JPS62115742A - Adjusting method for semiconductor integrated circuit - Google Patents

Adjusting method for semiconductor integrated circuit

Info

Publication number
JPS62115742A
JPS62115742A JP25587985A JP25587985A JPS62115742A JP S62115742 A JPS62115742 A JP S62115742A JP 25587985 A JP25587985 A JP 25587985A JP 25587985 A JP25587985 A JP 25587985A JP S62115742 A JPS62115742 A JP S62115742A
Authority
JP
Japan
Prior art keywords
terminal
voltage
fuse
channel mos
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25587985A
Other languages
Japanese (ja)
Other versions
JPH0620100B2 (en
Inventor
Kazuo Ogasawara
和夫 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60255879A priority Critical patent/JPH0620100B2/en
Publication of JPS62115742A publication Critical patent/JPS62115742A/en
Publication of JPH0620100B2 publication Critical patent/JPH0620100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To cut a fuse stably without latching up a semiconductor integrated circuit by applying fuse cutting voltage, where a parasitic diode is brought to a non-conductive state, to a regulating terminal. CONSTITUTION:P channel MOS transistors 2 and 3 connected at a positive power terminal 1 constitute a current mirror circuit, and the threshold voltage of the P channel MOS transistor 2 and currents determined by the resistance value of a resistor 4 flow through the P channel MOS transistor 2. The P channel MOS transistor 3 functions as the current mirror circuit, and approximately the same currents flow through the transistor 3 when the size of channel regions in the transistors 2 and 3 is equalized. Since the resistance value of a fuse 6 takes approximately several hundred ohm even when it is large at the most, the voltage of a regulating terminal 5 is brought to approximately grounding potential. Voltage lower than grounding potential is applied to the regulating terminal 5 to cut the fuse 6. Accordingly, the regulating terminal 5 rises up to approximately positive supply voltage because the P channel MOS transistor 3 is conducted, and the fan-in level of an inverter 8 reaches a high level.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路の調整方法に関し、特にヒユー
ズを用いて調整する際にヒユーズ切断用の調整端子に印
加する電圧の極性を半導体集積回路を構成するMOSト
ランジスタの耐圧を考えて決定する半導体集積回路の調
整方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for adjusting a semiconductor integrated circuit, and in particular, when adjusting a semiconductor integrated circuit using a fuse, the polarity of the voltage applied to the adjustment terminal for cutting the fuse is adjusted to the semiconductor integrated circuit. The present invention relates to a method for adjusting a semiconductor integrated circuit, which is determined by considering the withstand voltage of MOS transistors constituting the circuit.

〔従来の技術〕[Conventional technology]

従来、半導体集積回路において基準電圧を精度良く実現
するため、高抵抗素子とヒーーズとを複数組用意し%選
択的にヒユーズに調整端子よりミ圧を印加し、過渡的高
温度によりヒユーズを切断することにより半導体集積回
路の調整を行り方法が一般的であった。この調整方法は
、例えば正電源に第1端子を接続した高抵抗素子と、高
抵抗素子の第2端子をヒユーズの第1端子および調整用
電圧全印加する調整端子に接続し、ヒユーズの第2端子
を接地する。このような構成とすることでヒユーズを切
断する前の高抵抗素子の第2端子とヒーーズの第1端子
の接続点は、ヒユーズの抵抗値が高抵抗素子の抵抗値と
比較して少さいため、論理低レベルと判断される。
Conventionally, in order to achieve a reference voltage with high accuracy in semiconductor integrated circuits, multiple sets of high resistance elements and heaters were prepared, pressure was selectively applied to the fuses from adjustment terminals, and the fuses were cut by transient high temperatures. Accordingly, it has been common to adjust semiconductor integrated circuits. In this adjustment method, for example, a high resistance element whose first terminal is connected to a positive power supply, a second terminal of the high resistance element is connected to the first terminal of a fuse and an adjustment terminal to which the entire adjustment voltage is applied, and the second terminal of the fuse is Ground the terminal. With this configuration, the connection point between the second terminal of the high-resistance element and the first terminal of the fuse before cutting the fuse is connected because the resistance value of the fuse is small compared to the resistance value of the high-resistance element. , is determined to be a logical low level.

一方このような高抵抗素子とヒーーズにより実現された
調整回路においてヒユーズが切断された後は高抵抗素子
を介して接続点は正電源の電圧値まで引上げられる。こ
のため接続点は論理高レベルと判断される。
On the other hand, in an adjustment circuit realized by such a high resistance element and a fuse, after the fuse is cut, the voltage at the connection point is pulled up to the voltage of the positive power supply via the high resistance element. Therefore, the connection point is determined to be at a logic high level.

このような高抵抗素子としては、例えば正電源側に接続
される例としては、正電源にソース端子を接続し、ゲー
ト端子を任意の直流電圧値に接続し、ドレイン端子をヒ
ユーズに接続したPチャネルMO8)ランジスタによル
実現することが多い。
An example of such a high resistance element connected to the positive power supply side is a P element whose source terminal is connected to the positive power supply, whose gate terminal is connected to an arbitrary DC voltage value, and whose drain terminal is connected to a fuse. Channel MO8) It is often realized by a transistor.

また接地側に高抵抗素子が接続される例としては、接地
にソース端子を接続し、ゲート端子を任意の直流電圧値
に接続し、ドレイン端子をヒユーズに接続したNチャネ
ルMOSトランジスタを用いるのが一般的である。
An example of a high resistance element connected to the ground side is to use an N-channel MOS transistor whose source terminal is connected to the ground, whose gate terminal is connected to an arbitrary DC voltage value, and whose drain terminal is connected to a fuse. Common.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述した従来の調整方法でi、MOS)ランジスタのゲ
ート長の微細化とそれに伴うMOS)ランジスタのソー
ス・ドレイン間耐圧の低下に対処した電源電圧の低下に
伴ない%調整端子に印加する電圧値に制限が生ずる。
With the conventional adjustment method described above, the voltage value applied to the % adjustment terminal as the power supply voltage decreases to cope with the miniaturization of the gate length of the MOS) transistor and the resulting decrease in the withstand voltage between the source and drain of the MOS) transistor. There are restrictions on

例えば正電源電圧にPチャネルMO8トランジスタで高
抵抗素子を実現した場合、調整端子に印加することので
きる電圧値は2ツチアツ1等の異常動作を回避するため
正電源の電圧値以上とするのは困難である。
For example, if a high-resistance element is implemented using a P-channel MO8 transistor on the positive power supply voltage, the voltage value that can be applied to the adjustment terminal should be greater than or equal to the voltage value of the positive power supply in order to avoid abnormal operation such as 2. Have difficulty.

一方ヒユーズの切断電圧は、半導体集積回路の電源投入
時や切断時に対し十分余裕のある値とすることが必要で
あシ、例えば5VからIOV位に保つ必要がある。
On the other hand, the cutting voltage of the fuse needs to be set to a value that has sufficient margin for when the semiconductor integrated circuit is powered on or cut off, and needs to be maintained at about 5 V to IOV, for example.

このようにMOS トランジスタのゲート長の微細化に
伴う電源電圧の低下と、ヒユーズ切断電圧の確保を考慮
すると、従来の半導体集積回路の調整方法では調整不能
または調整歩留シの低下という問題点があった。
In this way, considering the reduction in power supply voltage due to miniaturization of the gate length of MOS transistors and the need to secure fuse-cutting voltage, conventional semiconductor integrated circuit adjustment methods have problems such as inability to perform adjustment or a decrease in adjustment yield. there were.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体集積回路の調整方法は、第1の電源に高
抵抗素子の第1の端子を接続し、高抵抗素子の他の端子
にヒユーズの第1の端子およびヒーーズを切断する電圧
を印加するための調整端子とを接続し、ヒユーズの第2
の端子を第2の電源へ接続し、第1の電源の電圧値より
第2の電源の電圧値が小さいときには調整端子に第2の
電源の電圧値よりも小さな電圧を印加することによりヒ
ユーズを切断し、第1の電源の電圧値より第2の電源の
電圧値が大きいときには、調整端子に第1の電源の電圧
値より大きな電圧を印加することによりヒーーズを切断
しすることを特徴とする。
The method for adjusting a semiconductor integrated circuit of the present invention includes connecting a first terminal of a high resistance element to a first power supply, and applying a voltage to the other terminal of the high resistance element to cut off the first terminal of the fuse and the heater. Connect the adjustment terminal for
When the voltage value of the second power supply is smaller than the voltage value of the first power supply, the fuse is blown by connecting the terminal of the power supply to the second power supply, and applying a voltage smaller than the voltage value of the second power supply to the adjustment terminal. When the voltage value of the second power supply is larger than the voltage value of the first power supply, the heater is cut off by applying a voltage larger than the voltage value of the first power supply to the adjustment terminal. .

〔実施例〕〔Example〕

本発明の実施例について図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明による半導体集積回路の調整方法が適
用された第一の実施例の等価回路説明図である。正電源
端子1に接続されたPチャネルMOSトランジスタ2お
よび3はカレントミラー回路を構成し、PチャネルMO
8)ランジスタ2のしきい値電圧と、抵抗4の抵抗値で
決る電流がPチャネルMOSトランジスタ2に流れる。
FIG. 1 is an explanatory diagram of an equivalent circuit of a first embodiment to which the method for adjusting a semiconductor integrated circuit according to the present invention is applied. P channel MOS transistors 2 and 3 connected to the positive power supply terminal 1 constitute a current mirror circuit, and the P channel MOS transistors 2 and 3 connected to the positive power supply terminal 1 constitute a current mirror circuit.
8) A current determined by the threshold voltage of transistor 2 and the resistance value of resistor 4 flows through P-channel MOS transistor 2.

PチャネルMO8)ランジスタ3はカレントミラー回路
として動作し、トランジスタ2および3のチャネル領域
の寸法が同じであれば、はぼ同じ電流が流れる。
P-channel MO8) Transistor 3 operates as a current mirror circuit, and if the dimensions of the channel regions of transistors 2 and 3 are the same, approximately the same current flows.

ヒユーズ6の抵抗値はせいぜい大きくても数百オーム程
度のため調整端子5の電圧はほぼ接地電位となる。この
ため調整端子5に入力が接続されたインバータ8の論理
入力レベルは低レベルとなる。
Since the resistance value of the fuse 6 is at most several hundred ohms, the voltage at the adjustment terminal 5 is approximately at ground potential. Therefore, the logic input level of the inverter 8 whose input is connected to the adjustment terminal 5 becomes a low level.

調整端子5に接地電位より低い電圧を印加してヒユーズ
6を切断する。すると調整端子5はPチャネルMOSト
ランジスタ3が導通しているためほぼ正電源電圧まで上
昇し、インバータ8の論理入力レベルは高レベルとなる
。このように調整端子5に接地電位以下の電圧(例えば
−10■)を印加してヒユーズ6を切断するため正電源
電圧を5■とするとPチャネルMOSトランジスタ3の
ドレイ/・ソース間耐圧は15V以上にする必要があり
、通常のPチャネルMO8)ランジスタよりトレイン・
ソース間耐圧を前置してゲート長りを太めに設定するが
、PチャネルMOSト2ンジスタ3をゲート電極共通の
縦積にした2個のPチャネルMOSトランジスタを用い
れば良い。
A voltage lower than the ground potential is applied to the adjustment terminal 5 to disconnect the fuse 6. Then, since the P-channel MOS transistor 3 is conductive, the adjustment terminal 5 rises almost to the positive power supply voltage, and the logic input level of the inverter 8 becomes high level. In this way, in order to cut the fuse 6 by applying a voltage below the ground potential (for example, -10■) to the adjustment terminal 5, if the positive power supply voltage is set to 5■, the withstand voltage between the drain and source of the P-channel MOS transistor 3 is 15V. It is necessary to make the train
Although the source-to-source breakdown voltage is predetermined and the gate length is set thick, it is sufficient to use two P-channel MOS transistors in which the P-channel MOS transistor 3 has a vertical product with a common gate electrode.

ここで調整端子5に正電圧(°例えば1oV)を印加す
るとPチャネルMO8)ランジスタ3と正電源端子1の
間に存在する寄生ダイオード7が導通してしまい半導体
集積回路がラッチアップしたシ、寄生ダイオードが導通
のため低インピーダンス状態となるためヒユーズ6が切
断できない等の不都合が生じる。このような不都合をさ
けるため本発明の第1の実施例の如く調整端子5に接地
電位以下の電圧を印加してヒユーズ6を切断するのが有
効である。
When a positive voltage (for example, 1oV) is applied to the adjustment terminal 5, the parasitic diode 7 existing between the transistor 3 and the positive power supply terminal 1 becomes conductive, causing the semiconductor integrated circuit to latch up. Since the diode is conductive, it is in a low impedance state, resulting in inconveniences such as the fuse 6 not being able to be cut. In order to avoid such inconveniences, it is effective to cut off the fuse 6 by applying a voltage below the ground potential to the adjustment terminal 5 as in the first embodiment of the present invention.

第2図は、本発明による半導体集積回路の調整方法が適
用された第2の実施例の等価回路説明図である。第2図
において、第1図と同じ個所は同じ番号を用いている。
FIG. 2 is an explanatory diagram of an equivalent circuit of a second embodiment to which the method for adjusting a semiconductor integrated circuit according to the present invention is applied. In FIG. 2, the same parts as in FIG. 1 are designated by the same numbers.

第2図と第1図の相異点はヒーーズ6が接地電位より正
電源端子1側に移動したことにある。これに伴ないカレ
ントミラー回路を構成するNチャネルMOSト2ンジス
タ12および13と電流全決定する抵抗4の接続が変更
されている。
The difference between FIG. 2 and FIG. 1 is that the heater 6 has moved from the ground potential to the positive power supply terminal 1 side. Accordingly, the connection between the N-channel MOS transistors 12 and 13 constituting the current mirror circuit and the resistor 4 that determines the entire current has been changed.

第1の実施例と同様にヒユーズ6の切断を考える。i?
J整端子5には正電源端子1(例えばsV)に対して正
電圧(例えば15v)を印加しヒユーズ6の両端にIO
Vを印加して切断することになる。このときへチャネル
MOSトランジスタはドレイン−ソース間電圧は15V
かかるため耐圧に注意してトランジスタのL寸法を決定
するが2個のNチャネルMO8)ランジスタの縦積み構
成等にすることが必要である。
Let us consider cutting the fuse 6 in the same way as in the first embodiment. i?
A positive voltage (for example, 15V) is applied to the J adjustment terminal 5 with respect to the positive power supply terminal 1 (for example, sV), and the IO voltage is applied to both ends of the fuse 6.
It will be cut by applying V. At this time, the drain-source voltage of the channel MOS transistor is 15V.
Therefore, the L dimension of the transistor is determined with consideration given to the withstand voltage, but it is necessary to use a vertically stacked structure of two N-channel MO8) transistors.

第2図の回路において調整端子5の電圧を接地電位以下
忙印加してヒーーズ6の切断を試みると寄生ダイオ−)
’17が導通してしまい半導体集積回路が2ツテアツグ
したり、ヒユーズ6の切断が寄生ダイオード17の導通
にょシネ可能になることがある。
In the circuit shown in Fig. 2, if an attempt is made to disconnect the heater 6 by applying the voltage at the adjustment terminal 5 below the ground potential, a parasitic diode will be generated.
'17 may become conductive, causing the semiconductor integrated circuit to double-stir, or cutting the fuse 6 may cause the parasitic diode 17 to become conductive.

なお本発明の第1および第2の実施例は一例を示したも
のであシ高抵抗素子としてどのような定電流源を用いて
もよい。
Note that the first and second embodiments of the present invention are merely examples, and any constant current source may be used as the high resistance element.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体集積回路の調整方
法として寄生ダイオードが非導通となるようなヒーーズ
切断電圧を調整端子に印加することにより、半導体集積
回路をラッチアップさせず゛なおかつヒユーズを安定に
切断できるとともに電源投入切断時に不必要なヒユーズ
が切断されないような余裕を得られる効果がある。
As explained above, the present invention provides a method for adjusting a semiconductor integrated circuit by applying a fuse cutting voltage to the adjustment terminal that makes the parasitic diode non-conductive, thereby preventing latch-up of the semiconductor integrated circuit and stabilizing the fuse. This has the effect that it can be disconnected quickly and that unnecessary fuses are not disconnected when the power is turned on and off.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の等価回路説明図、第2
図は第2の実施例の等価回路説明図である。 1・・・・・正電源端子、2,3・・・・・・Pチャネ
ルMO8)7ンジスタ、4・・・・・抵抗、5・・・・
・・調整端子、6・・・・ヒユーズ、7,17・印・寄
生ダイオード8・ ・・インバータ、12.13・・・
・NチャネルM第 f 図 82図
Fig. 1 is an explanatory diagram of an equivalent circuit of the first embodiment of the present invention;
The figure is an explanatory diagram of an equivalent circuit of the second embodiment. 1... Positive power supply terminal, 2, 3... P channel MO8) 7 transistor, 4... Resistor, 5...
...Adjustment terminal, 6...Fuse, 7, 17. Parasitic diode 8...Inverter, 12.13...
・N channel Mth f Figure 82

Claims (2)

【特許請求の範囲】[Claims] (1)第1の電源に高抵抗素子の第1の端子を接続し、
前記高抵抗素子の第2の端子を調整端子およびヒューズ
の第1の端子に接続し、前記ヒューズの第2の端子を第
2の電源に接続し、第1の電源の電圧値より第2の電源
の電圧値が小さいときには前記調整端子に第2の電源の
電圧値よりも小さな電圧を印加することにより前記ヒュ
ーズを切断し、第1の電源の電圧値より第2の電源の電
圧値が大きいときには前記調整端子に第1の電源の電圧
値よりも大きな電圧を印加することにより前記ヒューズ
を切断することを特徴とする半導体集積回路の調整方法
(1) Connect the first terminal of the high resistance element to the first power supply,
A second terminal of the high resistance element is connected to an adjustment terminal and a first terminal of a fuse, the second terminal of the fuse is connected to a second power supply, and a voltage value of the second power supply is lower than the voltage value of the first power supply. When the voltage value of the power source is small, the fuse is cut by applying a voltage smaller than the voltage value of the second power source to the adjustment terminal, and the voltage value of the second power source is larger than the voltage value of the first power source. A method for adjusting a semiconductor integrated circuit, characterized in that the fuse is sometimes blown by applying a voltage larger than a voltage value of a first power source to the adjustment terminal.
(2)前記高抵抗素子としてMOSトランジスタにより
構成した定電流源手段を用いたことを特徴とする特許請
求の範囲第(1)項記載の半導体集積回路の調整方法。
(2) The method for adjusting a semiconductor integrated circuit according to claim (1), characterized in that constant current source means constituted by a MOS transistor is used as the high resistance element.
JP60255879A 1985-11-14 1985-11-14 Adjustment method of semiconductor integrated circuit Expired - Lifetime JPH0620100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60255879A JPH0620100B2 (en) 1985-11-14 1985-11-14 Adjustment method of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60255879A JPH0620100B2 (en) 1985-11-14 1985-11-14 Adjustment method of semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS62115742A true JPS62115742A (en) 1987-05-27
JPH0620100B2 JPH0620100B2 (en) 1994-03-16

Family

ID=17284831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60255879A Expired - Lifetime JPH0620100B2 (en) 1985-11-14 1985-11-14 Adjustment method of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0620100B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126651A (en) * 1983-01-10 1984-07-21 Mitsubishi Electric Corp Program circuit device in redundancy circuit
JPS60170100A (en) * 1984-01-06 1985-09-03 モステツク・コーポレイシヨン Cmos semiconductor integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126651A (en) * 1983-01-10 1984-07-21 Mitsubishi Electric Corp Program circuit device in redundancy circuit
JPS60170100A (en) * 1984-01-06 1985-09-03 モステツク・コーポレイシヨン Cmos semiconductor integrated circuit

Also Published As

Publication number Publication date
JPH0620100B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
US5585741A (en) Impedance emulator
US10168363B1 (en) Current sensor with extended voltage range
US4423456A (en) Battery reversal protection
US4347447A (en) Current limiting MOS transistor driver circuit
US7554364B2 (en) High-voltage operational amplifier input stage and method
KR20160072815A (en) Electrostatic discharge protection circuitry
US11522363B2 (en) Supply protection circuit that protects power transistor from a supply signal of an incorrect polarity
JPH09134997A (en) Static discharge protective device in semiconductor element
US20070165346A1 (en) Apparatus and method for over-voltage, under-voltage and over-current stress protection for transceiver input and output circuitry
US20040004798A1 (en) Inrush limiter circuit
US20210280515A1 (en) Trimming circuit and trimming method
US11171645B1 (en) Transistor switching circuit and integrated circuit thereof
CN113009959B (en) Linear voltage regulator, electronic equipment and linear voltage regulator foldback current limiting method
CN108664067A (en) The low leakage low-dropout regulator inhibited with high bandwidth and power supply
CN1937224A (en) Semiconductor device
US4723081A (en) CMOS integrated circuit protected from latch-up phenomenon
JPS62115742A (en) Adjusting method for semiconductor integrated circuit
JP2018022848A (en) Trimming circuit and trimming method
US11703896B2 (en) Low-dropout regulator and circuit system using the same
CN110176856B (en) Zero-quiescent-current power switch circuit with overcurrent protection and implementation method
US9240780B1 (en) Preventing voltage pulse propagation in a disabled capacitive feedback slew-controlled switch
US10917058B2 (en) Servo-amplifier with closed-loop biasing
JP2000236022A (en) Fuse trimming circuit
US6788506B1 (en) Integrated circuit and method of operation
JP2000133778A (en) Fuse trimming circuit for lcd controller ic