JPS6211580B2 - - Google Patents

Info

Publication number
JPS6211580B2
JPS6211580B2 JP57011589A JP1158982A JPS6211580B2 JP S6211580 B2 JPS6211580 B2 JP S6211580B2 JP 57011589 A JP57011589 A JP 57011589A JP 1158982 A JP1158982 A JP 1158982A JP S6211580 B2 JPS6211580 B2 JP S6211580B2
Authority
JP
Japan
Prior art keywords
cyclodextrin
starch
present
sugar
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57011589A
Other languages
Japanese (ja)
Other versions
JPS58129952A (en
Inventor
Nobuyuki Nakamura
Masamitsu Matsuzawa
Shinji Nagatomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Maize Products Co Ltd
Original Assignee
Japan Maize Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Maize Products Co Ltd filed Critical Japan Maize Products Co Ltd
Priority to JP57011589A priority Critical patent/JPS58129952A/en
Publication of JPS58129952A publication Critical patent/JPS58129952A/en
Publication of JPS6211580B2 publication Critical patent/JPS6211580B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、グルコース、マルトース、オリゴ糖
及びデキストリンの還元生成物とシクロデキスト
リンとからなるシクロデキストリン含有澱粉糖還
元生成物を添加使用して各種飲食品を製造する方
法に関するものである。 一般に、飲食品製造に用いられる糖質甘味剤と
しては、砂糖、ぶどう糖、果糖、転化糖、麦芽
糖、キシロース、異性化糖、水飴;ソルビトー
ル、マルチトール、キシリツト、マンニトールな
どの糖アルコール;各種合成甘味料などが知られ
ている。 上記従来の糖質甘味料は主として砂糖を基準と
し、甘味性、吸湿性、結晶性等の改善に力が注が
れていた。しかしながら、近年の飲食品への嗜好
は、低甘味に移行し、又多種類の香料、色素が使
用されるようになつている。この様なことから従
来の糖質甘味料とは物性の異なる甘味料の要望が
強くなつている。 本発明は上記糖質甘味料とは趣を異にする新規
糖質を使用し、各種飲食品のもつ香料、色調を安
定に維持し、近年の低甘味嗜好に適応した各種飲
食品を安価に製造することを目的とするものであ
る。 本発明者らは上記目的に合致する糖質甘味料を
研究するに当り、シクロデキストリンのもつ独特
の性質に着目し種々検討を重ねた。シクロデキス
トリンは6〜12個のグルコース分子がα−1・4
−グルコシド結合で環状に結合した王冠状の構造
を有する非還元性デキストリンであり、工業的に
はグルコース6分子からなるα−シクロデキスト
リン、7分子からなるβ−シクロデキストリン、
8分子からなるγ−シクロデキストリンもしくは
これらの混合物が有用とされている。このシクロ
デキストリンは王冠状の構造を呈するためその分
子内部に空洞が存在する。そして、この空洞内は
疎水的雰囲気であり、分子外側は親水性を示すた
め、その分子空洞内に疎水性あるいは親油性物質
もしくはこれらの官能基を取りこみ包接化合物を
形成する能力を有している。この様にシクロデキ
ストリンには独特の性質があることから、医薬、
農薬、化粧品の分野で利用されつつあるが、食品
分野においては経済的な問題(コスト高)から利
用が制限されていた。 そこで最近、比較的低コストで生産が可能な
α・β・γ−各シクロデキストリンと非環状の澱
粉分解物とが混在したシクロデキストリン含有澱
粉糖化物を食品分野において利用することが種々
検討されている。この様なシクロデキストリンを
含有する澱粉糖化物の製造は例えば特開昭53−
52693号公報、特開昭55−19013号公報等に開示さ
れている。 しかしながら、この様なシクロデキストリンを
含有する澱粉糖化物においては、シクロデキスト
リン以外に高分子のデキストリンが多量に存在す
るため、包接力に優れているという特性を有する
反応、(a)老化しやすく容易に白濁固化する、(b)微
生物の汚染を受けやすい、(c)粘度が高く取り扱い
及び使用が困難である、等の欠点がある。この欠
点を解消するためには、シクロデキストリンを実
質的に分解せず、残余のデキストリンをグルコー
ス、マルトース、オリゴ糖に分解し得るグルコア
ミラーゼ、β−アミラーゼ、プルラナーゼ、α−
アミラーゼなどでシクロデキストリン以外のデキ
ストリンを低重合糖に分解することが考えられ
る。しかし、この様に調製されたシクロデキスト
リンを含有する澱粉糖化物においても、上記欠点
は改良されるが、必然的に還元性糖質の含量が多
くなるため、分解度にしたがい甘味を増し加熱工
程を有する食品製造に使用した場合には着色が著
しくなるという新たな欠点が生ずる。以上の様
に、従来のシクロデキストリンを含有する澱粉糖
化物を食品製造分野に使用するには隘路があつ
た。 本発明者らは、シクロデキストリンを含有する
澱粉糖化物について上記欠点を解消し、シクロデ
キストリンの独特な性質(包接力)を有効に発揮
し得るものが得られれば飲食品の品質改良剤とし
て広く利用することができると考えた。そこで、
上記目的をもつて鋭意研究した結果、シクロデキ
ストリンとグルコース、マルトース、オリゴ糖と
からなる澱粉糖化液を高圧下で該糖化液中のシク
ロデキストリンを分解することなく、残余のグル
コース、マルトース、オリゴ糖のみを接触還元し
て得られた澱粉糖還元生成物が上記欠点を解消
し、これが本発明の目的である各種飲食品の製造
に適用し得ることを見い出し、本発明を完成し
た。 すなわち、本発明は各種飲食品の製造に際し、
グルコース、マルトース、オリゴ糖及びデキスト
リンの還元生成物とシクロデキストリンとからな
るシクロデキストリン含有澱粉糖還元生成物を添
加使用することを特徴とする飲食品の製造方法で
ある。本発明に使用されるシクロデキストリン含
有澱粉糖還元生成物は本発明者らが新たに開発し
た糖質である。この糖質を経済的有利に得るため
には、まずシクロデキストリンとグルコース、マ
ルトース、オリゴ糖とからなる澱粉糖化液を調製
し、次いでこの澱粉糖化液を触媒の存在下で高圧
水素添加することにより、澱粉糖化液中のシクロ
デキストリンを分解することなく残余のグルコー
ス、マルトース、オリゴ糖のみが接触還元された
目的とする糖質が得られる。 次にこの新糖質の調製法につき詳しく述べる
と、シクロデキストリンとグルコース、マルトー
ス、オリゴ糖及びデキストリンとからなる澱粉糖
化液を調製するには、例えば、濃度2〜40%の澱
粉懸濁液を常法により加熱撹拌して得られた澱粉
糊液又は澱粉懸濁液に液化酵素例えばα−アミラ
ーゼを添加し加熱処理して得られた澱粉液化液
に、シクロデキストリン生成酵素(以下CGTase
という)を作用させることによりシクロデキスト
リン含有澱粉分解物が得られる。ここで澱粉とし
ては、コンスターチ、小麦澱粉等の地上澱粉類、
馬鈴薯澱粉、タピオカ澱粉等の地下澱粉類及びこ
れら澱粉類を含有する穀粉等のいずれでも使用が
可能である。又、CGTaseとしては、例えばバチ
ルス・マセランス、バチルス・サーキユランス、
好アルカリ性バチルス、クレブシエラ・ニユーモ
ニエその他の微生物から得られる公知の酵素が用
いられ、作用条件は各酵素の有する至適PH及び温
度範囲により適宜決定される。 次に、上記の如くして得られたシクロデキスト
リン含有澱粉分解物に糖化酵素を作用させること
により、シクロデキストリンとグルコース、マル
トース、オリゴ糖等の低重合度の還元糖とを主成
分とする糖液を得る。ここで使用される糖化酵素
は、α−、β−、γ−各シクロデキストリンのい
ずれをも実質的に分解せず、糖液中の残余の直鎖
又は分岐鎖デキストリンのみをグルコース、マル
トース等の還元糖に分解し得る糖化酵素を使用す
ることにより、α−、β−、γ−シクロデキスト
リンと還元糖とからなる糖液が得られる。この様
な糖化酵素としては、例えばα−アミラーゼ、グ
ルコアミラーゼ、β−アミラーゼ、α−1・6−
グルコシダーゼ等が挙げられる。 上記の如くして、シクロデキストリンとグルコ
ース、マルトース、オリゴ糖からなる澱粉糖化液
が得られるが、本発明においては該澱粉糖化液中
のシクロデキストリン含有量及びDE(Dextrose
Equivalent)が一定の範囲にあることが望まし
い。すなわち、シクロデキストリンの含有量は澱
粉糖化液中の全固形分当り10〜75重量%、DEは
10〜85のそれぞれの範囲にあることが望ましい。
シクロデキストリンの含有量が10%以下では本化
合物の特性である諸物質への包接力が弱く、一方
75%以上では包接力は強いが、この様なシクロデ
キストリン高含有物を得るためには澱粉濃度を非
常に薄くしてCGTaseを作用させなければなら
ず、又この場合には製造過程でシクロデキストリ
ンの結晶が晶出するなど経済的及び技術的に問題
があり好ましくない。 シクロデキストリン含有澱粉糖化液のDEが10
以下であると該液の粘度が高く高濃度に濃縮する
ことができず、又高分子澱粉分解物の特徴である
老化が起り易く、この結果、商品のゲル化、白
濁、離水、微生物による腐敗が起り易くなるので
好ましくない。また、DEが85以上になると該液
の粘度が低下し、取扱いは非常に容易となり、微
生物による汚染も受け難くなるが、甘味度の上
昇、吸水性の増大をきたし、又粘度が低いため放
置中にシクロデキストリンが徐々に晶出し、さら
に熱等により着色する等の欠点があらわれるので
好ましくない。 次に、本発明においては、上記調製したシクロ
デキストリン含有澱粉糖化液を高圧下水素還元す
ることにより、シクロデキストリンを分解するこ
となく残余のグルコース、マルトース、オリゴ糖
等の低重合糖のみを還元することにより、本発明
の目的とするシクロデキストリン含有澱粉糖還元
生成物が得られる。糖化液の水素還元は公知の方
法を採用することができる。例えば、シクロデキ
ストリン含有糖化液を40〜60%水溶液として、ラ
ネーニツケル、ニツケルけい藻土、ギ酸ニツケル
等の触媒を該糖液に対して8〜10%使用し、温度
100〜150℃、圧力50〜200Kg/cm2にて数時間接触
還元反応を行なう。 以上の如くして得られた新糖質と従来のシクロ
デキストリン含有澱粉糖質との物性を比較するた
め、次のような試験を行なつた。 <試験サンプルの調製> 15%(w/v)馬鈴薯澱粉水懸濁液500(固
形分75Kg)に水酸化カルシウムを加えてPH6.5に
調整した後、75gの液化型α−アミラーゼ(商品
名クライスターゼL−1、10000単位/g、大和
化成工業(株)製)を添加し、90〜100℃に加熱昇温
してDE1.5まで液化した。引きつづきこの液化液
を130℃、20分間加熱してα−アミラーゼを失活
させた後、ただちに60〜65℃に冷却した。この冷
却液に250gの好アルカリ性細菌バチルスNo.38
−2菌の生産したCGTase(30000単位/g、名
糖産業(株)製)を添加してシクロデキストリン生成
反応を行なわしめ、その過程でシクロデキストリ
ン含有量が20%、60%の時点で各々200づつサ
ンプルを採取し、直ちに加熱して残存する
CGTaseを失活させた。 この2種類のサンプルを80℃に冷却した後、さ
らに各サンプルを二分し、それぞれにグルコアミ
ラーゼ(3400単位/g、商品名グルクザイムスペ
シヤル、天野製薬(株)製)を添加してDE15とDE35
に加水分解した後、各サンプルを活性炭素・イオ
ン交換樹脂で精製し、濃度70%になるまで濃縮し
て4種類の対照サンプル(No.1〜4)を調製し
た。次にこの4種類のサンプルをそれぞれ二等分
し、一方を50%の水溶液に調製した後、ラネーニ
ツケルを該糖液に対して4%加え、オートクレー
ブ中で温度130℃、圧力100Kg/cm2にて2時間水素
接触還元させた後、触媒を除き、脱色・脱イオン
精製を行ない、濃度70%になるまで濃縮して4種
類の本発明によるサンプル(No.5〜8)を調製
した。 上記調製したそれぞれのサンプル(No.1〜
8)につき粘度、甘味度、安定性の試験を行なつ
た。結果は第1表の通りであつた。各試験は次の
方法で行なつた。 シクロデキストリンの含有量:アクリロニトリ
ル/水=65:35を展開溶媒とする高速液体クロ
マトグラフ法で測定。 DE:還元糖をウイルシユテツター・シユーデル
法で測定し、全固型分に対する還元糖の割合を
もつてDEとする。 粘度:70%(w/v)溶液を調整し、20℃でBM
型回転粘度計を用いて測定。 甘味度:30%(w/v)溶液を調製し、30%
(w/v)蔗糖溶液に対する相対甘味度を官能
検査で測定。 安定性:70%(w/v)溶液を調製し、20℃で1
週間放置した後、結晶析出、濁りの生成を観察
して、なしを−、曇りありを±、析出、濁りあ
りを+で示す。
The present invention relates to a method for producing various foods and drinks by adding and using a cyclodextrin-containing starch sugar reduction product consisting of a reduction product of glucose, maltose, oligosaccharides, and dextrin, and cyclodextrin. In general, carbohydrate sweeteners used in food and beverage manufacturing include sugar, glucose, fructose, invert sugar, maltose, xylose, high fructose sugar syrup, starch syrup; sugar alcohols such as sorbitol, maltitol, xylitol, and mannitol; various synthetic sweeteners. Fees are known. The conventional carbohydrate sweeteners mentioned above are mainly based on sugar, and efforts have been focused on improving sweetness, hygroscopicity, crystallinity, etc. However, in recent years, tastes in foods and beverages have shifted to less sweet flavors, and a wide variety of flavorings and colorants have come to be used. For these reasons, there is a strong demand for sweeteners with physical properties different from conventional carbohydrate sweeteners. The present invention uses a new carbohydrate that is different from the above-mentioned carbohydrate sweeteners, stably maintains the flavor and color tone of various foods and beverages, and makes various foods and beverages that are compatible with the recent preference for low sweetness at low cost. The purpose is to manufacture. In researching carbohydrate sweeteners that meet the above objectives, the present inventors focused on the unique properties of cyclodextrin and conducted various studies. Cyclodextrin has 6 to 12 glucose molecules α-1.4
- It is a non-reducing dextrin with a crown-shaped structure connected in a ring with glucoside bonds, and industrially it is α-cyclodextrin consisting of 6 glucose molecules, β-cyclodextrin consisting of 7 molecules,
γ-cyclodextrin consisting of 8 molecules or a mixture thereof is said to be useful. This cyclodextrin has a crown-like structure, so there is a cavity inside the molecule. The inside of this cavity is a hydrophobic atmosphere, and the outside of the molecule is hydrophilic, so it has the ability to incorporate hydrophobic or lipophilic substances or their functional groups into the molecule cavity to form clathrate compounds. There is. Because cyclodextrin has such unique properties, it is used in medicine,
Although it is being used in the fields of agricultural chemicals and cosmetics, its use in the food field has been limited due to economic problems (high cost). Recently, various studies have been conducted on the use of cyclodextrin-containing starch saccharified products, which are a mixture of α, β, and γ-cyclodextrins and acyclic starch decomposition products, which can be produced at relatively low cost, in the food field. There is. The production of starch saccharified products containing such cyclodextrin is described, for example, in JP-A-53-
It is disclosed in Publication No. 52693, Japanese Unexamined Patent Publication No. 1988-19013, etc. However, in starch saccharified products containing cyclodextrin, since there is a large amount of polymer dextrin in addition to cyclodextrin, reactions with excellent inclusion power, (a) easy aging and Disadvantages include: (b) being susceptible to microbial contamination; and (c) being difficult to handle and use due to its high viscosity. In order to overcome this drawback, glucoamylase, β-amylase, pullulanase, α-
It is possible that dextrins other than cyclodextrin are decomposed into low polymerized sugars using amylase or the like. However, even in starch saccharified products containing cyclodextrin prepared in this way, although the above-mentioned drawbacks are improved, the content of reducing carbohydrates inevitably increases, so the sweetness increases according to the degree of decomposition, and the heating process When used in the production of food products containing the following, a new drawback arises: significant discoloration. As described above, there have been obstacles in using conventional saccharified starch containing cyclodextrin in the food manufacturing field. The present inventors believe that if a starch saccharified product containing cyclodextrin can eliminate the above-mentioned drawbacks and effectively exhibit the unique properties (inclusion power) of cyclodextrin, it will be widely used as a quality improving agent for food and beverages. I thought it could be used. Therefore,
As a result of intensive research with the above purpose in mind, it was found that a starch saccharification solution consisting of cyclodextrin, glucose, maltose, and oligosaccharides was processed under high pressure without decomposing the cyclodextrin in the saccharification solution, and the remaining glucose, maltose, and oligosaccharides were removed. The present invention was completed based on the discovery that a starch-sugar reduction product obtained by catalytic reduction of only starch sugars overcomes the above-mentioned drawbacks and can be applied to the production of various food and drink products, which is the object of the present invention. That is, the present invention, when manufacturing various food and drink products,
This is a method for producing a food or drink product characterized by adding and using a cyclodextrin-containing starch sugar reduction product consisting of a reduction product of glucose, maltose, oligosaccharide, and dextrin and cyclodextrin. The cyclodextrin-containing starch sugar reduction product used in the present invention is a carbohydrate newly developed by the present inventors. In order to economically obtain this carbohydrate, a starch saccharification solution consisting of cyclodextrin, glucose, maltose, and oligosaccharides is first prepared, and then this starch saccharification solution is subjected to high-pressure hydrogenation in the presence of a catalyst. , the desired carbohydrate is obtained in which only the remaining glucose, maltose, and oligosaccharides are catalytically reduced without decomposing the cyclodextrin in the starch saccharification solution. Next, to explain in detail the method for preparing this new carbohydrate, in order to prepare a starch saccharification solution consisting of cyclodextrin, glucose, maltose, oligosaccharide, and dextrin, for example, a starch suspension with a concentration of 2 to 40% is prepared. A liquefaction enzyme such as α-amylase is added to a starch paste solution or starch suspension obtained by heating and stirring in a conventional manner, and a cyclodextrin-producing enzyme (hereinafter referred to as CGTase) is added to the starch liquefaction obtained by heat treatment.
A cyclodextrin-containing starch decomposition product can be obtained. Here, starches include ground starches such as cornstarch and wheat starch,
Any of underground starches such as potato starch and tapioca starch, and flour containing these starches can be used. In addition, examples of CGTase include Bacillus macerans, Bacillus circulans,
Known enzymes obtained from alkaliphilic Bacillus, Klebsiella pneumoniae and other microorganisms are used, and the operating conditions are appropriately determined depending on the optimum pH and temperature range of each enzyme. Next, by allowing a saccharifying enzyme to act on the cyclodextrin-containing starch decomposition product obtained as described above, a saccharide containing cyclodextrin and reducing sugars with a low degree of polymerization such as glucose, maltose, and oligosaccharides as main components is produced. Get the liquid. The saccharifying enzyme used here does not substantially degrade any of the α-, β-, and γ-cyclodextrins, and only converts the remaining linear or branched chain dextrins in the sugar solution into glucose, maltose, etc. By using a saccharifying enzyme that can be decomposed into reducing sugars, a sugar solution consisting of α-, β-, and γ-cyclodextrins and reducing sugars can be obtained. Examples of such saccharifying enzymes include α-amylase, glucoamylase, β-amylase, α-1,6-
Examples include glucosidase. As described above, a starch saccharified solution consisting of cyclodextrin, glucose, maltose, and oligosaccharide is obtained.In the present invention, the cyclodextrin content and DE (Dextrose
Equivalent) is preferably within a certain range. That is, the content of cyclodextrin is 10 to 75% by weight based on the total solid content in the starch saccharification solution, and the DE is
It is desirable that each range is between 10 and 85.
When the cyclodextrin content is less than 10%, the inclusion power to various substances, which is a characteristic of this compound, is weak;
At 75% or more, the inclusion force is strong, but in order to obtain such a high cyclodextrin content, it is necessary to make the starch concentration very dilute and allow CGTase to act. This is not preferable because it causes economical and technical problems such as the crystallization of crystals. DE of starch saccharification solution containing cyclodextrin is 10
If it is below, the viscosity of the liquid is high and it cannot be concentrated to a high concentration, and aging, which is a characteristic of polymer starch decomposition products, is likely to occur, resulting in product gelation, cloudiness, syneresis, and spoilage due to microorganisms. This is not preferable because it can easily occur. In addition, when the DE is 85 or higher, the viscosity of the liquid decreases, making it very easy to handle and less susceptible to contamination by microorganisms, but the sweetness increases, water absorption increases, and the viscosity is low, so it is left untreated. This is not preferable since cyclodextrin gradually crystallizes therein, and further disadvantages arise such as coloring due to heat or the like. Next, in the present invention, the cyclodextrin-containing starch saccharified solution prepared above is reduced with hydrogen under high pressure to reduce only the remaining low polymerized sugars such as glucose, maltose, and oligosaccharides without decomposing the cyclodextrin. As a result, a cyclodextrin-containing starch sugar reduction product, which is the object of the present invention, can be obtained. A known method can be used for hydrogen reduction of the saccharified liquid. For example, a cyclodextrin-containing saccharification solution is made into a 40 to 60% aqueous solution, a catalyst such as Raney nickel, diatomaceous earth, or nickel formate is used at 8 to 10% of the sugar solution, and the temperature
The catalytic reduction reaction is carried out at 100-150°C and a pressure of 50-200 Kg/cm 2 for several hours. In order to compare the physical properties of the new saccharide obtained as described above and the conventional starch saccharide containing cyclodextrin, the following test was conducted. <Preparation of test sample> Calcium hydroxide was added to a 15% (w/v) potato starch aqueous suspension 500 (solid content 75 kg) to adjust the pH to 6.5, and then 75 g of liquefied α-amylase (trade name) Clystase L-1, 10,000 units/g, manufactured by Daiwa Kasei Kogyo Co., Ltd.) was added, and the mixture was heated to 90 to 100° C. and liquefied to a DE of 1.5. Subsequently, this liquefied liquid was heated at 130°C for 20 minutes to inactivate α-amylase, and then immediately cooled to 60-65°C. Add 250g of alkaliphilic bacteria Bacillus No. 38 to this coolant.
CGTase (30,000 units/g, manufactured by Meito Sangyo Co., Ltd.) produced by the -2 bacteria was added to carry out a cyclodextrin production reaction, and during the process, when the cyclodextrin content reached 20% and 60%, respectively. Take 200 samples and immediately heat them to make them remain
CGTase was inactivated. After cooling these two types of samples to 80°C, each sample was further divided into two parts, and glucoamylase (3400 units/g, trade name Gluczyme Special, manufactured by Amano Pharmaceutical Co., Ltd.) was added to each sample to give DE15 and DE35.
After hydrolysis, each sample was purified with activated carbon/ion exchange resin and concentrated to a concentration of 70% to prepare four control samples (Nos. 1 to 4). Next, each of these four types of samples was divided into two equal parts, one was prepared as a 50% aqueous solution, 4% of Raney nickel was added to the sugar solution, and the temperature was 130℃ and the pressure was 100Kg/cm 2 in an autoclave. After hydrogen catalytic reduction for 2 hours, the catalyst was removed, decolorized and deionized, and concentrated to a concentration of 70% to prepare four types of samples (Nos. 5 to 8) according to the present invention. Each sample prepared above (No.1~
8) was tested for viscosity, sweetness, and stability. The results were as shown in Table 1. Each test was conducted in the following manner. Cyclodextrin content: Measured by high performance liquid chromatography using acrylonitrile/water = 65:35 as the developing solvent. DE: Reducing sugars are measured by the Willschutester-Schudel method, and the ratio of reducing sugars to the total solid content is defined as DE. Viscosity: Prepare 70% (w/v) solution and BM at 20℃
Measured using a rotary viscometer. Sweetness level: 30% (w/v) Prepare a solution, 30%
(w/v) Relative sweetness to sucrose solution was measured by sensory test. Stability: Prepare a 70% (w/v) solution and store at 20°C for 1
After standing for a week, the formation of crystal precipitation and turbidity was observed, and none was indicated by -, cloudy was indicated by ±, and precipitation and turbidity was indicated by +.

【表】 第1表から明らかな如く、本発明に使用する新
糖質は対照の従来知られているシクロデキストリ
ン含有澱粉糖質に比し、 (a) 粘度が低下するため作業上取扱いが容易であ
る、 (b) 甘味度が低下するため低甘味嗜好の飲食品製
造に有効である、 (c) 安定性が良好である、 (d) 老化し難く、微生物による汚染を受けにく
い、 (e) 高温加熱で着色傾向が少ない、 等の利点を有するため、これを飲食品製造に添加
使用した場合には、シクロデキストリンの有する
独特な性質と他の糖組成とが調和し、次の様な効
果を発揮する。 (1) 飲食品の香味、香辛味、色調を安定に維持す
ることができ、異味のマスキング作用をはた
す。 (2) 糖質の粘度が低いため取扱いが容易で作業性
が改善される。 (3) 製品に適度の保水性を与える。 (4) 高濃度でも甘味性がまろやかで、且つ甘味度
が低いので近年の飲食品への嗜好性にマツチす
る。 上記の如き利点を有するため、本発明は広い範
囲にわたる飲食品の製造に適用することができる
が、特に香味、色調の安定化が要求される飲食品
の製造に適している。 以下、実施例をもつてさらに本発明を説明す
る。なお、実施例で使用するシクロデキストリン
含有澱粉糖還元生成物(以下「本発明糖質」とい
う)及びシクロデキストリン含有澱粉糖(以下
「比較糖質」という)は、前記試験例で調製した
サンプル(No.1〜8)と同等品を使用した。 実施例 1 (草もち) 上新粉2.2Kgに湯1.8を加え混練した後、セイ
ロで蒸し上げ生地をつくつた。これに生よもぎ30
gと本発明糖質(サンプルNo.6同等品)30g、
さらに砂糖100gを加えて再度蒸した後、臼で搗
き上げ草もちを製造した。 対照品として、本発明糖質を添加しないもの、
比較品として本発明糖質に代えて比較糖質(サン
プルNo.2同等品)を使用したものを上記と同様
にして製造し、香り、色調、放置後の状態につい
て本発明品と比較した。結果は下記の通りであ
る。
[Table] As is clear from Table 1, the new saccharide used in the present invention has (a) lower viscosity and is easier to handle than the conventionally known control starch saccharide containing cyclodextrin; (b) It is effective in producing foods and beverages for people with low sweetness preferences because it reduces sweetness; (c) It has good stability; (d) It is difficult to age and is not susceptible to contamination by microorganisms; (e ) It has advantages such as less tendency to color when heated at high temperatures, so when it is added to the production of food and drink products, the unique properties of cyclodextrin and other sugar compositions are harmonized, resulting in the following: be effective. (1) It can stably maintain the flavor, spiciness, and color tone of food and drink products, and it acts as a mask for off-flavors. (2) The low viscosity of carbohydrates makes handling easier and improves workability. (3) Give the product appropriate water retention. (4) It has a mellow sweetness even at high concentrations, and has a low degree of sweetness, so it matches the palatability of recent food and beverages. Because of the advantages described above, the present invention can be applied to the production of a wide range of food and drink products, but is particularly suitable for the production of food and drink products that require stabilization of flavor and color tone. The present invention will be further explained below with reference to Examples. Note that the cyclodextrin-containing starch sugar reduction products (hereinafter referred to as "inventive carbohydrates") and cyclodextrin-containing starch sugars (hereinafter referred to as "comparative carbohydrates") used in the examples were the samples prepared in the test examples ( Products equivalent to Nos. 1 to 8) were used. Example 1 (Kusamochi) 2.2 kg of Joshin flour was added to 1.8 kg of hot water, kneaded, and then steamed in a steamer to make dough. Add 30 pieces of fresh mugwort to this
g and 30 g of the present invention carbohydrate (equivalent to sample No. 6),
After adding 100g of sugar and steaming again, the mixture was pounded with a mortar to produce Kusamochi. As a control product, one without added sugar of the present invention,
A comparative product using a comparison carbohydrate (equivalent to sample No. 2) in place of the present invention carbohydrate was produced in the same manner as above, and compared with the present invention product in terms of aroma, color tone, and condition after standing. The results are as follows.

【表】 本発明品は対照品及び比較品に比し総合的にみ
て優れている。したがつて、本発明は各種もち菓
子の製造に有効に利用できることが分る。 実施例 2 (練りようかん) 寒天27gに700mlの水を加えて加熱沸騰させた
後、砂糖1500gを添加し、加熱して煮つめた。温
度が105℃になつた時、白あん1500gと緑色天然
色素をとかした本発明糖質(サンプルNo.5同等
品)20gを加え、充分に混練した。ついで、これ
を金ワクに流し込み冷却して練ようかんを得た。 実施例1の場合と同様に対照品、比較品(サン
プルNo.1同等品を使用)を製造し比較したとこ
ろ、香り、色調、放置後の状態を総合的にみて本
発明品がまさつていた。したがつて、本発明品は
あん、ジヤム、マーマレイド、ゼリー等及びこれ
を使用した各種飲食品の製造に有効に使用するこ
とができる。 実施例 3 (ハードキヤンデー) マルトース高含有糖液(固型分当りマルトース
72%、オリゴ糖5%、グルコース3%)50部と本
発明糖質(サンプルNo.6同等品)50部に少量の
香料を添加混合し、水分が約2%になるまで常圧
で155℃まで煮つめた後、常法通り成型し、冷却
してハードキヤンデーを製造した。 対照品として本発明糖質を添加しないもの、比
較品として本発明糖質に代え比較糖質(サンプル
No.2同等品)を使用したもの及び砂糖と酵素糖
化水飴(市販品、DE40、糖組成:マルトース52
%、オリゴ糖45%、グルコース3%)を7:3の
比率で混合した糖液を使用したものを上記と同様
にして製造し、包装性(付着性)、透明性及び風
味について試験を行なつた。結果は次の通りであ
る。
[Table] The product of the present invention is superior overall to the control and comparative products. Therefore, it can be seen that the present invention can be effectively used in the production of various sticky sweets. Example 2 (Kneaded Yokan) After adding 700 ml of water to 27 g of agar and boiling it, 1500 g of sugar was added, and the mixture was heated and boiled. When the temperature reached 105°C, 1500 g of white bean paste and 20 g of the saccharide of the present invention (equivalent to sample No. 5) containing dissolved green natural pigment were added and thoroughly kneaded. Next, this was poured into a metal mold and cooled to obtain a dough. In the same manner as in Example 1, a control product and a comparative product (using a product equivalent to sample No. 1) were produced and compared, and the product of the present invention was superior in overall terms of aroma, color tone, and condition after being left unused. Ta. Therefore, the product of the present invention can be effectively used in the production of bean paste, jam, marmalade, jelly, etc., and various food and drink products using the same. Example 3 (Hard candy) High maltose-containing sugar solution (maltose per solid content)
72% oligosaccharide, 5% oligosaccharide, glucose 3%) and 50 parts of the inventive saccharide (equivalent to sample No. 6) were mixed with a small amount of fragrance, and the mixture was heated to 155% at normal pressure until the water content was about 2%. After boiling down to ℃, it was molded in a conventional manner and cooled to produce a hard candy. As a control product, the carbohydrate of the present invention was not added, and as a comparative product, the carbohydrate of the present invention was replaced with a comparative carbohydrate (sample).
No. 2 equivalent product) and sugar and enzyme saccharified starch syrup (commercial product, DE40, sugar composition: maltose 52
%, oligosaccharide 45%, and glucose 3%) in a ratio of 7:3 was produced in the same manner as above, and tested for packaging properties (adhesiveness), transparency, and flavor. Summer. The results are as follows.

【表】 実施例 4 (スポンジケーキ) 本発明糖質を下記配合で混合し、泡だてを行な
い比重0.5となしたものを容器に移し、ガスオー
ブンで焙焼(200℃)してスポンジケーキをつく
つた。 小麦粉 100部 砂 糖 50部 タマゴ 110部 本発明糖質(サンプルNo.6同等品) 50部 本発明によるスポンジケーキは巣だち、キメが
良好で、色調(卵黄色)も鮮かであつた。又風味
の点でも甘味が適度に抑えられた好ましいもので
あつた。 実施例 5 (ホイツプクリーム) 生クリーム1800mlに本発明糖質(サンプル
No.5同等品)50gを加え、ホイツパーで泡だて
た後、上白糖400gを加え、更に泡だて、これに
レモンエツセンスを少量添加してホイツプクリー
ムをつくつた。同品をスポンジケーキ上に絞り出
し、冷蔵庫中で1ケ月貯蔵し観察したが、香り、
色調ともに良好であつた。 実施例 6 (チヨコレート) 本発明糖質(サンプルNo.6同等品)50部と粉
糖50部とを混合したものを用い、以下の配合で常
法によりチヨコレートをつくつた。 市販カカオマス 50部 市販カカオバター 50部 シヨートニング 10部 粉 糖 50部 本発明糖質 50部 本発明によるチヨコレートは香り、色調とも良
好で、風味も甘味が適度に抑えられた好ましいも
のであつた。 実施例 7 (シヤーベツト) 本発明糖質の20%溶液に下記配合でグラニユ
糖、レモンの皮を入れて加熱し、これに予めゼラ
チン3部を15部の水に入れてやわらかくしたもの
を加えてとかし、一度こしてレモン汁を加えてさ
まし、金属製のバツトに流し冷凍室に入れてレモ
ンシヤーベツトを作つた。 粉末ゼラチン 3部 水 15部 グラニユー糖 25部 レモンの皮 15部 レモン絞り汁 30部 本発明糖質20%溶液 200部 本発明によるシヤーベツトは香り、色調とも良
好であつた。 実施例 8 (粉末野菜ジユース) ねぎのしぼり汁1にDE10のデキストリン30
gと本発明糖質(サンプルNo.7同等品)30gを
加え、50℃で混合した後、スプレードライヤーで
乾燥して粉末ジユースをつくつた。この粉末ジユ
ースは香りがよく、吸湿がほとんどなく良好なも
のであつた。 本発明糖質は粉末化基材として有効にはたらく
ため、本発明によれば各種の野菜・果実ジユース
の香気を安定に保ちながら粉末化することができ
る。 実施例 9 (粉末スープ) 下記配合によりビーフ味粉末スープをつくつ
た。 食 塩 100部 粉末しよう油 100部 グルタミン酸ソーダ 180部 ビーフエキスパウダー 100部 本発明糖質(サンプルNo.6同等品) 50部 上記により得られた粉末スープと本発明糖質を
添加しないほかは上記配合と全く同様にしてつく
つた粉末スープとを、それぞれ98℃の熱湯に溶解
してスープとし、28名のパネルに試食させて下記
質問項目について好ましさの比較を行なつた。結
果は次の通りである。
[Table] Example 4 (Sponge cake) The saccharide of the present invention was mixed with the following composition, whisked to a specific gravity of 0.5, transferred to a container, roasted in a gas oven (200°C), and made into a sponge cake. I made it. Flour: 100 parts Sugar: 50 parts Egg: 110 parts Carbohydrate according to the invention (equivalent to sample No. 6) 50 parts The sponge cake according to the invention had good nests, texture, and bright color (egg yellow). . Also, in terms of flavor, the sweetness was moderately suppressed and was favorable. Example 5 (Whipped cream) The carbohydrate of the present invention (sample) was added to 1800ml of fresh cream.
After adding 50g of No. 5 (equivalent product) and whipping with a whipper, 400g of caster sugar was added and further whipped, and a small amount of lemon essence was added to this to make whipped cream. The same product was squeezed onto a sponge cake, stored in the refrigerator for one month, and observed.
Both color tones were good. Example 6 (Thyokolate) Thiyocolate was prepared using a mixture of 50 parts of the saccharide of the present invention (equivalent to sample No. 6) and 50 parts of powdered sugar according to the conventional method using the following formulation. Commercially available cacao mass 50 parts Commercially available cacao butter 50 parts Shot toning 10 parts Powdered sugar 50 parts Carbohydrate of the present invention 50 parts The thiokolate according to the present invention had good aroma and color tone, and was preferable with moderately suppressed flavor and sweetness. Example 7 (Sheavet) Granulated sugar and lemon peel were added to a 20% solution of the carbohydrate of the present invention in the following formulation and heated, and to this was added 3 parts of gelatin previously softened in 15 parts of water. I combed it, strained it once, added lemon juice to cool it, poured it into a metal bucket and put it in the freezer to make lemon shearbet. Powdered gelatin 3 parts Water 15 parts Granulated sugar 25 parts Lemon peel 15 parts Lemon juice 30 parts Inventive carbohydrate 20% solution 200 parts The sheave bet according to the invention had good aroma and color. Example 8 (Powdered vegetable juice) 1 part green onion juice and 30 parts DE10 dextrin
g and 30 g of the saccharide of the present invention (equivalent to sample No. 7) were added, mixed at 50° C., and dried with a spray dryer to produce powdered juice. This powdered youth had a good aroma and almost no moisture absorption. Since the saccharide of the present invention effectively functions as a powdering base material, according to the present invention, various vegetables and fruit juices can be powdered while stably maintaining their aroma. Example 9 (Powdered soup) A beef-flavored powdered soup was prepared using the following formulation. Salt 100 parts Powdered soybean oil 100 parts Sodium glutamate 180 parts Beef extract powder 100 parts Invention carbohydrate (equivalent to sample No. 6) 50 parts The powdered soup obtained above and the above combination except that the invention carbohydrate was not added. and a powdered soup prepared in exactly the same manner as above were each dissolved in boiling water at 98°C to make a soup, and a panel of 28 people tasted the soup and compared their desirability with respect to the following questions. The results are as follows.

【表】 上表から、二点比較法(両側検定)のための検
定表によりn=28の場合、有意水準αが5%、1
%及び0.1%に対する限界値は、それぞれ20、
22、23である。より多く選ばれた回数をこれらと
比較すると、風味の好ましさについては、有意水
準5%で本発明品の方が好まれ、牛肉の香気をよ
りもつ方については、有意水準1%で本発明品の
方が優れているとみなされる。 実施例 10 (うなぎ蒲焼用のタレ) 下記配合により、うなぎ蒲焼用のタレをつくつ
た。 うなぎエキス 1部 しよう油 100部 砂 糖 50部 みりん 80部 本発明糖質(サンプルNo.5同等品) 50部 次に、うなぎの白焼に上記調味液をつけ、ガス
火の上で軽く焼き上げた後、これを更に調味液に
浸し、レトルトパウチ中に入れて脱気しつつシー
ルする。これを105℃、20分間殺菌した後、冷却
してインスタントうなぎ蒲焼を得た。 上記により得られたうなぎ蒲焼とは別に本発明
糖質を添加しない蒲焼をつくり、この2種類のう
なぎの蒲焼を28名のパネルに試食させ、下記項目
について好ましさの比較を行なつた。結果は次の
通りである。
[Table] From the table above, according to the test table for the two-point comparison method (two-sided test), when n = 28, the significance level α is 5%, 1
The limit values for % and 0.1% are 20, respectively.
22, 23. Comparing the number of times the product was chosen more frequently, the product of the present invention was preferred at a 5% significance level in terms of flavor preference, and the product with more beef flavor was preferred at a 1% significance level. Inventions are considered superior. Example 10 (Sauce for grilled eel) A sauce for grilled eel was made using the following formulation. Eel extract 1 part Soybean oil 100 parts Sugar 50 parts Mirin 80 parts Carbohydrate of the invention (equivalent to sample No. 5) 50 parts Next, the above seasoning liquid was applied to the grilled eel and it was lightly grilled on a gas fire. After that, it is further soaked in seasoning liquid, placed in a retort pouch, and sealed while deaerating. This was sterilized at 105°C for 20 minutes and then cooled to obtain instant eel kabayaki. Separately from the eel kabayaki obtained above, kabayaki without the sugar of the present invention was prepared, and 28 panelists tasted these two types of eel kabayaki to compare their desirability regarding the following items. The results are as follows.

【表】 実施例9及び本例の結果から明らかなように、
本発明においては各種飲食品の香気成分を安定に
維持することができる。
[Table] As is clear from the results of Example 9 and this example,
In the present invention, the aroma components of various food and drink products can be stably maintained.

Claims (1)

【特許請求の範囲】[Claims] 1 飲食品の製造に際し、グルコース、マルトー
ス、オリゴ糖及びデキストリンの還元生成物とシ
クロデキストリンとからなるシクロデキストリン
含有澱粉糖還元生成物を添加使用することを特徴
とする飲食品の製造法。
1. A method for producing food and drink products, which comprises adding and using a cyclodextrin-containing starch sugar reduction product consisting of a reduction product of glucose, maltose, oligosaccharides, and dextrin, and cyclodextrin.
JP57011589A 1982-01-29 1982-01-29 Preparation of food and drink Granted JPS58129952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011589A JPS58129952A (en) 1982-01-29 1982-01-29 Preparation of food and drink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011589A JPS58129952A (en) 1982-01-29 1982-01-29 Preparation of food and drink

Publications (2)

Publication Number Publication Date
JPS58129952A JPS58129952A (en) 1983-08-03
JPS6211580B2 true JPS6211580B2 (en) 1987-03-13

Family

ID=11782084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011589A Granted JPS58129952A (en) 1982-01-29 1982-01-29 Preparation of food and drink

Country Status (1)

Country Link
JP (1) JPS58129952A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094912A (en) * 1983-10-28 1985-05-28 Masashige Suzuki Agent for reducing neutral fat in body
JPS645453A (en) * 1987-06-26 1989-01-10 Showa Sangyo Co Candy
US20040180129A1 (en) * 2003-03-11 2004-09-16 Plank David W. Method of reducing acrylamide levels in food products and food intermediates and products and intermediates produced thereby

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124657A (en) * 1977-04-04 1978-10-31 Hayashibara Biochem Lab Production of candies

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124657A (en) * 1977-04-04 1978-10-31 Hayashibara Biochem Lab Production of candies

Also Published As

Publication number Publication date
JPS58129952A (en) 1983-08-03

Similar Documents

Publication Publication Date Title
US11572380B2 (en) Saccharide polycondensate, method for producing the same, and application therefor
US5219842A (en) Method of improving intestinal floras
JP4397965B1 (en) Novel branched glucan and production method and use thereof
JP3533239B2 (en) Maltohexaose / maltoheptaose-forming amylase, method for producing the same and use thereof
TWI265790B (en) Dehydrating agent and method for dehydrating moist article using the agent and dehydrated article obtained by the method
FR2499576A1 (en) MALTITOL ANHYDROUS CRYSTALS, STARCH HYDROLYSATE, HYDROGEN, CRYSTALLINE, CONTAINING SUCH CRYSTALS, AND METHODS FOR THEIR PREPARATION AND THEIR USE
US3705039A (en) Low calorie sweetener mixture of maltitol and maltotritol
DK160792B (en) SWEATER AND PROCEDURE FOR PREPARING THEREOF
GB2162524A (en) Crystalline maltose
JP2009112212A (en) Maltooligosaccharide composition
JP6962674B2 (en) Branched α-glucan mixture syrup and its uses
JP3100139B2 (en) Manufacturing method of food and drink
JP3659755B2 (en) Reduced indigestible chickenpox and food using the same
JP5255603B2 (en) Cyclic maltosyl maltose, cyclic maltosyl maltose producing enzyme, production method thereof and use
TW397840B (en) Crystalline maltotetraosyl glucoside, and its production and use
JP3142906B2 (en) Food and drink, taste, cosmetics and pharmaceuticals, and method for producing starch sugar-containing composition
JPS6211580B2 (en)
JP3678451B2 (en) Caries inhibitor, its production method and use
JP3020583B2 (en) Method for removing bitterness of β-glucooligosaccharide
JP7347924B2 (en) Confectionery containing indigestible glucan and its manufacturing method
JP3084637B2 (en) Reduced starch sugar composition, method for producing the same, and food and drink containing the composition
JP3678452B2 (en) Bifidobacteria growth promoter, its production method and use
KR102108426B1 (en) Hard candy containing malto oligosaccharides
JPH05328936A (en) Fermented seasoning
JPH04222586A (en) New vinegar