JPS62117369A - Hetero junction bi-polar transistor - Google Patents

Hetero junction bi-polar transistor

Info

Publication number
JPS62117369A
JPS62117369A JP25821585A JP25821585A JPS62117369A JP S62117369 A JPS62117369 A JP S62117369A JP 25821585 A JP25821585 A JP 25821585A JP 25821585 A JP25821585 A JP 25821585A JP S62117369 A JPS62117369 A JP S62117369A
Authority
JP
Japan
Prior art keywords
collector
region
emitter
base
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25821585A
Other languages
Japanese (ja)
Inventor
Toshio Oshima
利雄 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25821585A priority Critical patent/JPS62117369A/en
Publication of JPS62117369A publication Critical patent/JPS62117369A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To simultaneously reduce base and collector (emitter) serial resistances and improve characteristics by placing the base electrode between the other two electrodes, and providing electrodes in the collector or emitter layer which were buried in a semiconductor substrate through a buried layer which was selectively provided. CONSTITUTION:Natural GaAs 2 is epitaxially formed on a semi-insulating GaAs 1, and Si ions are implanted to form a collector and rising portion 3. Si is added, an N-GaAs collector layer 4 is provided, Be ions are implanted, and a collector region 4A is defined with a P<+> layer 5. A Be-added P<+>-GaAs base 6 and an N-AlxGa1-xAs emitter 7 are overlayed thereon. The Al composition ratio (x) increases from 0 to 0.3 between 10-100mm from the interface of a layer 6 and returns again to 0 at the surface, and it is near to an N<+> layer at the surface. After heat-treatment and activation of the impurities, an emitter region 7A is defined, an emitter electrode 8 of AuGe/Au, a collector electrode 10 and a Cr/Au base electrode 9 are provided. With this structure, the respective serial resistances of the base and collectors are simultaneously decreased, and the gate delay time or the cut-off frequency are improved.

Description

【発明の詳細な説明】 〔概要〕 この発明は、ヘテロ接合バイポーラトランジスタにおい
て、 そのベース電極を他の2電極間に介在させ、半導体基体
に埋設されたコレクタ又はエミッタ領域には選択的に設
けた埋設領域を介して電極を接続することにより、 ベース、コレクタ(エミッタ)直列抵抗を同時に低減し
て、ゲート遅延時間或いは遮断周波数等の特性を改善す
るものである。
[Detailed Description of the Invention] [Summary] The present invention provides a heterojunction bipolar transistor in which a base electrode is interposed between two other electrodes and is selectively provided in a collector or emitter region buried in a semiconductor substrate. By connecting the electrodes through the buried region, the base and collector (emitter) series resistances are reduced at the same time, improving characteristics such as gate delay time and cut-off frequency.

〔産業上の利用分野〕[Industrial application field]

本発明はへテロ接合バイポーラトランジスタにかかり、
特にベース、コレクタ(エミッタ)直列抵抗の同時低減
を可能とする改善に関する。
The present invention relates to a heterojunction bipolar transistor,
In particular, it relates to improvements that allow simultaneous reduction of base and collector (emitter) series resistance.

砒化ガリウム(Ga^s)/砒化アルミニウムガリウム
(^IGaAs)等のへテロ接合を有する化合物半導体
装置が種々開発されているが、ヘテロ接合バイポーラト
ランジスタは電流駆動能力が大きい高速デバイスとして
期待され、これを早期に実用化することが強く要望され
ている。
Various compound semiconductor devices having heterojunctions such as gallium arsenide (Ga^s)/aluminium gallium arsenide (^IGaAs) have been developed, but heterojunction bipolar transistors are expected to be high-speed devices with large current drive capability, and There is a strong desire to put this into practical use as soon as possible.

〔従来の技術〕[Conventional technology]

ヘテロ接合バイポーラトランジスタでは、少なくともエ
ミッタ領域をベース領域より禁制帯幅が大きい半導体に
よって構成し、これによってエミッタ・ベース間の電流
注入効率を増大する効果を得ているが、サブコレクタ領
域等を選択的に形成してベース−コレクタ間のキャパシ
タンスを減少させた従来例の模式側断面図を第4図+a
l及び(b)に示す。
In a heterojunction bipolar transistor, at least the emitter region is made of a semiconductor whose forbidden band width is larger than that of the base region, and this has the effect of increasing the current injection efficiency between the emitter and base. Figure 4+a shows a schematic side sectional view of a conventional example in which the base-collector capacitance is reduced by forming the
1 and (b).

同図において、21ば半絶縁性GaAs基板、23はn
++GaAsザブコレクタ領域、24はn型GaAsコ
レクタ領域、25はp+型領領域26はp++GaAs
ベース層、27はn型へlGaAsエミッタ領域、28
はエミッタ電極、29ばベース電極である。
In the figure, 21 is a semi-insulating GaAs substrate, 23 is an n
++GaAs sub-collector region, 24 is n-type GaAs collector region, 25 is p+-type region 26 is p++GaAs
Base layer, 27 to n-type lGaAs emitter region, 28
29 is an emitter electrode, and 29 is a base electrode.

同図(a)の従来例では分子線エピタキシャル成長(M
BP、)装置内で、■半絶縁性GaAs基板21若しく
はノンドープのGaAsバッファ層に、に型GaAsサ
ブコレクタ領域23を形成する選択的イオン注入(酸中
イオンビーム)、(わrtQ9Ga^s:ルクタ領域2
4を形成する半導体層の成■4、■I)l型領域25を
形成しXIレクタ領域24を画定する選択的イオン注入
、■p+型GaAsベース層2G及びn型へ1GIIA
3エミッタ領域27とする半導体層の成長、を111次
実施して所要の半導体基体を得ている。
In the conventional example shown in (a) of the same figure, molecular beam epitaxial growth (M
BP, ) In the device, ■ Selective ion implantation (ion beam in acid) to form a di-type GaAs sub-collector region 23 in the semi-insulating GaAs substrate 21 or non-doped GaAs buffer layer; Area 2
4, ■ I) selective ion implantation to form the l-type region 25 and define the XI director region 24, ■ 1GIIA to the p + type GaAs base layer 2G and the n-type
The growth of a semiconductor layer to form the third emitter region 27 was performed 111 times to obtain the required semiconductor substrate.

また同図(blの従来例では、(1) n++GaAs
ザブ:2レクタ領域23とn型GaAs:Iレクタ領域
24とを形成する選択的イオン注入を連続して行い、■
p1型GaAsベース層26とn型^lGaAsエミッ
タ領域27とする半導体層とを成長し“ζいる。
In addition, in the conventional example of the same figure (bl), (1) n++GaAs
Selective ion implantation is performed successively to form the sub:2 director region 23 and the n-type GaAs:I director region 24, and
A p1 type GaAs base layer 26 and a semiconductor layer to be an n type GaAs emitter region 27 are grown.

これらの半導体基体で4;t: riF型GaAsザブ
、:ルクタ領域23が第4図fat、fhlの断面に曲
角方向に延長されて、エミッタ電極28、ベース電極2
9、及びコレクタ電極30は第5図に例示する平面図の
様に配設される。
In these semiconductor substrates, an emitter electrode 28 and a base electrode 2 are formed such that a 4;t: riF-type GaAs substrate 4;
9 and the collector electrode 30 are arranged as shown in the plan view illustrated in FIG.

〔発明が解決しよ・うとする問題点〕[Problem that the invention attempts to solve]

上述の如く各電極を配設した従来のへテロ接合バイポー
ラトランジスタにおいては、ベース直列抵抗とコレクタ
直列抵抗との利害が相反し、設計に際して双方を比較し
て妥協せざるを得ない。
In a conventional heterojunction bipolar transistor in which each electrode is arranged as described above, the interests of the base series resistance and the collector series resistance conflict with each other, and a compromise must be made by comparing the two at the time of design.

ずなわち多くばベース直列抵抗を低減するために、所要
のエミッタ接合面積に対してエミッタ領域27のベース
電極29に挟まれる方向の長さく第5図の−、)を短く
し、これに直交する方向を長くしているが、この結果エ
ミッタ電極28−コレクタ電極30間の平均距離が増加
して、コレクタ直列抵抗の増大を招いている。
In other words, in order to reduce the base series resistance, the length of the emitter region 27 in the direction sandwiched between the base electrodes 29 is shortened (-, ) in FIG. However, as a result, the average distance between the emitter electrode 28 and the collector electrode 30 increases, leading to an increase in collector series resistance.

従ってこのジレンマに対処し、ベース直列抵抗とコレク
タ直列抵抗とを同時に低減できる構造が要望されている
Therefore, there is a need for a structure that can address this dilemma and simultaneously reduce base series resistance and collector series resistance.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、選択的に設けられた第1導電型の第1の
半導体領域上に、第1導電型の第2の半導体領域と、第
2導電型の第3の半導体領域と、第1導電型の第4の半
導体領域とが順次積層され、該第3の半導体領域がベー
ス領域、該第2及び第4の半導体領域の一方がコレクタ
領域、他方がエミッタ領域とされ°ζ、 該第4の半導体領域に接続された第1の電極と、該第1
の半導体領域を介し”C該第2の半導体領域に接続され
た第3の電極との間に、該第3の半導体領域に接続され
たベース電J@が介在し”ζなる本発明によるヘテロ接
合バイポーラトランジスタにより解決される。
The problem is that a second semiconductor region of the first conductivity type, a third semiconductor region of the second conductivity type, and a first semiconductor region of the first conductivity type are selectively provided on the first semiconductor region of the first conductivity type. and a fourth conductive type semiconductor region are sequentially stacked, the third semiconductor region is a base region, one of the second and fourth semiconductor regions is a collector region, and the other is an emitter region. a first electrode connected to the semiconductor region of No. 4;
A base electrode connected to the third semiconductor region is interposed between the third electrode connected to the second semiconductor region C and the third electrode connected to the second semiconductor region via the semiconductor region The solution is a junction bipolar transistor.

〔作 用〕[For production]

本発明によれば、第1図に例示する如く例えばコレクタ
を半導体基板側とする場合に、エミッタ電極8とコレク
タ電極10との間にベース電極9、通常はその一部が介
在する配置とし7、二Iレクタ電極10のコレクタ領域
への接続は半導体基体内に選択的に埋設したザブコレク
タ領域によって行う。
According to the present invention, as illustrated in FIG. 1, for example, when the collector is placed on the semiconductor substrate side, the base electrode 9, usually a part thereof, is arranged between the emitter electrode 8 and the collector electrode 10. , the connection of the two-I collector electrode 10 to the collector region is made by a sub-collector region selectively buried within the semiconductor substrate.

この構成で、エミッタ領域7^の形状をコレクタ電極I
O方向について短くし、各電極間の間隔も当然に狭くし
て、ベース直列抵抗と′:Iレクタ直列抵抗とを同時に
低減することが可能となる。
With this configuration, the shape of the emitter region 7^ is changed to the shape of the collector electrode I.
By making it shorter in the O direction and naturally narrowing the interval between each electrode, it is possible to simultaneously reduce the base series resistance and the ':I-rector series resistance.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

第2図(a)乃至(d+は本発明の第1の実施例を示す
工程順模式側断面図である。
FIGS. 2(a) to 2(d+) are schematic side sectional views in the order of steps showing the first embodiment of the present invention.

第2図(a)参照二 半絶縁性GaAs基板l上にMB
E法により、ノンドープのGaAsバッファ層2を例え
ば厚さ1μm程度にエピタキシャル成長し、同−装:6
内で必要ならば位置を移動させて、収束イオンビームに
よる選択的注入法により、サブコレクタ9r1域3の水
平部分を形成するために、例えばシリ′:1ン(Si)
イオンをエネルギ−200keν程度で、5×10I4
10I4程度注入する。その厚さを更に大きくする場合
にはこの成長−注入工程を繰り返した後に、同様の工程
でサブコレクタ領域3の立ち上がり部分を形成する。
See Figure 2(a) 2 MB on semi-insulating GaAs substrate l
A non-doped GaAs buffer layer 2 is epitaxially grown to a thickness of, for example, about 1 μm using the E method.
If necessary, the position of silicon (Si':1) is moved to form the horizontal part of the sub-collector 9r1 region 3 by selective implantation using a focused ion beam.
Ion is 5×10I4 with energy of about -200keν
Inject about 10I4. If the thickness is to be further increased, this growth-implantation process is repeated, and then the rising portion of the sub-collector region 3 is formed in a similar process.

第2図(ill参照: 例えばStをlXl0”〜1×
1017cm−3程度トープし、厚さ500nm程度の
n型GaAsコレクタ層4をエピタキシャル成長する。
Figure 2 (see ill: For example, St is lXl0”~1×
An n-type GaAs collector layer 4 having a tope of about 10<17 >cm<-3> and a thickness of about 500 nm is epitaxially grown.

次いでコレクタ領域4Aを画定するp+型領領域5形成
するために、前記選択的注入法により例えばベリリウム
(Re)イオンをエネルギ−200keν稈度で、I 
Xl01′cm−2稈度汁人する。
Next, in order to form the p+ type region 5 that defines the collector region 4A, for example, beryllium (Re) ions are implanted with an energy of -200 keν by the selective implantation method.
Xl01'cm-2 culm juice.

第2図(C)参照: 山び■旧ミ法により、例えばベリ
リウム(Be)を1×1011′〜1×10190I1
1−1程度ドープし、厚さ100nnn程度のp+型G
r真八へベース層6と、例えば厚さ300nm稈度の1
1型AIXG月−XASエミッタ層7とを成長する。
See Figure 2 (C): For example, beryllium (Be) is 1 x 1011' to 1 x 10190 I1 by the old Mi method.
P+ type G doped to about 1-1 and about 100nnn thick
rShinhachi base layer 6 and, for example, 1 with a thickness of 300 nm and a culm
A type 1 AIXG-XAS emitter layer 7 is grown.

ただしn型AlxGa+XAsエミッタ層7のAIの組
成比Xは、ベース層6との界面から10乃至、100 
nmの範囲でX =−Oから0.3まで次第に増加し7
、L−表面近傍では再びX−Oとされ、不純物濃度は1
×10+7〜1×10111clIl−3程度であるが
、1、表面近傍テハ10I901n−3に近い高濃度と
している。
However, the AI composition ratio X of the n-type AlxGa+XAs emitter layer 7 is from 10 to 100 from the interface with the base layer 6.
gradually increases from X = −O to 0.3 in the nm range 7
, near the L-surface, it becomes X-O again, and the impurity concentration is 1
The concentration is about ×10+7 to 1×10111clIl-3, but the concentration is set to be close to 1, 10I901n-3 near the surface.

第2図(di参照: この半導体Jk体をM計装置外に
取り出し、例えば温度700℃、1時間程度の加熱処理
を行って、イオン注入した不純物を活FI化する。次い
でエツチング処理を行ってエミッタ領域7Aを画定し、
サブコレクタ領域3の電極形成領域を表出する。
Figure 2 (see di: This semiconductor Jk body is taken out of the M-meter device and subjected to heat treatment at a temperature of, for example, 700°C for about 1 hour to make the ion-implanted impurities active FI. Then, etching treatment is performed. defining an emitter region 7A;
The electrode formation region of the sub-collector region 3 is exposed.

エミッタ電極8及びコレクタ電極IOを例えば金ゲルマ
ニウム/金(AuGe/Au)を用いて配設し、ベース
電極9を例えばクロム/金(Cr/^電」)を用いて配
設して、本実施例のトランジスタ素子が完成する。
The emitter electrode 8 and the collector electrode IO are arranged using, for example, gold germanium/gold (AuGe/Au), and the base electrode 9 is arranged using, for example, chromium/gold (Cr/^D). The example transistor element is completed.

また第3図は本発明の第2の実施例を示す模式側断面図
であり、第2図と同一符号により前記実施例に相当する
部分を示す。
FIG. 3 is a schematic side sectional view showing a second embodiment of the present invention, and the same reference numerals as in FIG. 2 indicate parts corresponding to the embodiment.

本実施例では、コレクタ電極4AをノンドープのGaA
sバッファ層2への前記選択的イオン注入法によって形
成している。このイオン注入は、例えばSi”をエネル
ギ−200keV程度で、3 X1013cm−”程度
注入している。
In this embodiment, the collector electrode 4A is made of non-doped GaA.
The s-buffer layer 2 is formed by the selective ion implantation method described above. In this ion implantation, for example, Si" is implanted at an energy of about -200 keV and a depth of about 3.times.10@13 cm.sup.-".

本第1の実施例で、エミッタ領域7^のコレクタ電極I
O方向の長さ−を2μm、これに直角方向を6μmとし
た試料と、前記従来構造によりエミッタ領域のコレクタ
電極方向の長さを3pTn、これに直角な誓、方向を4
μmとした比較試料とについて、最大発振周波数fmm
Xを比較して従来例の約20GIlzから約40GHz
への改善が達成され、本発明の効果が実証された。
In the first embodiment, the collector electrode I of the emitter region 7^
The length of the emitter region in the collector electrode direction is 3 pTn, and the length of the emitter region in the direction perpendicular to this is 4 pTn.
Maximum oscillation frequency fmm with respect to the comparison sample with μm
Comparing
Improvements were achieved, demonstrating the effectiveness of the present invention.

なお以上の説明では′:!レクタを半導体基板側として
いるが、エミッタを半導体ノ1(板側とした所謂反転型
構造の場合にも同様の効果が得られ、またGaAs/A
lGaAs系に限られず、他の半導体)Alを用いたヘ
テロ接合バイポーラトランジスタについても同様の効果
が得られることは明らかである。
In addition, in the above explanation ′:! Although the emitter is on the semiconductor substrate side, the same effect can be obtained in the case of a so-called inverted structure where the emitter is on the semiconductor substrate side.
It is clear that similar effects can be obtained not only in GaAs-based but also in heterojunction bipolar transistors using other semiconductors (Al).

〔発明の効果〕〔Effect of the invention〕

以−1−説明した如く本発明によれば、ヘテロ接合バイ
ポーラトランジスタのベース直列抵抗と::11/クタ
直列抵抗とを同時に低減しC、ゲート遅延一時間或いは
遮断周波数などの特性が改みされ、その実用化の推進に
大きく寄−Ljする。
As described above-1-, according to the present invention, the base series resistance and the ::11/ctor series resistance of a heterojunction bipolar transistor are simultaneously reduced, and the characteristics such as C, gate delay time, cutoff frequency, etc. are improved. , we will greatly contribute to the promotion of its practical application.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるヘテl′:】接合バイポーラトラ
ンジスタの1例を示す平面図、 第2図は本発明の第1の実h1←例の−r稈順模式側断
面図、 第3図は本発明の第2の実施例の模式側断面図、第4図
は従来例の模式側断面図、 第5図は従来例の平面図である。 図において、 1は半絶縁性GaAs基板、 2はノンドープのGaAsバッファ層、3は1型GaA
sサブコレクタ領域、 4はn型GaAsコレクタ層、 4^はコレクタ領域、 5はp4型領域、 6はp+型GaAsベース層、 7はn型へ1.GaAsエミツタ層、 7^はエミッタ領域、 8ばエミッタ電極、 9はベース電極、 10ばコレクタ電極を示す。 σE い)  、          \ト   い)、従来
・痒・jの7摸式・峻l咽面間 第4 図 率z(7)戦ヤヒ・イダjI17′)獣イ睦1@面閏早
 3 図 従来49−II)千面藺 第 夕 閣
FIG. 1 is a plan view showing one example of a heteri':] junction bipolar transistor according to the present invention, FIG. 2 is a schematic side sectional view in -r culm order of the first practical h1<- example of the present invention, and FIG. 3 4 is a schematic side sectional view of the second embodiment of the present invention, FIG. 4 is a schematic side sectional view of the conventional example, and FIG. 5 is a plan view of the conventional example. In the figure, 1 is a semi-insulating GaAs substrate, 2 is a non-doped GaAs buffer layer, and 3 is a type 1 GaAs substrate.
s sub-collector region, 4 is n-type GaAs collector layer, 4^ is collector region, 5 is p4-type region, 6 is p+-type GaAs base layer, 7 is n-type 1. GaAs emitter layer, 7^ is an emitter region, 8 is an emitter electrode, 9 is a base electrode, and 10 is a collector electrode. σE i), \toi), conventional, itching, j 7 imitations, sharp pharyngeal plane 4th figure ratio z (7) war Yahi Ida jI17') beast I Mutsu 1 @ face jump 3 figure conventional 49-II) Senmendai Yukaku

Claims (1)

【特許請求の範囲】 選択的に設けられた第1導電型の第1の半導体領域上に
、第1導電型の第2の半導体領域と、第2導電型の第3
の半導体領域と、第1導電型の第4の半導体領域とが順
次積層され、 該第3の半導体領域がベース領域、該第2及び第4の半
導体領域の一方がコレクタ領域、他方がエミッタ領域と
されて、 該第4の半導体領域に接続された第1の電極と、該第1
の半導体領域を介して該第2の半導体領域に接続された
第3の電極との間に、該第3の半導体領域に接続された
ベース電極が介在してなることを特徴とするヘテロ接合
バイポーラトランジスタ。
[Claims] A second semiconductor region of the first conductivity type and a third semiconductor region of the second conductivity type are selectively provided on the first semiconductor region of the first conductivity type.
and a fourth semiconductor region of the first conductivity type are sequentially stacked, the third semiconductor region being a base region, one of the second and fourth semiconductor regions being a collector region, and the other being an emitter region. a first electrode connected to the fourth semiconductor region;
A heterojunction bipolar device characterized in that a base electrode connected to the third semiconductor region is interposed between the third electrode connected to the second semiconductor region via the semiconductor region. transistor.
JP25821585A 1985-11-18 1985-11-18 Hetero junction bi-polar transistor Pending JPS62117369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25821585A JPS62117369A (en) 1985-11-18 1985-11-18 Hetero junction bi-polar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25821585A JPS62117369A (en) 1985-11-18 1985-11-18 Hetero junction bi-polar transistor

Publications (1)

Publication Number Publication Date
JPS62117369A true JPS62117369A (en) 1987-05-28

Family

ID=17317112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25821585A Pending JPS62117369A (en) 1985-11-18 1985-11-18 Hetero junction bi-polar transistor

Country Status (1)

Country Link
JP (1) JPS62117369A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989005041A1 (en) * 1987-11-23 1989-06-01 Hughes Aircraft Company Zener diode emulation and method of forming the same
US5147775A (en) * 1987-07-24 1992-09-15 Matsushita Electric Industrial Co., Ltd. Method of fabricating a high-frequency bipolar transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147775A (en) * 1987-07-24 1992-09-15 Matsushita Electric Industrial Co., Ltd. Method of fabricating a high-frequency bipolar transistor
WO1989005041A1 (en) * 1987-11-23 1989-06-01 Hughes Aircraft Company Zener diode emulation and method of forming the same
US4910158A (en) * 1987-11-23 1990-03-20 Hughes Aircraft Company Zener diode emulation and method of forming the same

Similar Documents

Publication Publication Date Title
JPH0458703B2 (en)
JPH11243058A (en) Semiconductor device and manufacture thereof
JP2679333B2 (en) Schottky barrier junction gate type field effect transistor
JP3262056B2 (en) Bipolar transistor and manufacturing method thereof
US5381027A (en) Semiconductor device having a heterojunction and a two dimensional gas as an active layer
JP2553510B2 (en) Semiconductor device and manufacturing method thereof
JPS62117369A (en) Hetero junction bi-polar transistor
JPS61147577A (en) Complementary semiconductor device
JPS61276261A (en) Manufacture of high-speed bipolar transistor
JP2548801B2 (en) Field effect transistor and method of manufacturing the same
JPS63161677A (en) Field effect transistor
JPS59181060A (en) Semiconductor device
JPS61137364A (en) Semiconductor device
JP2770583B2 (en) Method of manufacturing collector-top heterojunction bipolar transistor
JPS63314866A (en) Bipolar transistor
JPS63156358A (en) Manufacture of bipolar compound semiconductor device
JPS62159464A (en) Manufacture of compound semiconductor device
JPS61206263A (en) Hetero-bipolar type semiconductor device
JP2834172B2 (en) Field effect transistor
JP2541280B2 (en) Semiconductor device
JPH0460340B2 (en)
JPH01194469A (en) Compound semiconductor device
JP2570770B2 (en) Bipolar transistor
JP2504767B2 (en) Method of manufacturing heterojunction bipolar transistor
JPS63158A (en) Manufacture of bipolar compound semiconductor device