格れて、汚泥の無薬注濾過脱水が可能となるの
でめる。
To explain this in more detail, iron ions are eluted from the iron material used as the anode material by an electrolytic reaction, and the eluted iron ions react with water to produce iron hydroxide. This iron hydroxide causes the sludge to coagulate, producing sludge flocs. The generated floc undergoes various electrolytic reactions such as oxidation, reduction, decomposition, and precipitation continuously and repeatedly by direct current flowing between the two electrodes, and is reformed into a hydrophobic floc that is easily dehydrated. This allows for chemical-free filtration and dehydration of sludge.

電気処理条件として、下水及びし尿汚泥等の電解脱水の
ための′1を極材質としては、陽j材として゛鉄材、陰
極材としてステンレス材が適正であシ、′1解操作とし
ては、電解処理槽内の汚泥に、底部攪拌と、底部より抜
出し、上部より電解槽全面にシャワーリングを行う循環
を併用して行い、電解槽汚泥に充分な拡散と流速を与え
るとともに%電解槽上部に滞積する気泡を含んだスカム
の生成を抑制するのが、汚泥の電解効率を上げる方法と
して、実験結果よシ求められている。また、処理電圧は
、出来るだけ低圧の方が設備的にも安全的にも有利であ
るが、実際は、3〜20Vの範囲が、取扱いが容易であ
り、そして、通電直流値は、汚泥の種類、成分また目的
とする処理効果によって異なるが、原汚泥に対して0.
3〜5に71)程度で、電解処理時間も60〜120分
程度が実際的でおる。
As for the electrical treatment conditions, for electrolytic dehydration of sewage and human waste sludge, etc., it is appropriate to use iron as the positive electrode material and stainless steel as the cathode material. The sludge in the treatment tank is mixed with agitation at the bottom and circulation in which it is extracted from the bottom and showered over the entire surface of the electrolytic tank from the top, giving sufficient diffusion and flow rate to the sludge in the electrolytic tank, and reducing the amount of sludge remaining at the top of the electrolytic tank. According to experimental results, suppressing the formation of scum containing accumulated air bubbles is required as a way to increase the efficiency of sludge electrolysis. In addition, it is advantageous for the processing voltage to be as low as possible in terms of equipment and safety, but in reality, a range of 3 to 20 V is easy to handle, and the energization DC value is determined by the type of sludge. , differs depending on the ingredients and the desired treatment effect, but 0.
3 to 5 (71), and the electrolytic treatment time is approximately 60 to 120 minutes.

しかしながら、とり泥の電解処理を油続していると、′
電極の酸化、汚染、不純物の付着などによって通′或力
が阻害され、電圧を徐々に上げていかなければ、所定の
電流値が得られない状自となシ、イカ社の増大をまねく
結果となる。
However, if the electrolytic treatment of mud is continued,
Oxidation, contamination, adhesion of impurities, etc. on the electrodes impede the conduction, and unless the voltage is gradually increased, the desired current value cannot be obtained, which results in an increase in squid. becomes.

これらの防止方法として、従来はf−少量の食塩、弗化
カルシウム単独または両者の併用添加を行って抑制した
シ、適時、辿電力の低下を見図りて陽極、陰極の極寂換
を行う方法などが実例されているが、これらの方法は、
いずれも設廂が複雑化するとともに、電解処理コストの
高騰の原因となっている。
Conventional methods for preventing these problems include adding a small amount of salt, calcium fluoride alone or a combination of both, and replacing the anode and cathode from time to time in order to reduce the trace power. etc., but these methods are
In both cases, the installation becomes complicated and the cost of electrolytic treatment increases.

そこで、我々は、適時(這屏処坤時間10〜40時間に
1四種度)、ffl少量(汚泥容態の1)500〜1/
2000)の塩酸を’ffs加l昆合して゛電解処理す
ることによって、′イ極表面の活性度を復層させ、それ
以外では、食塩とか弗化力pシウムの添加または極変換
などの作業を行わずして、電解を継続させるが可能なこ
とを見出したのである。
Therefore, we provide a small amount of ffl (1 of sludge condition) at a timely time (14 times per 10 to 40 hours), 500 to 1 /
By combining hydrochloric acid (2000) with 'ffs and electrolytically treating it, the activity of the electrode surface can be restored, and other operations such as addition of salt, psium fluoride, or polar conversion can be carried out. They discovered that it is possible to continue electrolysis without doing so.

また、陽憧材として、鉄材を陰極材として、ステンレス
材を選んだ埋山は、陽極の鉄材より溶出して生成する鉄
フロックが他のアルミフロック等よシは脱水性が優れて
いることと、安価であること、また、陰極材のステンレ
ス材は、水の1f解によって生成するOH−と反応して
消耗せず、池の金属等に比べて、mfi!i性が有ると
同時に、汚泥の付着がほとんどないことによるものであ
る。
In addition, Umeyama chose stainless steel as the positive electrode material, iron as the cathode material, and the iron floc produced by elution from the iron material of the anode has superior dehydration properties compared to other aluminum flocs. In addition, the stainless steel material for the cathode does not react with the OH- produced by the 1f solution of water and is not consumed. This is because it has an i-like property and at the same time has almost no sludge adhesion.

これを図に随って説明すれば、第1図フローシートに示
すようなイ解処fiJi槽1内に、下水またはし尿汚v
己を所定数投入し、この汚泥に適時、極く少量の塩酸を
添加したのち、攪拌とシャワー循環ポンプ2を駆動させ
たのち、直流電源装置3にて3〜20V、0.3〜5A
/ff程度ノ電圧厄流にて60〜120分間電解処理し
たのち、処理汚泥を電気処理槽より抜き%ζ/プ4等に
よって加圧脱水機5へ供給してr過睨水するものである
To explain this with reference to the diagram, sewage or human waste sewage or human waste is stored in the waste treatment tank 1 as shown in the flow sheet of Figure 1.
After adding a very small amount of hydrochloric acid to this sludge at the appropriate time, stirring and driving the shower circulation pump 2, the sludge was heated to 3~20V, 0.3~5A using the DC power supply 3.
After electrolytic treatment for 60 to 120 minutes at a voltage of about /ff, the treated sludge is removed from the electrolysis tank and supplied to a pressure dewatering machine 5 using a %ζ/p4 or the like, where it is subjected to hyper-flushing. .

処理する汚泥の種類、濃度によって運転条件を適時変化
嘔せることか経済的であるが、この方法は、tf8j泥
に辿じる電流[全適当に変化させるか、処理時間を若干
増減させてやれば充分に目的とする処理効果が達成でき
るなど、運転管埋も他の方法に較べて(iめて容易なも
のでbる。
Although it is economical to change the operating conditions as appropriate depending on the type and concentration of sludge to be treated, this method requires that the current flowing through the TF8J sludge be changed appropriately or the treatment time may be slightly increased or decreased. The desired treatment effect can be fully achieved by using this method, and it is also easier to install the operation pipe than other methods.

以上の説明で明らかなように、この発明は、下水まだは
し尿汚泥等を、鉄材を陽極、ステンレス材を陰極として
用いて、適時、塩酸を−mし、充分な攪拌と循環を併用
しながら、電解処理することにより、従来用いた凝集剤
や濾過助剤を用いることなく、まだ、一方、γpルミを
陰、陽どちらかの電極材として用いた電解処理方法より
も、濾過効率が高く、設備的にも簡易で、しかも、経済
性の品い、電解1況水法を最大の特数とすること、であ
る。
As is clear from the above description, the present invention uses iron material as an anode and stainless steel material as a cathode to treat sewage sludge, human waste, etc., while adding hydrochloric acid at appropriate times and using sufficient stirring and circulation. By electrolytic treatment, the filtration efficiency is higher than the electrolytic treatment method using γp-lumi as either the negative or positive electrode material, without using conventional flocculants or filter aids. The biggest advantage is that the equipment is simple and economical, and the electrolytic one-state water method is the most important feature.

「実施例」 上述、第1図に示すような攪拌とりα線装置をもった間
欠的な>1解処理禮を用い、下水汚泥を電解処理し、そ
の処理液をIF2過脱水した結果を次に示す。
``Example'' The results of electrolytic treatment of sewage sludge and IF2 over-dehydration of the treated liquid using the intermittent >1 solution treatment equipped with the stirring and removing α-ray device as shown in Figure 1 are as follows. Shown below.

実験に用いた原液・・・・・下水混合生汚泥(1)  
従来の薬注法で、塩化第二鉄10%(対DS当り、消石
灰40%(対DSSクシ添加IJ!整したもの。
Raw solution used in the experiment: Mixed sewage raw sludge (1)
Conventional drug dosing method: 10% ferric chloride (vs. DS, 40% slaked lime (vs. DSS comb added IJ!).

(2) 上記原液200eを陽極材として鉄材を、陰極
材としてステンレス材を用い、塩酸で電極表面を活性化
していない電解槽に入れ、直流電圧4゜8V、電流40
0Aで90分間電解処理したもの(3)  上記原+M
2O0eを、既め、塩酸を添加して電解し、を極表面を
活性化した鉄材を陽極、ステンレス材を@極とした電解
槽に入れ、直流電圧4、 OV 、 ?を流400Aで
90分間処理したもの。
(2) The above stock solution 200e was placed in an electrolytic bath using an iron material as an anode material and a stainless steel material as a cathode material, and the electrode surface was not activated with hydrochloric acid, and the DC voltage was 4°8V and the current was 40.
Electrolytically treated at 0A for 90 minutes (3) Above raw materials +M
2O0e has already been electrolyzed by adding hydrochloric acid, and is placed in an electrolytic cell with an iron material whose surface has been activated as an anode and a stainless steel material as an electrode, and a DC voltage of 4, OV, ? treated with a flow of 400A for 90 minutes.

上記3種類の処理液をp過面積1.64ゴの加圧脱水機
を用いてp過脱水テストを行い、その脱水操作性及び生
成ケーキ性状を比較した結果を次に示す。
The above three types of treated solutions were subjected to a p-excess dehydration test using a pressurized dehydrator with a p-excess area of 1.64, and the results of comparing the dehydration operability and the properties of the produced cake are shown below.

(4)次に、適時、原汚泥200gに対して濃塩酸20
0mJを添加して、電解脱水を継続した場合の一過速度
の推移を、第2図のグラフにて示す。
(4) Next, apply 200 g of concentrated hydrochloric acid to 200 g of raw sludge at the appropriate time.
The graph in FIG. 2 shows the transition rate when electrolytic dehydration is continued with the addition of 0 mJ.

塩酸の添加によって、明らかにp速の向上が与とめられ
た。
The addition of hydrochloric acid gave a clear improvement in p-speed.

「発明の効果」 以上詳述し、冥片側で示したように、この発明によれば
、従来用いた4化第二鉄や消石灰を用いることなく、ま
た、従来の電解脱水法よりは、電極の酸化防止剤の添加
とか、機械的な醒極清浄操作も必要なく、電甑消耗費及
び薬剤費などが安価となシ、汚泥調整設備も簡易で、し
かも、操作が簡単な電解脱水法が可能となるのである。
"Effects of the Invention" As detailed above and shown on the bottom side, according to the present invention, there is no need to use conventionally used ferric tetraoxide or slaked lime, and the electrode There is no need for the addition of antioxidants or mechanical purification operations, the electricity consumption costs and chemical costs are low, the sludge conditioning equipment is simple, and the electrolytic dehydration method is easy to operate. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に係る下水汚泥、し原汚泥等の電解
脱水方法のフローシート、第2図は、こ\0発明に係る
方法で処理した汚泥の沖速0推移を示すグラフである。 第2 図 一〇−:5泥200 /hfjL3”kaL200 m
l ki−!f>j)D r W。
Fig. 1 is a flow sheet of the electrolytic dehydration method for sewage sludge, raw sludge, etc. according to the present invention, and Fig. 2 is a graph showing the off-shore velocity change of sludge treated by the method according to the invention. . 2nd Figure 10-: 5 mud 200/hfjL3”kaL200 m
l ki-! f>j)D r W.

Claims (3)

【特許請求の範囲】[Claims] (1)下水及びし尿処理場等で発生する有機質を多量に
含む難ろ過性汚泥を電解処理した後、脱水処理するに際
し上記電気分解処理する電極材として、陽極に鉄材を、
陰極にステンレス材を用いて処理したのち、脱水するこ
とを特徴とする下水汚泥、し尿汚泥等の電解脱水方法。
(1) After electrolytically treating difficult-to-filter sludge containing a large amount of organic matter generated in sewage and human waste treatment plants, iron material is used as the electrode material for the electrolytic treatment when dehydrating it.
An electrolytic dehydration method for sewage sludge, human waste sludge, etc., which is characterized by using a stainless steel material for the cathode and then dehydrating it.
(2)上記電気分解処理される汚泥を攪拌または循環さ
せ、流動拡散させることを特徴とする特許請求の範囲第
(1)項記載の下水汚泥、し尿汚泥等の電解脱水方法。
(2) A method for electrolytic dewatering of sewage sludge, human waste sludge, etc. as set forth in claim (1), characterized in that the sludge to be electrolyzed is stirred or circulated and flowed and diffused.
(3)上記電気分解処理される汚泥に、極く少量の塩酸
を添加することを特徴とする特許請求の範囲第(1)項
記載の下水汚泥、し尿汚泥等の電解脱水方法。
(3) The electrolytic dehydration method for sewage sludge, human waste sludge, etc. as set forth in claim (1), characterized in that a very small amount of hydrochloric acid is added to the sludge to be electrolyzed.
JP60257332A 1985-11-16 1985-11-16 Electrolytic dehydrating method for sewage sludge, night soil sludge or the like Pending JPS62117699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60257332A JPS62117699A (en) 1985-11-16 1985-11-16 Electrolytic dehydrating method for sewage sludge, night soil sludge or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60257332A JPS62117699A (en) 1985-11-16 1985-11-16 Electrolytic dehydrating method for sewage sludge, night soil sludge or the like

Publications (1)

Publication Number Publication Date
JPS62117699A true JPS62117699A (en) 1987-05-29

Family

ID=17304888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60257332A Pending JPS62117699A (en) 1985-11-16 1985-11-16 Electrolytic dehydrating method for sewage sludge, night soil sludge or the like

Country Status (1)

Country Link
JP (1) JPS62117699A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331600A (en) * 1986-07-24 1988-02-10 Ishigaki Kiko Kk Dehydration of sludge
JPS6485198A (en) * 1987-09-28 1989-03-30 Ishigaki Mech Ind Method and apparatus for electrolytic treatment of sludge
EP2439178A1 (en) * 2010-09-29 2012-04-11 Siemens Aktiengesellschaft Method for preparing sludge
CN109081539A (en) * 2018-09-06 2018-12-25 昆山绿威环保科技有限公司 The processing method of electrochemistry mud decrement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922760A (en) * 1972-06-26 1974-02-28
JPS51110860A (en) * 1975-03-25 1976-09-30 Nippon Keori Kk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922760A (en) * 1972-06-26 1974-02-28
JPS51110860A (en) * 1975-03-25 1976-09-30 Nippon Keori Kk

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331600A (en) * 1986-07-24 1988-02-10 Ishigaki Kiko Kk Dehydration of sludge
JPS6485198A (en) * 1987-09-28 1989-03-30 Ishigaki Mech Ind Method and apparatus for electrolytic treatment of sludge
JPH0515520B2 (en) * 1987-09-28 1993-03-01 Ishigaki Mech Ind
EP2439178A1 (en) * 2010-09-29 2012-04-11 Siemens Aktiengesellschaft Method for preparing sludge
CN109081539A (en) * 2018-09-06 2018-12-25 昆山绿威环保科技有限公司 The processing method of electrochemistry mud decrement

Similar Documents

Publication Publication Date Title
US20130153509A1 (en) Wastewater treatment comprising electrodissolution, flocculation and oxidation
Niza et al. Removal of ammoniacal nitrogen from old leachate using batch electrocoagulation with vibration-induced electrode plate
KR101221565B1 (en) Electrolytic treatment of waste water
KR20090047641A (en) Wastewater treatment device by electroly-zation
CN111072112A (en) Wastewater treatment method and system for zero discharge of desulfurization wastewater
CN105692972A (en) Industrial wastewater advanced treatment and cyclic utilization method
CN108383297A (en) A kind of electrochemical treatments high-concentration waste cutting fluid technique
KR19990026365A (en) Wastewater Treatment Method and Apparatus by Fenton Oxidation and Electric Electrolysis
CN202610073U (en) Processing apparatus of garbage percolating liquid
KR100372849B1 (en) Advanced apparatus for treating wastewater using the electrolysis and coagulation
JPS62117699A (en) Electrolytic dehydrating method for sewage sludge, night soil sludge or the like
CN108017196B (en) A kind of wastewater deep treatment process of acid out oxidizing, flocculating precipitating
CN207468425U (en) A kind of high-concentration emulsified liquid processing system
CN109574415A (en) A kind of method of electric flocculation demulsification biochemical treatment used cutting liquid
KR101032619B1 (en) Method for wastewater including chromaticity treatment using electrochemistry
KR100327545B1 (en) Municipal wastewater treatment system
KR100316298B1 (en) Fiber Membrane Separation and Activated Sludge Process with Electrolytic Treatement Process of Animal WasteWater
KR20010068172A (en) Advanced Electric Oxidaition Process
JP2006224064A (en) Wastewater purification system
JPS6261700A (en) Apparatus for treating sewage of excretion system
KR970026927A (en) Wastewater Treatment Method and Apparatus Using Electrolysis Method
RU2093474C1 (en) Method of purification of sewage containing emulsified petroleum products
JPS63162100A (en) Electrolytic treatment of sludge
KR102345122B1 (en) A waste water treatment device implementing an electrolysis of waste water and applying a different waste treatment method in a different treatment bath depending on a property of or a condition of treatment water after an electrolysis of waste water
KR200229123Y1 (en) Electrolytic purification system