KR20010068172A - Advanced Electric Oxidaition Process - Google Patents

Advanced Electric Oxidaition Process Download PDF

Info

Publication number
KR20010068172A
KR20010068172A KR1020000009028A KR20000009028A KR20010068172A KR 20010068172 A KR20010068172 A KR 20010068172A KR 1020000009028 A KR1020000009028 A KR 1020000009028A KR 20000009028 A KR20000009028 A KR 20000009028A KR 20010068172 A KR20010068172 A KR 20010068172A
Authority
KR
South Korea
Prior art keywords
tank
wastewater
treatment
hydrogen peroxide
oxidation
Prior art date
Application number
KR1020000009028A
Other languages
Korean (ko)
Inventor
최성훈
류종철
Original Assignee
강영
코렘엔지니어링 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강영, 코렘엔지니어링 주식회사 filed Critical 강영
Priority to KR1020000009028A priority Critical patent/KR20010068172A/en
Publication of KR20010068172A publication Critical patent/KR20010068172A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE: Provided is a wastewater treatment system using advanced electric oxidation process. In detail, the system can treat non-degradable components and toxic materials in wastewater by adding hydrogen peroxide and ferrous chloride and applying a weak electric current at the same time. CONSTITUTION: The wastewater treatment system consists of the following parts: a reservoir (1); a chemicals tank (8) containing sulfuric acid, hydrogen peroxide, ferrous chloride, sodium hydroxide and coagulants; a first pH adjusting tank (2) equipped with stirrers (10); a reaction tank (3) to treat wastewater through advanced oxidation using Fenton; a second pH adjusting tank (4) to neutralize secondly wastewater by sodium hydroxide; a flocculation tank (5) adding polymer and connected from valves (6a,6b,6c,6d,6e); and an electric current supplier (7).

Description

전기 분해를 이용한 펜턴 산화 처리의 폐수 처리 장치 및 공법{Advanced Electric Oxidaition Process}Wastewater Treatment Apparatus and Method for Fenton Oxidation Treatment Using Electrolysis {Advanced Electric Oxidaition Process}

본 발명은 축산 폐수, 염색 폐수, 매립장의 침출수 등의 산업 폐수를 전기 분해를 이용한 Fenton 산화 처리 공법에 관한 것으로서, 난분해성, 독성 물질을 효율적으로 처리할 수 있도록 폐수에 과산화수소와 염화 제1철을 투입하는 동시에 약전기를 인가시켜 전기 분해가 일어나도록 하여 폐수를 처리하는 전기 분해를 이용한 Fenton 산화 처리 공법(AEOP: Advanced Electric Oxidation Process)을 개발함으로써 약품 비용 절감과 폐수의 정화 처리 효율이 향상되도록 함과 동시에 제2의 환경 오염을 방지할 수 있도록 발명한 전기 분해를 이용한 펜턴 산화 처리의 폐수 처리 장치 및 공법에 관한 것이다.The present invention relates to a Fenton oxidation treatment method using electrolysis of industrial wastewater, such as livestock wastewater, dyeing wastewater, and landfill leachate, and includes hydrogen peroxide and ferrous chloride in wastewater to efficiently treat hardly decomposable and toxic substances. The development of the Fenton Oxidation Treatment Process (AEOP), which uses electrolysis to treat wastewater by applying a weaker electric charge while applying electricity, reduces the cost of chemicals and improves the efficiency of wastewater purification. In addition, the present invention relates to a wastewater treatment apparatus and a construction method of the Fenton oxidation treatment using the electrolysis invented to prevent the second environmental pollution.

본 발명에서 실시되는 Fenton 산화 반응과 전기 화학 분해를 먼저 살펴보기로 한다.First, the Fenton oxidation reaction and electrochemical decomposition performed in the present invention will be described.

펜턴(FENTON) 산화 반응 이론이란, 산성 조건에서 2가 철이온과 과산화수소를 혼합하면 강한 산화력을 지니는 OH 라디칼이 생성된다는 것으로, 1894년 Fenton에 의해 처음 알게 되었다. 그 이후 Haber와 Weiss는 이 반응의 이론적인 반응 메카니즘을 제안하게 되었는데, 이것이 Haber-Weiss Cycle이다.The FENTON oxidation theory was first discovered by Fenton in 1894 that the mixing of divalent iron ions with hydrogen peroxide in acidic conditions produced strong OH radicals. Since then, Haber and Weiss have proposed a theoretical reaction mechanism for this reaction, which is the Haber-Weiss Cycle.

유기물이 존재하지 않는 경우의 Haber-Weiss Cycle은 과산화수소의 분해 반응이 주가 되며, 폐수 중에 유기물(RH)이 존재할 경우는 유기물이 OH 라디칼과 반응하기 때문에 분해 반응 대신 치환 생성물이 발생하는 반응이 진행된다. 즉 펜턴 시약에 의해 유기물이 산화 분해될 때 철이온은 2가와 3가의 산화 상태 사이를 순환하게 된다. 촉매 기능을 가진 Fe2+은 과산화수소에 의해 Fe3+산화되면서 OH 라디칼을 생성시키고 이렇게 생성된 OH 라디칼은 유기물과 반응하여 유기물 라디칼(RH)을 만들며 이 유기물 라디칼은 Fe3+을 다시 Fe2+으로 환원시키면서 결국 자신은 산화 분해된다.The Haber-Weiss Cycle in the absence of organic matter is mainly a decomposition reaction of hydrogen peroxide, and when organic matter (RH) is present in the wastewater, the reaction occurs in which a substitution product occurs instead of the decomposition reaction because organic matter reacts with OH radicals. . That is, when organic matter is oxidatively decomposed by the Fenton's reagent, iron ions circulate between the divalent and trivalent oxidation states. Fe 2+ with the catalytic function is oxidized to Fe 3+ by hydrogen peroxide to generate OH radicals, which react with organics to form organic radicals (RH), which then converts Fe 3+ into Fe 2+ Eventually reducing itself to oxidative degradation.

전기 화학 분해란, 전기 화학 분해법의 이론은 약 180년 전에 성립되어 물의 전기 분해에 의한 수소가스 제조, 도금공업, 이온 교환막을 이용한 수처리 등 일반공업 분야에서 이용되고 있으나 폐수 처리 분야에 적응은 이제 시작 단계에 있다. 폐수 분야의 적용은 폐수 성분, 농도 및 온도 등이 각양각색이어서 고도의 전기 분해 기술이 필요하다. 전기 화학 분해법은 무기성 또는 유기성 전해질이 혼합된 폐수에 전기 에너지를 공급하므로 전기 분해 반응을 일으켜 폐수를 정화하는 방법이다. 전기 분해 반응은 고속 산화와 환원(10-13/초)이 연속적으로 이루어져 산화, 환원, 분해, 석출, 중화, 응집, 살균 등의 작용을 하며, 전극과 폐수의 경계면에서 전극 반응과 전극 반응 생성물이 폐수 중의 성분과 작용하여 2차 반응이 일어나는 동시에 전극 반응 생성물은 침전, 흡착, 부상 등의 작용을 함으로써 물과 불순물을 분리하여 폐수를 완벽하게 정화 처리한다. 전기 분해조에서 전극에 전류가 흐르게 되면 양극과 음극에서 반응이 일어난다. 양극에서는 산화 반응과 음극에서는 환원반응이 일어난다. 또한 반응성이 매우 큰 금속(K+, Ca2+, Na+, Mg2+, Al3+‥‥) 이온은 음극에서 금속 대신 물로 환원하여 수소 가스를 발생시키며, 비금속성이 매우 큰 원소(F-, SO4 -2, PO4 3-, CO3 -‥‥)들은 양극에서 방전되지 않고 물을 산화하여 산소를 발생하게 된다. 따라서 본 발명에서는 상기 Fenton 산화 반응과 전기 화학 분해를 이용하여 난분해성 산업 폐수를 처리하기로 한다.The theory of electrochemical decomposition, the theory of electrochemical decomposition, was established about 180 years ago, and is used in general industrial fields such as hydrogen gas production by electrolysis of water, plating industry, and water treatment using ion exchange membranes. Are on stage. Applications in the wastewater sector require a high degree of electrolysis technology as the wastewater composition, concentration and temperature vary. Electrochemical decomposition is a method of purifying wastewater by causing an electrolysis reaction because electric energy is supplied to wastewater mixed with an inorganic or organic electrolyte. In the electrolysis reaction, high-speed oxidation and reduction (10-13 / sec) are performed continuously to perform oxidation, reduction, decomposition, precipitation, neutralization, coagulation, and sterilization, and electrode reaction and electrode reaction products at the interface between electrode and wastewater The secondary reaction takes place by working with the constituents in the wastewater, and the electrode reaction product separates water and impurities by the action of precipitation, adsorption, flotation, etc. to completely purify the wastewater. When the current flows through the electrode in the electrolytic bath, the reaction occurs at the anode and cathode. Oxidation reaction at the anode and reduction reaction at the cathode. In addition, highly reactive metals (K + , Ca 2+ , Na + , Mg 2+ , Al 3+ ‥‥) ions are reduced to water instead of metal at the cathode to generate hydrogen gas. -, SO 4 -2, PO 4 3-, CO 3 - ‥‥) are generated by the oxygen oxidation of the water is not discharged from the anode. Therefore, in the present invention, the Fenton oxidation reaction and electrochemical decomposition are used to treat the hardly decomposable industrial wastewater.

현재 우리 나라의 산업 폐수는 양적인 증가와 난분해성, 독성 물질의 발생 비율의 증가로 기존의 활성슬러지 공법만으로는 처리의 한계를 맞고 있다.At present, the industrial wastewater of our country is facing the limitation of treatment by the existing activated sludge method only due to the quantitative increase, the hard degradability and the increase rate of the generation of toxic substances.

이러한 난분해성 독성 물질을 효율적으로 처리할 수 있는 폐수 처리 기술의 하나인 약품을 이용한 펜턴(Fenton) 산화 처리는 과산화수소와 철염으로 생성되는OH 라디칼이 강력한 산화작용을 일으켜서 폐수를 처리하는 방법으로 좋은 처리 효율을 보이고 있으나, 고가의 약품비로 인한 산업 현장의 경제적 문제점이 대두되고, 이로 인한 Fenton 산화 처리 적용을 기피하는 현상이 나타나게 되고 또한 과다한 약품을 사용함으로써 제3의 환경 오염이 발생되는 문제점이 있었다.Fenton oxidation treatment using chemicals, which is one of the wastewater treatment technologies that can efficiently treat these hardly degradable toxic substances, is a good treatment method in which wastewater is treated by the strong oxidation of OH radicals produced by hydrogen peroxide and iron salts. Although showing efficiency, the economic problems of the industrial site due to the high cost of the drug has emerged, the phenomenon of avoiding the application of Fenton oxidation treatment appears, and there was also a problem that the third environmental pollution occurs by using excessive chemicals.

본 발명은 이와 같은 문제점을 감안하여 발명한 것으로서, 난분해성 폐수를 처리하기 위해 유입 폐수가 저류조를 통하여 제1 PH 조정조, 반응조, 제2 PH 조정조, 응집조에 황산, 과산화수소, 염화 제1철, 수산화나트륨, 응집제가 각각 투입되어 교반되도록 하는 폐수를 반응조에서 고도 전기 산화 처리 공법으로 처리할 수 있도록 된 처리장과;The present invention has been invented in view of the above problems, and the sulfuric acid, hydrogen peroxide, ferrous chloride, hydroxide in the first PH adjusting tank, the reaction tank, the second PH adjusting tank, the flocculating tank through the storage tank to treat the hardly degradable wastewater. A treatment plant capable of treating the wastewater in which sodium and flocculant are added and stirred, respectively, by a highly electrooxidation treatment method in a reaction tank;

상기 처리장에서 고도 전기 산화 처리 공법(AEOP)으로 처리된 처리수는 침전조로 이송되어 상등수는 처리수조와 카본 휠터(A/C Filter)를 거처 방류조를 통하여 방류되도록 하고 침전된 슬러지는 농축조로 보내져 처리되도록 한 구성으로서, 본 발명은 난분해성 산업 폐수 처리시 과산화수소와 염화 제1철을 투입함과 동시에 전기를 인가시켜 고도 전기 산화 공법으로 폐수를 처리함으로써 과다한 약품을 투여하지 않고도 저렴한 비용으로 산업 폐수를 처리할 수 있도록 발명된 것이다.The treated water treated by the AEOP in the treatment plant is transferred to the sedimentation tank, and the supernatant is discharged through the discharge tank through the treatment water tank and the carbon filter (A / C Filter), and the precipitated sludge is sent to the concentration tank. As a configuration to be treated, the present invention is a low-cost industrial wastewater by applying hydrogen peroxide and ferrous chloride in the treatment of hardly degradable industrial wastewater and applying electricity to treat the wastewater by advanced electrooxidation method without administering excessive chemicals It is invented to process.

도1은 본 발명의 전기 분해를 이용한 펜턴 산화 처리 구성도.1 is a configuration diagram of the Fenton oxidation treatment using the electrolysis of the present invention.

도2는 본 발명의 전기 분해를 이용한 펜턴 산화 처리 공정 블럭도.2 is a block diagram of a Fenton oxidation process using the electrolysis of the present invention.

<도면 중 주요 부분에 대한 부호 설명><Description of Signs for Main Parts of Drawings>

1:저류조, 2:제1 PH 조정조, 3:반응조, 4:제2 PH 조정조,1: storage tank, 2: first PH adjusting tank, 3: reaction tank, 4: second PH adjusting tank,

5:응집조, 6a,6b,6c,6d,6e:약품 조절 밸브, 7:전기 인가 장치,5: coagulation tank, 6a, 6b, 6c, 6d, 6e: chemical regulating valve, 7: electric applying device,

8:약품 탱크, 9:PH 메타, 10:교반기, 11:침전조,8: drug tank, 9: PH meta, 10: stirrer, 11: sedimentation tank,

12:처리수조, 13:카본 휠터, 14:방류조, 15:농축조,12: treatment tank, 13: carbon filter, 14: discharge tank, 15: concentration tank,

이하 첨부 도면에 의거하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 저류조(1)로 유입된 산업 폐수는 상부에 황산(H2SO4), 과산화수소(H2O2), 염화제1철(FeCl2), 수산화나트륨(NaOH), 응집제가 내장되는 약품 탱크(8)가 구비되어 각각의 교반기(10)가 구비된 제1 PH 조정조(2), 반응조(3), 제2 PH 조정조(4), 응집조(5)에 투입되도록 밸브(6a)(6b)(6c)(6d)(6e)를 갖는 배관이 연결되며, 상기 반응조(3)에는 전기 인가 장치(7)를 설치하여 폐수를 펜턴(Fenton) 산화 처리에 의하여 고도 전기 산화 처리 공법이 이루어지도록 하고, 상기 반응조(3)에서 고도 산화 처리된 폐수는 제2 PH 조정조(4)에서 2차로 수산화나트륨으로 중화 조정한 후 폴리머(Polymer)와 혼합 교반되어 부유물이 응집되도록 하는 응집조(5)와;Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The industrial wastewater introduced into the storage tank 1 is a chemical tank (8) containing sulfuric acid (H 2 SO 4 ), hydrogen peroxide (H 2 O 2), ferrous chloride (FeCl 2 ), sodium hydroxide (NaOH), and a flocculant (8). Valves 6a and 6b to be introduced into the first PH adjusting tank 2, the reaction tank 3, the second PH adjusting tank 4, and the coagulation tank 5, each of which is provided with a stirrer 10; 6c) (6d) (6e) is connected to the pipe, the reactor 3 is equipped with an electrical application device (7) so that the wastewater is subjected to a high electro-oxidation process by Fenton oxidation treatment, A high oxidation oxidation wastewater in the reaction tank (3) is neutralized and adjusted with sodium hydroxide in a second PH adjusting tank (4), and then mixed with a polymer and stirred to coagulate suspended solids (5);

상기 응집조(7)에서 응집된 폐수가 침전조(11)로 유입, 안정화를 이루어 침전된 슬러지는 농축조(15)로 배출되고 상등수는 처리수조(12)와 카본 휠터(13)를 거쳐 방류조(14)에서 방류되도록 하는 폐수 처리 장치의 구성과;Wastewater aggregated in the coagulation tank 7 is introduced into the settling tank 11 and stabilized, and the precipitated sludge is discharged to the thickening tank 15, and the supernatant water is discharged through the treatment water tank 12 and the carbon filter 13. A wastewater treatment device configured to discharge the wastewater at 14);

상기 저류조(1)에서 유입된 제1 PH 조정조(2)의 폐수에 황산을 투입하면서 교반기(10)로 교반하면서 PH 메타(9)의 PH가 3∼4가 되도록 올려 준 후 반응조(3)로 유입된 폐수에 과산화수소(H2O2)와 염화 제1철(FeCl2)을 투입하여 교반기(10)의 회전 속도가 180rpm가 되도록 급속 교반을 유지하면서 전기 인가 장치(7)로 염화 제1철에 전기를 도통시켜 전기 분해가 이루어지도록 하고 PH 메타(9)를 확인하면서 폐수를 고도 전기 산화 공법 처리하며;While adding sulfuric acid to the wastewater of the first PH control tank (2) introduced from the storage tank (1) while raising the pH of the PH meta (9) to 3 to 4 while stirring with the stirrer (10) to the reaction tank (3) Hydrogen peroxide (H 2 O 2 ) and ferrous chloride (FeCl 2 ) were added to the introduced wastewater, and ferrous chloride was added to the electric application device 7 while maintaining rapid agitation such that the rotation speed of the agitator 10 was 180 rpm. Conduct electricity to the electrolysis so that the wastewater is subjected to the advanced electrooxidation process while checking the PH meta (9);

상기 Fenton 산화 반응과 전기 분해에 의하여 고도 전기 산화 처리된 폐수를 제2 PH 조정조(4)에 수산화나트륨(NaOH)을 투입하여 PH 메타(3b)의 계기가 7∼8이 되도록 한 후 응집조(5)로 유입시켜 응집제(Polymer)를 첨가하여 교반기(10)를50rpm으로 20분간 완속 교반하고 다시 침전조(11)에서 침전시켜 상등수는 처리수조(12)와 카본 휠터(13)를 거쳐 방류조(14)로 방류하고, 침전된 슬러지는 농축조(15)로 배출 처리하도록 된 폐수 처리 공법이다. 미설명 부호 10a, 10b,10c,10d는 각각의 조에 설치된 교반기로서 약품 투입시 처리수와 혼합하기 위한 교반기이며, 9a는 반응조에 설치된 ORP(산화전이) 메타이며, 9b는 제2 PH 조정조에 설치된 PH 메타이고, 16은 저류조, 처리수조, 방류조에 설치되어 공기를 폭기할 수 있도록 된 공기 분사 노즐이다.Sodium hydroxide (NaOH) was added to the second PH adjusting tank 4 in the wastewater subjected to highly electrooxidation by the Fenton oxidation reaction and electrolysis so that the meter of the PH meta (3b) was 7 to 8, and then the coagulation tank ( 5) After adding a flocculant (Polymer), the agitator 10 was slowly stirred at 50 rpm for 20 minutes, and again precipitated in the settling tank 11, and the supernatant water was discharged through the treatment tank 12 and the carbon filter 13. 14), and the precipitated sludge is a wastewater treatment method to be discharged to the concentration tank (15). Reference numerals 10a, 10b, 10c, and 10d are stirrers for mixing with treated water when chemicals are added to each tank, 9a is ORP (oxidation transition) meta, and 9b is installed in the second PH control tank. It is PH meta, and 16 is an air injection nozzle installed in a storage tank, a treatment tank, and a discharge tank to aerated air.

이와 같이 구성된 폐수 처리 장치 및 공법에 의거하여 본 발명의 실시예를 설명하면 다음과 같다.An embodiment of the present invention will be described based on the wastewater treatment apparatus and the construction method configured as described above.

실시방법Method of implementation

전기 분해를 이용한 Fenton 산화 반응 실험은 다음과 같이 수행한다.Fenton oxidation reaction experiment using electrolysis is carried out as follows.

① 원폐수의 PH 조정(3∼4)① Adjust PH of raw wastewater (3 ~ 4)

② Fenton 시약을 이용한 산화 반응② Oxidation reaction using Fenton reagent

③ 전기 에너지를 이용한 전기 분해③ Electrolysis using electric energy

④ 중화반응(PH 7∼8)④ Neutralization reaction (PH 7-8)

⑤ 고분자 응집제 첨가에 의한 응집 침전의 순서로 실험을 실시한다.⑤ Experiment in order of flocculation precipitation by adding polymer flocculant.

상기의 저류조(1)에서 공기에 의하여 폭기 혼합되어 제1 PH 조정조(2)에 유입된 원폐수에 약품 탱크(8)의 황산(H2SO4) 배관 라인 밸브(6a)을 열어 황산(H2SO4)을 투입시켜 PH 메타(9)의 게이지가 3∼4가 되도록 PH를 조정한 후 반응조(3)로보내어지면, 반응조(3)에서는 Fenton 시약으로 과산화수소(H2O2)와 염화 제1철(FeCl2)를 사용하기 위해 각 배관 라인의 밸브(6b)(6c)를 개구시켜 과산화수소와 염화 제1철을 투입시키면서 반응조(3) 중앙부에 설치된 교반기(10)를 180rpm으로 급속 교반을 계속 유지한다.The sulfuric acid (H 2 SO 4 ) piping line valve 6a of the chemical tank 8 is opened to the raw wastewater aerated by air in the storage tank 1 and flowed into the first PH adjusting tank 2 to open the sulfuric acid (H). 2 SO 4 ) is added to adjust the pH of the PH meta (9) to 3-4, and then the pH is sent to the reactor (3). In the reactor (3), hydrogen peroxide (H 2 O 2 ) and chloride are used as the Fenton reagent. In order to use ferrous iron (FeCl 2 ), the agitator 10 installed in the center of the reaction tank 3 was rapidly stirred at 180 rpm while opening the valves 6b and 6c of each pipe line and introducing hydrogen peroxide and ferrous chloride. Keep going.

이 때 Fenton 산화 반응에 의한 유기물 처리율은 과산화수소의 주입량에 따라 변하게 되므로 과산화수소 주입량이 적을 경우 효과적으로 유기물을 산화시킬 수 없으며, 과산화수소를 과량으로 주입하면 COD와 색도 제거에는 효과적이나 비용이 많이 소요되고, 또한 분해되지 않고 남아 있는 과산화수소로 인하여 높은 COD 수치가 나타날 수 있게 되어 과산화수소의 적정 주입량을 찾기 위하여 과산화수소의 주입량을 변화시키며 처리 효율을 관찰하면서 밸브(6b)의 개폐를 조정한다.At this time, the organic matter treatment rate by the Fenton oxidation reaction is changed according to the injection amount of hydrogen peroxide, so when the hydrogen peroxide injection amount is small, the organic matter cannot be effectively oxidized. Due to the hydrogen peroxide that remains undecomposed, a high COD value can be displayed, and the opening and closing of the valve 6b is adjusted while observing the treatment efficiency by changing the injection amount of hydrogen peroxide to find an appropriate injection amount of hydrogen peroxide.

또한 유기물 처리율은 염화 제1철의 주입량에 의해서도 크게 변하게 되므로 과산화수소의 주입이 끝난 후에 밸브(6c)를 개구시켜 염화 제1철을 넣는다.In addition, since the organic matter treatment rate is greatly changed by the amount of ferrous chloride injected, the ferrous chloride is introduced by opening the valve 6c after the injection of hydrogen peroxide is finished.

상기와 같이 과산화수소와 염화 제1철을 투입한 후에는 철의 전극을 이용하여 전압을 반응조(3)의 원폐수에 가해 주므로 전기를 이용한 Fenton 산화 반응이 일어나고도 전기 산화 처리 공법(AEOP:Advanced Electric Oxidaition Process)이 이루어진다. 이렇게 반응조(3)의 원폐수가 약품 산화와 전기 분해가 병합되어 고도 전기 산화 처리 공법으로 처리하게 되는데 Fenton 산화 반응은 일반적으로 PH 3∼4범위 내에서 진행되며 산화 반응이 완료되면 철이온(Fe2+, Fe3+)을 제거하기 위하여 PH를 올려 준다. 따라서 원폐수의 중화를 위해 제2 PH 조정조(4)에서 PH를 조정하게 되는데, 이 때 약품 탱크(8)의 수산화나트륨 배관 라인의 밸브(6d)를 개구시켜 PH 메타(9) 게이지가 7∼8이 되도록 수산화나트륨(NaOH)을 첨가한다.After the hydrogen peroxide and ferrous chloride are added as described above, the voltage is applied to the raw wastewater of the reactor 3 using the electrode of iron, so that the electric oxidation process occurs even after the Fenton oxidation reaction using electricity occurs. Oxidaition Process). In this way, the raw wastewater of the reactor (3) is combined with chemical oxidation and electrolysis to be treated by advanced electrooxidation treatment. The Fenton oxidation reaction generally proceeds within the pH range of 3 to 4, and when the oxidation reaction is completed, iron 2+ , Fe 3+ ) to increase the pH to remove. Therefore, PH is adjusted in the second PH adjusting tank 4 to neutralize the wastewater. At this time, the valve 6d of the sodium hydroxide pipe line of the chemical tank 8 is opened to open the PH meta (9) gauge. Sodium hydroxide (NaOH) is added to 8.

상기와 같이 제2 PH 조정조에서 수산화나트륨을 첨가하면 Fe(OH)3(S) 용해도는 PH 8정도에서 가장 낮게 되므로 철이온은 이 공정에서 대부분 수산화물로 석출 제거된다.As described above, when sodium hydroxide is added in the second PH adjustment tank, Fe (OH) 3 (S) solubility is the lowest at about pH 8, so iron ions are precipitated and removed in most processes as hydroxides.

이 때 반응액 중 잔존 물질의 일부가 수산화철(Ⅲ) 플럭에 흡착되어 공침하게 된다.At this time, a part of the remaining substance in the reaction solution is adsorbed on the iron (III) hydroxide flocculation.

이렇게 수산화나트륨을 첨가하여 PH 7∼8로 조정된 처리수는 응집조(5)로 이송되어 밸브(6e)를 개구시켜 응집제인 폴리머를 첨가하고, 교반기(10)를 50rpm으로 20분간 완속 교반한 다음 침전조(11)에서 안정화 과정을 거치면 부유물이 응집된 슬러지는 침전되고, 상부의 상등수는 일측의 처리수조(12)에서 다시 공기와 폭기 혼합된 다음 카본 휠터(활성탄)(13)를 통과하면서 여과된 후 방류조(14)에서 공기와 다시 폭기 혼합되어 방류되며, 침전조(11) 바닥에 침전된 슬러지는 농축조(15)로 배출시켜 별도의 슬러지 처리장으로 이송된다.The treated water adjusted to PH 7 to 8 by adding sodium hydroxide was transferred to the coagulation tank 5 to open the valve 6e to add a polymer as a coagulant, and the stirrer 10 was slowly stirred at 50 rpm for 20 minutes. After the stabilization process in the sedimentation tank 11, the flocculated sludge is precipitated, and the upper supernatant is aerated mixed with air again in the treated water tank 12 on one side, and then filtered while passing through a carbon filter (activated carbon) 13 After being discharged by aeration mixed with air again in the discharge tank 14, the sludge precipitated at the bottom of the settling tank 11 is discharged to the concentration tank 15 is transferred to a separate sludge treatment plant.

이와 같이 이루어지는 고도 전기 산화 공법을 이용하여 축산 폐수, 쓰레기 매립지 침출수, 염색 공장의 염색 폐수를 처리한 실험을 약품만을 이용한 펜턴 산화 반응 처리와 소량의 약품에 약전기를 인가한 고도 전기 산화 처리를 살펴보면 다음과 같다.The experiments on the treatment of livestock wastewater, landfill leachate, and dyeing wastewater in a dyeing plant using the advanced electrooxidation method, as described above, look at Fenton's oxidation treatment using only chemicals and advanced electrooxidation treatments in which a small amount of chemical is applied. As follows.

실험1: 축산 공동 처리장 폐수Experiment 1: Livestock Joint Treatment Plant Wastewater

1) Fenton 약품 주입량에 따른 처리 효율1) Treatment efficiency according to Fenton chemical injection volume

일반적으로 처음 펜턴(Fenton) 산화 반응 실험을 수행 할 때는 과산화수소의 주입량을 시료의 COD 또는 BOD의 0.5배로 할 것을 권유하나, 여기서는 최적 조건을 찾고자 H2O2의 주입량을 500mg/L로 고정시킨후 과산화수소/철염비를 1:1, 1:4, 1:6, 1:8, 1:10으로 변화시켜 실험을 하였다. 고분자 응집제(폴리머)는 3mg/L로 일정하게 주입하였으며 반응 시간은 1시간으로 하였다. 또한 Fenton 산화 반응 후 카본 휠터를 이용하여 그 여액의 CODMn농도를 측정하였다.In general, when performing the Fenton oxidation experiment for the first time, it is recommended that the injection amount of hydrogen peroxide be 0.5 times the COD or BOD of the sample.However, in order to find the optimal condition, the H 2 O 2 injection rate is fixed to 500 mg / L. The experiment was performed by changing the hydrogen peroxide / iron salt ratio to 1: 1, 1: 4, 1: 6, 1: 8, 1:10. The polymer flocculant (polymer) was constantly injected at 3 mg / L and the reaction time was 1 hour. After the Fenton oxidation reaction, the COD Mn concentration of the filtrate was measured using a carbon filter.

상기 표1에 나타난 바와 같이 축산 공동 처리장의 초기 CODmn농도는 442mg/L 에서 펜턴 산화 반응 후 CODMn농도는 87mg/L, 카본 휠터 통과 후 54mg/L로 감소되었으며, 과산화수소/철염비가 1:10인 경우 유기물 처리율이 87.78%의 효율을 보였다.As shown in Table 1, the initial CODmn concentration of the livestock co-treatment plant was reduced from 442 mg / L to 4.6 mg / L after the Fenton oxidation, and the COD Mn concentration was reduced to 87 mg / L and 54 mg / L after passing through the carbon filter, and the hydrogen peroxide / iron salt ratio was 1:10. In the case of organic matter treatment, the efficiency was 87.78%.

펜턴 산화 반응에서 철(Ⅱ) 이온은 촉매로 작용하지만 적절량 이상에서 오히려 OH 라디칼과 반응하여 OH 라디칼을 소모하게 되었다. 따라서 철(Ⅱ) 이온이Scavenger가 아닌 촉매로서의 역할을 하기 위해서 적정한 철과 과산화수소(Fe2+/H2O2)의 비가 선정되어야 하기 때문에 과산화수소의 주입량을 1,000mg/L로 하고 과산화수소/철염비를 1:2, 1:10, 1:11, 1:12으로 변화시켜 실험을 수행하였다. 그 실험 결과는 이래의 표2와 같다.In the Fenton oxidation reaction, iron (II) ions act as a catalyst, but they react with the OH radicals in excess of an appropriate amount to consume OH radicals. Therefore, the proper ratio of iron and hydrogen peroxide (Fe 2+ / H 2 O 2 ) must be selected in order for the iron (II) ion to act as a catalyst, not as a scavenger, so the amount of hydrogen peroxide injected is 1,000 mg / L and the hydrogen peroxide / iron salt ratio Was changed to 1: 2, 1:10, 1:11, 1:12. The experimental results are shown in Table 2 below.

상기 표2에 나타난 바와 같이 약품 주입량에 따른 농도 변화는 과산화수소/철염비가 1:10인 경우 CODMn처리율이 91.56%를 보였으며, 철염비를 올릴수록 CODMn수치가 조금씩 상승하는 것을 보였다.As shown in Table 2, the concentration change according to the chemical injection amount showed that the COD Mn treatment rate was 91.56% when the hydrogen peroxide / iron salt ratio was 1:10, and the COD Mn value increased slightly as the iron salt ratio was increased.

또한 아래의 표3에서 알 수 있듯이 교반 시간에 있어서는 30분과 60분을 시행하였는데 30분일 때는 유기물 처리율이 87.31%, 60분일 때는 87.04%가 제거되었다. 본 실험에서 펜턴 교반 시간은 30∼60분을 갖는 것이 양호한 처리율을 기대할 수 있음을 알 수 있다.In addition, as shown in Table 3 below, the stirring time was 30 and 60 minutes, and the organic matter treatment rate was 87.31% at 30 minutes and 87.04% at 60 minutes. In this experiment, it can be seen that having a Fenton stirring time of 30 to 60 minutes can be expected to have a good treatment rate.

2) 전기 분해 장치를 이용한 Fenton 산화 처리율2) Fenton oxidation rate using electrolysis device

펜턴 산화 반응의 최적의 전압(V)을 선정하기 위해 과산화수소/철염비를 1:2로 고정시킨 후 전압을 1V, 5V, 10V, 15V로 변화시켜 실험을 수행하였다.In order to select the optimal voltage (V) of the Fenton oxidation reaction, the experiment was performed by fixing the hydrogen peroxide / iron salt ratio to 1: 2 and changing the voltage to 1V, 5V, 10V, and 15V.

실험 결과는 아래의 표4와 같이 5V의 전압에서 86.99%의 처리율을 보이며 5V 이상의 전압을 이용하면 시료의 온도가 조금씩 상승하는 것을 볼 수 있다.Experimental results show that the processing rate of 86.99% at a voltage of 5V as shown in Table 4 below, and using a voltage of 5V or more can increase the temperature of the sample little by little.

본 실험에서는 과산화수소의 농도를 500mg/L로 고정시킨 후 전기 분해 장치로 5V를 가하고, 과산화수소/철염비를 1:1, 1:4, 1:6, 1:8, 1:10으로 변화시켜 실험하였다. 실험 결과는 아래의 표5에 나타난 바와 같이 초기 CODMn농도가 456mg/L에서 1:10인 경우 고도 전기 산화 처리수는 68mg/L이고, 카본 휠터 통과 후 여액의 농도는 25mg/L까지 감소하였다.In this experiment, the concentration of hydrogen peroxide was fixed at 500 mg / L, 5V was added with an electrolysis device, and the hydrogen peroxide / iron salt ratio was changed to 1: 1, 1: 4, 1: 6, 1: 8, and 1:10. It was. As shown in Table 5 below, when the initial COD Mn concentration was 456 mg / L to 1:10, the highly electrooxidized water was 68 mg / L, and the concentration of the filtrate was reduced to 25 mg / L after passing through the carbon filter. .

이는 반응조(펜턴 산화조) 내에 전기 에너지를 공급하므로 펜턴 산화 반응과 전기 분해 반응이 동시에 이루어지고 있다. 따라서 Fe 전극을 사용하기 때문에 양극에서는 Fe2+용출과 산소 이온의 생성, 음극에서는 수소가스와 전기 분해시 용출되는 OH_의 반응이 펜턴 산화 반응에 상승 효과를 주게 된다.This supplies electric energy into the reaction tank (Fenton oxidation tank), so the Fenton oxidation reaction and the electrolysis reaction are simultaneously performed. Therefore, since Fe electrode is used, Fe 2+ elution and oxygen ion generation at the anode, and hydrogen gas and OH _ eluted at the time of electrolysis at the cathode have a synergistic effect on the Fenton oxidation reaction.

결과적으로 전기 분해를 이용한 펜턴 산화 처리와 약품만을 이용한 펜턴 산화 처리를 비교해 보면, 전자의 경우 유기물 제거 효율이 약 94.51%, 후자의 경우 유기물 제거 효율이 약 87.78%로 전기 분해를 이용한 펜턴 산화 처리시 유기물 처리율이 약 6.78%가 높은 수치를 보였다. 표6과 표7은 기존 방식의 펜턴 산화 공정과 본 발명의 AEOP 공정의 CODMn처리율을 비교한 것이다.As a result, comparing the Fenton oxidation treatment using electrolysis with the Fenton oxidation treatment using only chemicals, the organic removal efficiency was about 94.51% in the former case and the 87.78% removal efficiency in the latter case. The organic treatment rate was about 6.78%. Table 6 and Table 7 compare the COD Mn treatment rates of the conventional Fenton oxidation process with the AEOP process of the present invention.

실험2: 매립지 침출수Experiment 2: Landfill Leachate

1) 침출수 원수의 특성1) Characteristics of Raw Leachate

아래의 표8에서 보는 바와 같이 매립지의 침출수 원수의 특성은 크게 두 가지로 요약할 수 있다.As shown in Table 8 below, the characteristics of the landfill leachate source water can be summarized into two main categories.

첫째, 유입수의 변동이 매우 크다는 것이다. BOD5가 540∼1,536mg/L로 분포하고, CODcr은 1,557∼4800mg/L로 분포하고 있어 최대값과 최소값의 차이가 약 3배에 달한다.First, inflow fluctuations are very large. BOD 5 is distributed at 540-1,536 mg / L, and CODcr is distributed at 1,557-4800 mg / L, and the difference between the maximum value and the minimum value is about three times.

둘째, 높은 농도의 환원성 질소 존재이다. 암모니아와 유기 질소의 합을 나타내는 TKN의 농도가 1,086∼1,214mg N/L로 매우 높은 편이고, 이의 대부분이 암모니아성 질소이다.Second is the presence of high concentrations of reducing nitrogen. The concentration of TKN, which represents the sum of ammonia and organic nitrogen, is very high at 1,086 to 1,214 mg N / L, most of which is ammonia nitrogen.

2) Fenton 약품 주입량에 따른 처리 효율2) Treatment efficiency according to Fenton chemical injection volume

펜턴 산화 반응 실험은 Aerated Lagoon 유출수를 대상 시료로 하였으며 반응시간, 반응 PH, 산화제 주입량 및 주입 비율에 따라 유기물 처리율을 조사하였다.Fenton's oxidation experiments were conducted using Aerated Lagoon effluent samples and the organic treatment rates were investigated according to reaction time, reaction pH, oxidant injection rate and injection ratio.

매립장 침출수 자료에 의하면 과산화수소 1,500mg/L에 1:1.2의 비율을 유기물 처리량으로 권장하나, 본 실험에서는 과산화수소 주입량을 2,000mg/L로 고정시킨 후 철염비를 1:1.5, 1:1.75, 1:2, 1:2.5로 변화시켜 실험을 하였다.According to the landfill leachate data, the ratio of 1: 1.2 to 1,500 mg / L of hydrogen peroxide is recommended as an organic treatment, but in this experiment, the iron salt ratio was fixed at 2,000 mg / L and the iron salt ratio was 1: 1.5, 1: 1.75, 1: 2, 1: 2.5 was changed to the experiment.

아래의 표9, 표10은 약품 주입량에 따른 농도의 변화를 나타낸 것이다. 펜턴 산화 반응에서 과산화수소 2,000mg/lL에 철염 주입비가 1:1.5일 때 유기물 처리율을 보면 반응전 CODMn농도는 800mg/L이고 반응 후 CODMn농도는 250mg/L, 카본 휠터통과 후 여액의 농도는 173.3mg/L로 유기물 제거율이 78.3%로 나타났다.Table 9 and Table 10 below show the change in concentration according to the amount injected. In the Fenton oxidation reaction, the organic matter treatment ratio was 2,000 mg / l of hydrogen peroxide and iron salt injection ratio of 1: 1.5. The COD Mn concentration before the reaction was 800 mg / L, the COD Mn concentration after the reaction was 250 mg / L, and the filtrate after the carbon filter 173.3 mg / L of organic matter removal was 78.3%.

이상과 같이 약품 주입량에 따른 농도 변화와 유기물 처리량을 알 수 있다.As described above, the concentration change and the amount of organic matter treatment according to the amount of injection of the drug can be known.

또한 펜턴 산화 반응 시간의 영향을 보기 위해 30분과 60분 경과 후 유기물 농도를 비교하여 보았다. 30분 경과 후 CODMn의 농도는 60% 처효율을 보이지만, 과산화수소 잔류량으로 인해 철염을 침전시키는 단계에서 기포가 생겨 침전된 슬러지를 부상시키는 문제점을 발생시켰다. 따라서 펜턴 산화 반응 시간은 60분으로 과산화수소 농도 2,000mg/L에 철염비를 1:1.5로 주입하는 것이 최적의 조건이다.In addition, the organic matter concentration was compared after 30 and 60 minutes to see the effect of the Fenton oxidation time. After 30 minutes, the concentration of COD Mn was 60%, but due to the residual amount of hydrogen peroxide, bubbles were formed at the stage of iron salt precipitation, which caused the sludge to float. Therefore, the Fenton oxidation reaction time is 60 minutes and the optimal condition is to inject the iron salt ratio 1: 1.5 to the hydrogen peroxide concentration of 2,000mg / L.

3) 전기 분해 장치를 이용한 Fenton 처리 효율3) Fenton treatment efficiency using electrolysis device

상기 펜턴 실험에서와 같이 과산화수소 2,000mg/L에 철염비1:1.5로 하고 펜턴 시약 투입 후 철전극을 사용하여 5V의 전기 에너지를 가하였다. 그 결과 유기물처리율은 64.5%를 가졌다. 상기 펜턴 실험에 비해 처리율이 떨어지는 이유는 침출수 내의 Fe 성분의 함량과 전극에서 용출되는 Fe2+이온이 기인한 것으로 사료된다. 또한 전기 에너지를 통한 산화, 환원 반응으로 과량의 거품이 생겨 수소가스에 의해 상부로 부상하는 것을 관찰할 수 있었다.As in the Fenton experiment, the iron salt ratio was 1: 1.5 to 2,000 mg / L of hydrogen peroxide, and 5 V of electrical energy was added using an iron electrode after adding the Fenton's reagent. As a result, the organic matter treatment rate was 64.5%. The reason why the treatment rate is lower than the Fenton experiment is believed to be due to the content of Fe in the leachate and Fe 2+ ions eluted from the electrode. In addition, it was observed that excessive bubbles were formed by oxidation and reduction reactions through electrical energy, and were floated upward by hydrogen gas.

반면 과산화수소 2,000mg/L에 FeCl2을 주입하지 않고 5V의 전기 에너지를 가하였다. 그 결과 반응 전 CODMn농도는 800mg/L이고 반응 후 CODMn농도는 257.4mg/L이고, 카본 휠터를 통과한 여액의 CODMn농도는 173.3mg/L로 나타났다. 유기물 처리 율로 보면 78.3%로 기존의 펜턴 산화 반응과 같은 처리율을 가지고 있으며, 슬러지 발생량을 살펴보면 기존의 펜턴 산화 반응보다 약 60%가 감량화되었다.On the other hand, 5V of electrical energy was added to 2,000 mg / L of hydrogen peroxide without injecting FeCl 2 . As a result, before reaction COD Mn concentration is 800mg / L after a reaction COD Mn concentration COD Mn concentration of the filtrate that has passed through and 257.4mg / L, a carbon filter is found to 173.3mg / L. The organic treatment rate is 78.3%, which has the same treatment rate as the conventional Fenton oxidation reaction, and the amount of sludge generated is reduced by about 60% compared to the conventional Fenton oxidation reaction.

따라서 본 발명의 전기 분해를 이용한 펜턴 산화 처리가 매립지 침출수에서는 기존의 펜턴 산화 공정에 비해 처리율은 물론 경제적으로 우수함을 알 수 있다.Therefore, it can be seen that the Fenton oxidation treatment using the electrolysis of the present invention is economically superior in throughput as well as the conventional Fenton oxidation process in landfill leachate.

실험3: 염색 폐수Experiment 3: Dyeing Wastewater

1) 염색 폐수 원수 특성1) Dyeing wastewater raw water characteristics

실험 기간 동안 염색 공장의 폐수 처리장의 염색 폐수 원수와 방류수의 COD를 측정한 결과는 아래의 표11과 같다.The COD of the wastewater and effluent of the dyeing wastewater at the wastewater treatment plant of the dyeing plant during the experiment is shown in Table 11 below.

2) Fenton 약품 주입량에 따른 처리 효율2) Treatment efficiency according to Fenton chemical injection volume

과산화수소의 주입량을 250mg/L, 500mg/L, 1000mg/L 각각 고정시켜, 주입비율을 0:0, 1:1, 1:3, 1:5, 1:6으로 변화시켜 최적의 주입 비율을 결정하였다. 아래의 표12는 주입 비율에 따른 COD 변화량을 나타냈다.The injection rate of hydrogen peroxide is fixed at 250mg / L, 500mg / L and 1000mg / L, respectively, and the injection ratio is changed to 0: 0, 1: 1, 1: 3, 1: 5, 1: 6 to determine the optimum injection ratio. It was. Table 12 below shows the change in COD according to the injection ratio.

상기 표12를 살펴보면 과산화수소의 주입량을 500mg/L인 경우 COD는 처리 전779mg/L에서 카본 휠터 통과 후 86∼45mg/L로 감소하였으며, 과산화수소/철염비를 1:6인 경우 가장 좋은 처리율을 보였다.Referring to Table 12, when the injection amount of hydrogen peroxide was 500 mg / L, the COD decreased from 779 mg / L before treatment to 86-45 mg / L after passing the carbon filter, and the ratio of hydrogen peroxide / iron salt was 1: 6, showing the best treatment rate. .

3) Fenton 산화 반응과 AEOP 산화 반응 효율 비교3) Fenton oxidation and AEOP oxidation efficiency

본 실험에서 과산화수소 주입량을 500mg/L로 고정시킨 후 과산화수소/철염비를 0:0, 1:1, 1:3, 1:5, 1:6으로 주입 비율을 변화시키면서, 펜턴 반응과 동시에 5V의 약전을 가하여, 이전 실험 데이터와 효율을 비교하였다.In this experiment, the hydrogen peroxide injection amount was fixed at 500 mg / L, and the hydrogen peroxide / iron salt ratio was changed to 0: 0, 1: 1, 1: 3, 1: 5, 1: 6 while changing the injection ratio at the same time as the Fenton reaction. Pharmacopoeia was applied to compare the efficiency with previous experimental data.

이상의 실험에서도 알 수 있듯이 기존의 펜턴 산화와 전기 분해 장치를 이용한 고도 전기 산화 공법을 통한 비교 실험에서 다음과 같은 결론을 얻을 수 있었다.As can be seen from the above experiments, the following conclusions can be obtained from the comparative experiments using the advanced electro-oxidation method using the conventional Fenton oxidation and electrolysis device.

첫째: 축산 공동 처리장 폐수의 펜턴 산화 처리는 과산화수소 500mg/L 기준으로 과산화수소/철염(Ⅱ)비를 1:10로 주입할 때 CODMn은 87.78%의 처리율을 나타내며, 같은 조건 하에서 AEOP(Advanded Electric Oxidaton Process) 산화 처리에서는CODMndmfh dir 94.52% 처리율을 나타냈다.First: Fenton oxidation treatment of livestock waste water treatment plant cavity is hydrogen peroxide 500mg / L with reference to inject the hydrogen peroxide / ferrous salt (Ⅱ) ratio is 1:10 COD Mn indicates a throughput of 87.78% under the same conditions AEOP (Advanded Electric Oxidaton Process) Oxidation treatment showed a COD Mn dmfh dir 94.52% throughput.

둘째: 매립지 침출수에서, 과산화수소 2,000mg/L 기준으로 과산화수소/철염(Ⅱ)비 1:1.5로 주입한 기존 Fenton 산화 처리와 과산화수소 2,000mg/L만 주입한 AEOP 산화 처리에서 각각 CODMn으로 78.3%의 처리율을 나타냈다.Secondly, in landfill leachate, 78.3% of COD Mn was added in the existing Fenton oxidation treatment with hydrogen peroxide / iron salt (II) ratio 1: 1.5 based on 2,000 mg / L hydrogen peroxide and AEOP oxidation treatment with 2,000 mg / L hydrogen peroxide, respectively. The throughput was shown.

셋째: 염색 폐수에서, 과산화수소 500mg/L을 기준으로 할 때 과산화수소/철염(Ⅱ)비를 1:5로 주입할 때 펜턴 산화 처리와 1:3으로 주입한 AEOP 산화 처리의 CODMn처리율이 비슷한 수치를 가졌다. 또한 과산화수소 500mg/L의 주입비율 1:1은 AEOP의 CODMn처리율이 펜턴 산화 처리보다 약 13.5%의 높은 수치를 나타냈다.Third: In the dyeing wastewater, the COD Mn treatment ratio of the Fenton oxidation treatment and the AEOP oxidation treatment injected 1: 3 when the hydrogen peroxide / iron salt (II) ratio was injected 1: 5 based on the hydrogen peroxide 500 mg / L was similar. Had In addition, the injection ratio 1: 1 of hydrogen peroxide 500mg / L showed that the COD Mn treatment rate of AEOP was about 13.5% higher than that of Fenton's oxidation treatment.

넷째: 슬러지 발생량을 비교해 보면 펜턴 산화 처리보다 AEOP 산화 처리에서 축산 폐수는 58%, 침출수는 60%, 염색폐수는 59%의 슬러지 감량 현상을 볼 수 있었다.Fourth: Compared with the sludge generation, sludge reduction was found to be 58% for livestock waste, 60% for leachate, and 59% for dyed waste compared to Fenton's oxidation.

이상에서 살펴본 바와 같이 고도 전기 산화 처리 방법(AEOP)이 약품만을 이용한 Fenton 산화 처리 방법에 비해 약품비는 물론 관리비 절감과 유기물 처리율의 우수성을 갖게 되는 동시에 과다 약품을 투여함으로써 제3의 환경 오염이 발생되는 것을 방지할 수 있게 된 효과가 있다.As described above, the advanced electro-oxidation method (AEOP) has a superior chemical cost, lower management cost, and higher organic treatment rate than the Fenton oxidation method using only chemicals. There is an effect that can be prevented.

Claims (2)

저류조(1)로 유입된 산업 폐수는 상부에 황산(H2SO4), 과산화수소(H2O2), 염화 제1철(FeCl2), 수산화나트륨(NaOH), 응집제가 내장되는 약품 탱크(8)가 구비되어 각각의 교반기(10)가 구비된 제1 PH 조정조(2), 반응조(3), 제2 PH 조정조(4), 응집조(5)에 투입되도록 밸브(6a)(6b)(6c)(6d)(6e)를 갖는 배관이 연결되며, 상기 반응조(3)에는 전기 인가 장치(7)를 설치하여 폐수를 펜턴(Fenton) 산화 처리에 의하여 고도 전기 산화 처리 공법이 이루어지도록 하고, 상기 반응조(3)에서 고도 산화 처리된 폐수는 제2 PH 조정조(4)에서 2차로 수산화나트륨으로 중화 조정한 후 폴리머(Polymer)와 혼합 교반되어 부유물이 응집되도록 하는 응집조(5)와;The industrial wastewater introduced into the storage tank 1 is a chemical tank (8) containing sulfuric acid (H 2 SO 4 ), hydrogen peroxide (H 2 O 2), ferrous chloride (FeCl 2 ), sodium hydroxide (NaOH), and a flocculant at the top (8). Valves 6a and 6b to be introduced into the first PH adjusting tank 2, the reaction tank 3, the second PH adjusting tank 4, and the coagulation tank 5, each of which is provided with a stirrer 10; 6c) (6d) (6e) is connected to the pipe, the reactor 3 is equipped with an electrical application device (7) so that the wastewater is subjected to a high electro-oxidation process by Fenton oxidation treatment, A high oxidation oxidation wastewater in the reaction tank (3) is neutralized and adjusted with sodium hydroxide in a second PH adjusting tank (4), and then mixed with a polymer and stirred to coagulate suspended solids (5); 상기 응집조(7)에서 응집된 폐수가 침전조(11)로 유입, 안정화를 이루어 침전된 슬러지는 농축조(15)로 배출되고 상등수는 처리수조(12)와 카본 휠터(13)를 거쳐 방류조(14)에서 방류되도록 하는 폐수 처리 장치의 구성을 특징으로 하는 전기 분해를 이용한 펜턴 산화 처리의 폐수 처리 장치.Wastewater aggregated in the coagulation tank 7 is introduced into the settling tank 11 and stabilized, and the precipitated sludge is discharged to the thickening tank 15, and the supernatant water is discharged through the treatment water tank 12 and the carbon filter 13. A wastewater treatment apparatus for Fenton oxidation treatment using electrolysis, characterized in that the wastewater treatment apparatus is discharged in 14). 저류조(1)에서 유입된 제1 PH 조정조(2)의 폐수에 황산을 투입하면서 교반기(10)로 교반하면서 PH 메타(9)의 PH가 3∼4가 되도록 올려 준 후 반응조(3)로 유입된 폐수에 과산화수소(H2O2)와 염화 제1철(FeCl2)을 투입하여 교반기(10)의 회전 속도가 180rpm가 되도록 급속 교반을 유지하면서 전기 인가 장치(7)로 염화제1철에 전기를 도통시켜 전기 분해가 이루어지도록 하고 PH 메타(9)을 확인하면서 폐수를 고도 전기 산화 공법 처리하며;While adding sulfuric acid to the wastewater of the first PH control tank (2) introduced from the storage tank (1), while raising the pH of the PH meta (9) to 3 to 4 while stirring with the stirrer (10), flows into the reactor (3) Hydrogen peroxide (H 2 O 2 ) and ferrous chloride (FeCl 2 ) were added to the wastewater, and the agitator 10 was rapidly stirred to maintain a rotational speed of 180 rpm. Conduction of electricity to allow electrolysis, and the wastewater is subjected to a highly electrooxidation process while checking the PH meta (9); 상기 Fenton 산화 반응과 전기 분해에 의하여 고도 전기 산화 처리된 폐수를 제2 PH 조정조(4)에 수산화나트륨(NaOH)을 투입하여 PH 메타(3b)의 계기가 7∼8이 되도록 한 후 응집조(5)로 유입시켜 응집제(Polymer)를 첨가하여 교반기(10)를 50rpm으로 20분간 완속 교반하고 다시 침전조(11)에서 침전시켜 상등수는 처리수조(12)와 카본 휠터(13)를 거쳐 방류조(14)로 방류하고, 침전된 슬러지는 농축조(15)로 배출 처리하도록 된 폐수 처리를 특징으로 하는 전기 분해를 이용한 펜턴 산화 처리의 폐수 처리 방법.Sodium hydroxide (NaOH) was added to the second PH adjusting tank 4 in the wastewater subjected to highly electrooxidation by the Fenton oxidation reaction and electrolysis so that the meter of the PH meta (3b) was 7 to 8, and then the coagulation tank ( 5) After adding a flocculant (Polymer), the stirrer 10 was slowly stirred at 50 rpm for 20 minutes and precipitated again in the settling tank 11, and the supernatant water was discharged through the treatment tank 12 and the carbon filter 13 14), and the sewage sludge discharged to the concentration tank 15, the wastewater treatment method of the Fenton oxidation treatment using electrolysis, characterized in that the wastewater treatment.
KR1020000009028A 2000-02-24 2000-02-24 Advanced Electric Oxidaition Process KR20010068172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000009028A KR20010068172A (en) 2000-02-24 2000-02-24 Advanced Electric Oxidaition Process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000009028A KR20010068172A (en) 2000-02-24 2000-02-24 Advanced Electric Oxidaition Process

Publications (1)

Publication Number Publication Date
KR20010068172A true KR20010068172A (en) 2001-07-23

Family

ID=19649556

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000009028A KR20010068172A (en) 2000-02-24 2000-02-24 Advanced Electric Oxidaition Process

Country Status (1)

Country Link
KR (1) KR20010068172A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663629B1 (en) * 2006-08-04 2007-01-05 (주)에코베이스 Composite aop apparatus for continuous and batch purification
CN102603129A (en) * 2012-04-10 2012-07-25 东莞市珠江海咸水淡化研究所 Emergency fast treatment method of port oil dirt waste water from chemical industry
KR101238879B1 (en) * 2006-09-12 2013-03-04 재단법인 포항산업과학연구원 Treatment Method for Cokes Waste Water Using Electrolysis and HGMS
KR101339304B1 (en) * 2011-11-15 2013-12-09 정재영 Through electric coagulation treatment of wastewater containing high concentrations of silica
KR101339305B1 (en) * 2011-11-15 2013-12-09 정재영 With electrical aggregation fluoride and treatment of wastewater containing hexavalent chromium
WO2015194739A1 (en) * 2014-06-20 2015-12-23 우진건설주식회사 Waste water treatment method using micro-electrolysis reaction, and micro-electrolysis material thereof
CN108249612A (en) * 2016-12-28 2018-07-06 帕克环保技术(上海)有限公司 Advanced waste treatment system
KR102336536B1 (en) * 2020-11-06 2021-12-09 길현영 Reuse System of Wastewater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150159A (en) * 1995-12-01 1997-06-10 Ebara Corp Cod-related component removing method for the component containing water
KR19980077286A (en) * 1997-04-18 1998-11-16 임한진 Oxidation of Organic Wastewater in an Electrolytic Treatment Tank Using Fenton Oxidation
KR19990026365A (en) * 1997-09-24 1999-04-15 정동현 Wastewater Treatment Method and Apparatus by Fenton Oxidation and Electric Electrolysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150159A (en) * 1995-12-01 1997-06-10 Ebara Corp Cod-related component removing method for the component containing water
KR19980077286A (en) * 1997-04-18 1998-11-16 임한진 Oxidation of Organic Wastewater in an Electrolytic Treatment Tank Using Fenton Oxidation
KR19990026365A (en) * 1997-09-24 1999-04-15 정동현 Wastewater Treatment Method and Apparatus by Fenton Oxidation and Electric Electrolysis

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663629B1 (en) * 2006-08-04 2007-01-05 (주)에코베이스 Composite aop apparatus for continuous and batch purification
KR101238879B1 (en) * 2006-09-12 2013-03-04 재단법인 포항산업과학연구원 Treatment Method for Cokes Waste Water Using Electrolysis and HGMS
KR101339304B1 (en) * 2011-11-15 2013-12-09 정재영 Through electric coagulation treatment of wastewater containing high concentrations of silica
KR101339305B1 (en) * 2011-11-15 2013-12-09 정재영 With electrical aggregation fluoride and treatment of wastewater containing hexavalent chromium
CN102603129A (en) * 2012-04-10 2012-07-25 东莞市珠江海咸水淡化研究所 Emergency fast treatment method of port oil dirt waste water from chemical industry
CN102603129B (en) * 2012-04-10 2013-06-19 东莞市珠江海咸水淡化研究所 Emergency fast treatment method of port oil dirt waste water from chemical industry
WO2015194739A1 (en) * 2014-06-20 2015-12-23 우진건설주식회사 Waste water treatment method using micro-electrolysis reaction, and micro-electrolysis material thereof
CN108249612A (en) * 2016-12-28 2018-07-06 帕克环保技术(上海)有限公司 Advanced waste treatment system
KR102336536B1 (en) * 2020-11-06 2021-12-09 길현영 Reuse System of Wastewater

Similar Documents

Publication Publication Date Title
CN205328814U (en) Handle alkaline dye wastewater&#39;s device
WO2012088867A1 (en) Nano catalytic electrolysis and flocculation apparatus
CN105776738B (en) A kind of method and apparatus of organic wastewater pretreatment
CN112010493A (en) Novel process for treating electroplating wastewater
CN103663840A (en) Method for treating acrylonitrile and polymerization wastewater thereof
CN112794555A (en) Novel method for treating wastewater by reinforced coagulation
Niza et al. Removal of ammoniacal nitrogen from old leachate using batch electrocoagulation with vibration-induced electrode plate
CN106277649A (en) Class Fenton technology for paper waste pretreatment
KR101221565B1 (en) Electrolytic treatment of waste water
KR20010068172A (en) Advanced Electric Oxidaition Process
CN212741066U (en) Electroplating nickel-containing wastewater treatment device
CN112551744A (en) Method for treating wastewater by utilizing acidic coagulated Fenton oxidation
CN112520913A (en) Pretreatment process for treating refractory organic wastewater by electric flocculation
CN101973659A (en) Device and method for refining waste water by treating vitamin B12 by means of co-use of micro-electrolysis and physicochemical method
KR20150006673A (en) Treatment of wastewater containing ethanolamine in secondary system of nuclear power plant
KR100343637B1 (en) Treatment of leachate
CN107216006B (en) Leather wastewater treatment system and method
JP2018001137A (en) Treatment method and treatment device of organic sludge
CN106630312B (en) Treatment system, treatment method and application of coking phenol-cyanogen wastewater
KR19980077286A (en) Oxidation of Organic Wastewater in an Electrolytic Treatment Tank Using Fenton Oxidation
KR20030053498A (en) The method and equipment of wastewater treatment contained organic compound of high concentration
KR20020060792A (en) Method for treating waste water using electrolysis
KR100208477B1 (en) Method for treating industrial waste water by flocculation and oxidation
CN112079494B (en) Method for treating emulsion wastewater
KR100461913B1 (en) A method for treatment of sewage and wastewater

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
E902 Notification of reason for refusal
E601 Decision to refuse application