JP2000236022A - Fuse trimming circuit - Google Patents

Fuse trimming circuit

Info

Publication number
JP2000236022A
JP2000236022A JP11034825A JP3482599A JP2000236022A JP 2000236022 A JP2000236022 A JP 2000236022A JP 11034825 A JP11034825 A JP 11034825A JP 3482599 A JP3482599 A JP 3482599A JP 2000236022 A JP2000236022 A JP 2000236022A
Authority
JP
Japan
Prior art keywords
resistor
fuse
voltage
nmos transistor
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11034825A
Other languages
Japanese (ja)
Other versions
JP4248658B2 (en
Inventor
Shigeto Inoue
成人 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP03482599A priority Critical patent/JP4248658B2/en
Publication of JP2000236022A publication Critical patent/JP2000236022A/en
Application granted granted Critical
Publication of JP4248658B2 publication Critical patent/JP4248658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent high electric field from being applied to a gate oxide film even if a gate oxide film is thinned by fining of an IC, not by grounding electric potential of a gate electrode of an NMOS transistor which is a protection element but by arranging a fuse resistance and a resistance for voltage division in series. SOLUTION: A fuse trimming circuit comprises a trimming pad terminal 1, a fuse resistance 2 formed of polycrystalline silicon, a protection resistance 3, an NMOS transistor 4 which functions as a protection element for making a current flow, a division resistance to make a potential of the pad terminal 1 and an intermediate potential of a ground line 5 to be applied to a gate electrode of an NMOS transistor and a pull-up transistor 8 for deciding a level of an input circuit 7. Since a voltage obtained by performing voltage division for a voltage applied to the pad terminal 1 is supplied as a gate voltage of an NMOS transistor, a high voltage is not applied to a drain and accordingly high electric field is not also applied to a gate oxide film of the input circuit 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、LCDコントローラI
Cのように、発振回路等の合わせ込みを必要とするICの
フューズトリミング回路に関するものである。
The present invention relates to an LCD controller I.
The present invention relates to a fuse trimming circuit of an IC that requires matching of an oscillation circuit or the like, such as C.

【0002】[0002]

【従来の技術】第2図に従来技術のフューズトリミング
回路を示す。入力回路7のゲート電極のレベルを決める
ために、フューズ抵抗2とプルアップトランジスタ8を
基本的な構成要素として、静電破壊からインバータを守
るための保護抵抗3と保護用NMOSトランジスタから
構成されていた。この時に保護用NMOSトランジスタ
4のゲート電極は接地線5に繋がれていた。
2. Description of the Related Art FIG. 2 shows a conventional fuse trimming circuit. In order to determine the level of the gate electrode of the input circuit 7, a fuse resistor 2 and a pull-up transistor 8 are used as basic components, and a protection resistor 3 for protecting the inverter from electrostatic damage and a protection NMOS transistor are used. Was. At this time, the gate electrode of the protection NMOS transistor 4 was connected to the ground line 5.

【0003】フューズトリミング回路に於いては、トリ
ミングしたいパッド端子に電圧を印加することにより多
結晶シリコンなどからなるフューズ抵抗に電流が流れ 抵抗*電流*電流 で表されるパワーに比例して発生する熱によりフューズ
抵抗を溶断しトリミングしていた。
In a fuse trimming circuit, when a voltage is applied to a pad terminal to be trimmed, a current flows through a fuse resistor made of polycrystalline silicon or the like, and the current is generated in proportion to the power represented by resistance * current * current The fuse resistance was blown by heat and trimmed.

【0004】[0004]

【発明が解決しようとする問題点】ICの微細化が進むに
つれてゲート酸化膜が薄くなり、ゲート酸化膜の耐圧は
下がって来ている。例えば100オングストロームの酸
化膜の場合には10Vで10MV/cmもの電界が掛か
っている。熱酸化膜の真性破壊電界は約11MV/cm
くらいであるので、11Vもかかると素子の破壊をきた
す。また真性破壊電界まで達しなくても高い電界がかか
る程トンネル電流が流れる為にゲート酸化膜へのダメー
ジが増し信頼性上問題であった。また静電気が印加され
た時に電流を流すための保護素子であるNMOSトラン
ジスタ4のドレイン耐圧はゲート酸化膜の薄膜化につれ
て下がるが、その下がり方は緩やかであるので、NMO
Sトランジスタ4が静電気を逃がす前にインバータ7の
ゲート酸化膜に高い電界がかかり破壊してしまってい
た。
Problems to be Solved by the Invention As the miniaturization of ICs progresses, the thickness of the gate oxide film becomes thinner, and the withstand voltage of the gate oxide film decreases. For example, in the case of an oxide film of 100 angstroms, an electric field of 10 MV / cm is applied at 10 V. The intrinsic breakdown electric field of the thermal oxide film is about 11 MV / cm
Therefore, if 11 V is applied, the element is destroyed. Further, even if the electric field does not reach the intrinsic breakdown electric field, the higher the electric field is applied, the more the tunnel current flows, so that the damage to the gate oxide film increases, which is a problem in reliability. The drain withstand voltage of the NMOS transistor 4, which is a protection element for flowing a current when static electricity is applied, decreases as the thickness of the gate oxide film becomes thinner.
Before the S transistor 4 released static electricity, a high electric field was applied to the gate oxide film of the inverter 7 and the inverter 7 was destroyed.

【0005】保護素子であるNMOSトランジスタが電
流を流す過程には、ドレインのアバランシェ降伏とソー
ス、基板、ドレイン間のバイポーラ動作がある。NMO
Sトランジスタのゲート電極を接地した場合には、初め
にドレインのアバランシェ降伏、次にアバランシェ降伏
にて発生する基板電流をトリガーにしてソース、基板、
ドレイン間のバイポーラ動作が起こり大電流を流す。バ
イポーラ動作時にはNMOSトランジスタのドレインに
は低い電圧しかかからないが、バイポーラ動作に入る前
のドレインのアバランシェ降伏は通常12―17Vであ
る為、その電圧が入力回路のゲート酸化膜にかかってし
まっていた。
[0005] The process of flowing a current by the NMOS transistor as a protection element includes avalanche breakdown of a drain and a bipolar operation between a source, a substrate and a drain. NMO
When the gate electrode of the S transistor is grounded, the avalanche breakdown of the drain first, then the substrate current generated by the avalanche breakdown triggers the source, substrate,
A bipolar operation occurs between the drains and a large current flows. During the bipolar operation, only a low voltage is applied to the drain of the NMOS transistor. However, since the avalanche breakdown of the drain before entering the bipolar operation is usually 12 to 17 V, the voltage has applied to the gate oxide film of the input circuit.

【0006】[0006]

【課題を解決するための手段】本発明においてもパワー
に比例して発生する熱によりフューズ抵抗を溶断する
が、保護素子であるNMOSトランジスタのゲート電極
の電位を接地するのではなく、フューズ抵抗と電圧分割
するための抵抗を直列に配置し、NMOSトランジスタ
のゲート電極の電位がドレインと接地線の中間電位とな
るようにした。
According to the present invention, the fuse resistance is blown by heat generated in proportion to the power. A resistor for voltage division is arranged in series so that the potential of the gate electrode of the NMOS transistor becomes an intermediate potential between the drain and the ground line.

【0007】そこで、パッド端子にかかる電圧を電圧分
割したものがNMOSトランジスタのゲート電圧として
供給されるために、チャネルホットキャリアにより基板
電流が増えアバランシェ降伏に入らなくてもソース、基
板、ドレイン間のバイポーラ動作に入り大電流が流れる
ようにした。これによりドレインに高い電圧がかからな
くなり、しいては入力回路7のゲート酸化膜にも高い電
界がかからない。またフューズ抵抗の溶断後にはNMO
Sトランジスタのゲート電圧は接地線に固定されるの
で、このNMOSトランジスタはノーマリオフの状態に
なる。
Therefore, since a voltage obtained by dividing the voltage applied to the pad terminal is supplied as the gate voltage of the NMOS transistor, the substrate current increases due to channel hot carriers, and the source, substrate, and drain are connected without avalanche breakdown. A large current is allowed to flow in bipolar operation. As a result, a high voltage is not applied to the drain, and a high electric field is not applied to the gate oxide film of the input circuit 7. After blowing the fuse resistor, NMO
Since the gate voltage of the S transistor is fixed to the ground line, the NMOS transistor is normally off.

【0008】[0008]

【発明の実施の形態】(実施例1)第1図に本発明の実
施例を示す。実施例ではP型基板上に設けられたフュー
ズトリミング回路を示している。トリミング用のパッド
端子1と多結晶シリコンからなるフューズ抵抗2と保護
用抵抗3と電流を流すための保護素子として働くNMO
Sトランジスタ4とNMOSトランジスタのゲート電極
にパッド端子1の電位と接地線5の中間電位がかかるよ
うにする分割抵抗6と入力回路7のレベルを決めるため
のプルアップトランジスタ8からなる。以下に各要素に
ついて述べる。
(Embodiment 1) FIG. 1 shows an embodiment of the present invention. The embodiment shows a fuse trimming circuit provided on a P-type substrate. NMO functioning as a pad terminal 1 for trimming, a fuse resistor 2 made of polycrystalline silicon, a protection resistor 3 and a protection element for flowing a current.
It comprises a dividing resistor 6 for applying an intermediate potential between the pad terminal 1 and the ground line 5 to the gate electrodes of the S transistor 4 and the NMOS transistor, and a pull-up transistor 8 for determining the level of the input circuit 7. The following describes each element.

【0009】ここでは入力回路7がインバータである場
合について述べる。多結晶シリコンからなるフューズ抵
抗2のトータルの抵抗値は100Ωくらいであるが、第
4図(a)のように電流が集中し発熱しやすいようにく
びれた形状が好ましい。NMOSトランジスタをバイポ
ーラ動作に入れるためのトリガーになる基板電流はドレ
イン構造によっても異なるが、ゲート電圧がドレイン電
圧の1/2〜1/4くらいの時に最も大きくなるので、
多結晶シリコンからなる分割抵抗6は100Ω以下は良
い。この時分割抵抗6は第4図(b)のように電流が集
中するような形状は避ける。ここでは分割抵抗6よりも
フューズ抵抗2の方が電流集中し易く、溶断し易くなっ
ていれば良い。
Here, a case where the input circuit 7 is an inverter will be described. The total resistance value of the fuse resistor 2 made of polycrystalline silicon is about 100Ω, but a constricted shape is preferable as shown in FIG. The substrate current that triggers the NMOS transistor to enter the bipolar operation varies depending on the drain structure, but it becomes the largest when the gate voltage is about 1/2 to 1/4 of the drain voltage.
The dividing resistor 6 made of polycrystalline silicon is preferably 100Ω or less. At this time, the time-division resistor 6 should avoid a shape in which current is concentrated as shown in FIG. Here, it is sufficient that the fuse resistor 2 is easier to concentrate current and is more easily blown than the split resistor 6.

【0010】本実施例では分割抵抗6、フューズ抵抗2
の材質は多結晶シリコンについて説明したが、WSi等
のシリサイド膜と多結晶シリコン膜の積層膜でも良い
し、金属膜でも構わない。保護用抵抗3は1kΩ程度で
良い。保護素子として働くNMOSトランジスタ4はト
ランジスタの幅が400um程度、チャネル長は1.0umくらい
が目安となるが、これらのサイズはトランジスタがバイ
ポーラ動作した状態で200mAくらいの電流を駆動できる
能力があり、破壊に至らなければ良い。
In this embodiment, the dividing resistor 6 and the fuse resistor 2
Has been described as polycrystalline silicon, but a laminated film of a silicide film such as WSi and a polycrystalline silicon film or a metal film may be used. The protection resistor 3 may be about 1 kΩ. As a guide, the NMOS transistor 4 acting as a protection element has a transistor width of about 400 μm and a channel length of about 1.0 μm, but these sizes have the ability to drive about 200 mA of current when the transistor is in bipolar operation, and It is good if it does not reach.

【0011】次にトリミング(フューズ抵抗を切断)す
るときの動作について説明する。パッド端子1に電圧を
印加するとフューズ抵抗2と分割抵抗6を介して接地線
に電流が流れる。通常は50〜100msecの電圧パルスが印
加される。NMOSトランジスタ4はゲート電極の電位
がパッド端子の電圧と接地線5の電圧の抵抗分割比で決
まる中間電位になり、チャネルホットキャリアによる基
板電流を発生しバイポーラ動作に入る。このバイポーラ
動作への入る過程を第3図に示す。第3図中のA点がス
ナップバック電圧に入る電圧、B点がバイポーラ動作に
入った後の電圧を示している。第3図のカーブ、、
はフューズ抵抗2と分割抵抗6の抵抗比を変えた場合
を表している。は分割抵抗6が無い場合でNMOS
トランジスタでは14―17Vとなる。分割抵抗6の値
を大きくするとからの方向へカーブが移動し、A点
のスナップバック電圧が小さくなる。この時B点の電圧
は殆ど変わらない。
Next, the operation at the time of trimming (cutting the fuse resistor) will be described. When a voltage is applied to the pad terminal 1, a current flows to the ground line via the fuse resistor 2 and the split resistor 6. Usually, a voltage pulse of 50 to 100 msec is applied. The potential of the gate electrode of the NMOS transistor 4 becomes an intermediate potential determined by the resistance division ratio between the voltage of the pad terminal and the voltage of the ground line 5, and a substrate current is generated by channel hot carriers to enter a bipolar operation. FIG. 3 shows the process of entering the bipolar operation. In FIG. 3, point A indicates the voltage at which the snapback voltage is entered, and point B indicates the voltage after entering the bipolar operation. The curve in FIG. 3,
Represents the case where the resistance ratio between the fuse resistor 2 and the split resistor 6 is changed. Is NMOS without split resistor 6
14-17 V for transistors. When the value of the dividing resistor 6 is increased, the curve moves in the direction from the beginning, and the snapback voltage at the point A decreases. At this time, the voltage at point B hardly changes.

【0012】フューズ抵抗2の切断後にはNMOSトラ
ンジスタのゲート電極は接地線に固定されるが、NMO
Sトランジスタは既にバイポーラ動作に入っているので
バイポーラ動作はパッド端子7に印加されるパルスが終
わるまで続く。入力回路7のゲート酸化膜には保護用N
MOSトランジスタがバイポーラ動作に入る前に、最も
高い電圧がかかるが、A点のスナップバック電圧以下で
あり、バイポーラ動作に入っているときにはほぼB点の
電圧に固定される。このA点のスナップバック電圧はフ
ューズ抵抗2と分割抵抗6の抵抗比によって制御できる
ので、入力回路7のゲート酸化膜の厚みに応じてゲート
酸化膜にの残らないようなA点を選べばよい。フューズ
抵抗2が切断された後はプルアップトランジスタ8によ
って入力回路7のゲートのレベルが決まり、電源線9の
電位、つまりHighに固定される。
After the fuse resistor 2 is cut, the gate electrode of the NMOS transistor is fixed to the ground line.
Since the S transistor has already entered the bipolar operation, the bipolar operation continues until the pulse applied to the pad terminal 7 ends. The gate oxide film of the input circuit 7 has a protective N
Before the MOS transistor enters the bipolar operation, the highest voltage is applied. However, the voltage is lower than the snapback voltage at the point A, and is substantially fixed to the voltage at the point B when the MOS transistor is in the bipolar operation. Since the snapback voltage at the point A can be controlled by the resistance ratio between the fuse resistor 2 and the dividing resistor 6, a point A that does not remain on the gate oxide film according to the thickness of the gate oxide film of the input circuit 7 may be selected. . After the fuse resistor 2 is cut, the level of the gate of the input circuit 7 is determined by the pull-up transistor 8, and is fixed to the potential of the power supply line 9, that is, High.

【0013】次にフューズ抵抗2を切断しない場合につ
いて述べる。保護抵抗3とフューズ抵抗2と分割抵抗6
の和とプルアップトランジスタ8の駆動能力の引っ張り
合いにより入力回路7のゲートのレベルが決まるが、入
力回路7のゲートのレベルはLowに固定されるように
プルアップトランジスタ8のサイズ、及び保護抵抗3と
フューズ抵抗2と分割抵抗6の和が決められなければな
らない。またフューズ抵抗2を切断しない場合には保護
用NMOSトランジスタ4のゲート電極には電源線9の
電圧をプルアップトランジスタ8のオン抵抗、保護抵抗
3、フューズ抵抗2、分割抵抗6の比で分割して電圧が
かかるが、分割抵抗6は小さいので保護用NMOSトラ
ンジスタ4のリーク電流へ非常に小さい。イオン注入に
より保護用NMOSトランジスタ4のしきい値が上がる
ようにすれば、よりリーク電流を小さくできる。 (実施例2)第5図に本発明の別の実施例を示す。実施
例1に対して、プルアップトランジスタ8の代わりに入
力回路の出力を固定するためのトランジスタ12と入力
回路の出力の初期値を決めるためのトランジスタ13が
付加された構成となっている。
Next, a case where the fuse resistor 2 is not cut will be described. Protection resistor 3, fuse resistor 2, and split resistor 6
The gate level of the input circuit 7 is determined by the sum of the sum and the drive capability of the pull-up transistor 8, but the size of the pull-up transistor 8 and the protection resistance are set so that the gate level of the input circuit 7 is fixed at Low. 3, the sum of the fuse resistor 2 and the split resistor 6 must be determined. If the fuse resistor 2 is not cut, the voltage of the power supply line 9 is divided into the gate electrode of the protection NMOS transistor 4 by the ratio of the on-resistance of the pull-up transistor 8, the protection resistor 3, the fuse resistor 2, and the division resistor 6. However, since the dividing resistor 6 is small, the leakage current of the protection NMOS transistor 4 is very small. If the threshold value of the protection NMOS transistor 4 is increased by ion implantation, the leak current can be further reduced. (Embodiment 2) FIG. 5 shows another embodiment of the present invention. As compared with the first embodiment, a transistor 12 for fixing the output of the input circuit and a transistor 13 for determining the initial value of the output of the input circuit are added instead of the pull-up transistor 8.

【0014】実施例1ではフューズ2を切断しない場合
にはプルアップトランジスタ8はノーマリオンになって
いるために、フューズ抵抗2、分割抵抗6を介して電源
線9と接地線5の間に電流が流れるが、本実施例ではフ
ューズ2を切断しない場合に入力回路7であるインバー
タの入力がLowに固定される為に入力回路の出力を固
定するためのトランジスタ13はオフとなり電源線9と
接地線5の間に電流が流れず消費電流を増加させずに済
む。またこの時保護用NMOSトランジスタ4のゲート
も接地線と同電位となるために、保護用NMOSトラン
ジスタ4のリーク電流の心配も無い。
In the first embodiment, when the fuse 2 is not cut off, the pull-up transistor 8 is normally on. Therefore, a current is supplied between the power supply line 9 and the ground line 5 via the fuse resistor 2 and the split resistor 6. However, in this embodiment, when the fuse 2 is not cut, the input of the inverter as the input circuit 7 is fixed to Low, so that the transistor 13 for fixing the output of the input circuit is turned off, and the power supply line 9 and the ground are connected. No current flows between the lines 5 so that the consumption current does not increase. At this time, since the gate of the protection NMOS transistor 4 also has the same potential as the ground line, there is no fear of leakage current of the protection NMOS transistor 4.

【0015】[0015]

【発明の効果】本発明によれば、ICの微細化によりゲー
ト酸化膜が薄くなっても、ゲート酸化膜に高い電界がか
からないフューズトリミング回路を構成できる。本発明
ではP型半導体基板上のフューズトリミング回路につい
て述べたが、無論N型基板であっても構わない。
According to the present invention, a fuse trimming circuit in which a high electric field is not applied to the gate oxide film even if the gate oxide film becomes thin due to miniaturization of the IC can be constituted. In the present invention, a fuse trimming circuit on a P-type semiconductor substrate has been described, but an N-type substrate may of course be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示した回路図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】従来技術の回路図。FIG. 2 is a circuit diagram of a conventional technique.

【図3】フューズトリミング時にNMOSトランジスタ
に流れる電流−電圧のフューズ抵抗と分割抵抗の抵抗比
依存を示すための図である。
FIG. 3 is a diagram showing the dependence of the current-voltage flowing through the NMOS transistor during fuse trimming on the resistance ratio between the fuse resistance and the division resistance.

【図4】フューズ抵抗と分割抵抗の平面図を示してい
る。
FIG. 4 is a plan view of a fuse resistor and a split resistor.

【図5】本発明の別の実施例を示した回路図である。FIG. 5 is a circuit diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 パッド端子 2 フューズ抵抗 3 保護抵抗 4 保護用NMOSトランジスタ 5 接地線 6 分割抵抗 7 入力回路 8 プルアップトランジスタ 9 電源線 10 多結晶シリコン 11 コンタクト 12 入力回路の出力を固定するためのトランジスタ 13 入力回路の出力の初期値を決めるトランジスタ DESCRIPTION OF SYMBOLS 1 Pad terminal 2 Fuse resistor 3 Protective resistor 4 Protective NMOS transistor 5 Ground line 6 Split resistor 7 Input circuit 8 Pull-up transistor 9 Power supply line 10 Polycrystalline silicon 11 Contact 12 Transistor for fixing output of input circuit 13 Input circuit Transistor that determines the initial value of the output

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 P型半導体基板上に設けられたトリミン
グを行なうパッド端子と、 該パッド端子に一方の端を結合する切断可能なフューズ
抵抗と、 該フューズ抵抗の他方の端と接地線を結合する分割抵抗
と、 該パット端子に一方の端を結合する保護抵抗と、 該保護抵抗の他方の端にドレインが結合し、ソースが接
地されたかつ、ゲート電極が該フューズ抵抗と該分割抵
抗の結合部に結合している保護用NMOSトランジスタ
と、 該保護抵抗に結合してトリミング端子のレベルを決める
ための電源線に吊られたプルアップトランジスタと、 該保護抵抗にゲート電極が結合した入力回路からなるこ
とを特徴としたフューズトリミング回路。
1. A pad terminal for trimming provided on a P-type semiconductor substrate, a severable fuse resistor connecting one end to the pad terminal, and a ground wire connected to the other end of the fuse resistor. A protection resistor for connecting one end to the pad terminal; a drain connected to the other end of the protection resistor; a source grounded; and a gate electrode connecting the fuse resistor and the split resistor. A protection NMOS transistor coupled to the coupling portion; a pull-up transistor coupled to the protection resistor for hanging a power supply line for determining a level of a trimming terminal; and an input circuit having a gate electrode coupled to the protection resistor. A fuse trimming circuit comprising:
JP03482599A 1999-02-12 1999-02-12 Fuse trimming circuit Expired - Fee Related JP4248658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03482599A JP4248658B2 (en) 1999-02-12 1999-02-12 Fuse trimming circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03482599A JP4248658B2 (en) 1999-02-12 1999-02-12 Fuse trimming circuit

Publications (2)

Publication Number Publication Date
JP2000236022A true JP2000236022A (en) 2000-08-29
JP4248658B2 JP4248658B2 (en) 2009-04-02

Family

ID=12424989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03482599A Expired - Fee Related JP4248658B2 (en) 1999-02-12 1999-02-12 Fuse trimming circuit

Country Status (1)

Country Link
JP (1) JP4248658B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294903A (en) * 2005-04-12 2006-10-26 Nec Electronics Corp Fuse trimming circuit
US7616417B2 (en) * 2007-02-09 2009-11-10 Nec Electronics Corporation Semiconductor device including protection circuit and switch circuit and its testing method
JP2011066129A (en) * 2009-09-16 2011-03-31 Elpida Memory Inc Semiconductor device
JP2012178587A (en) * 2005-08-31 2012-09-13 Internatl Business Mach Corp <Ibm> Random access electrically programmable-e-fuse rom
CN104345761A (en) * 2013-08-05 2015-02-11 新唐科技股份有限公司 Reference voltage generating circuit and voltage adjusting device with negative charge protection mechanism
CN113189477A (en) * 2020-09-03 2021-07-30 成都利普芯微电子有限公司 Chip trimming circuit and trimming method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294903A (en) * 2005-04-12 2006-10-26 Nec Electronics Corp Fuse trimming circuit
US7940113B2 (en) 2005-04-12 2011-05-10 Renesas Electronics Corporation Fuse trimming circuit with higher reliability
JP2012178587A (en) * 2005-08-31 2012-09-13 Internatl Business Mach Corp <Ibm> Random access electrically programmable-e-fuse rom
US7616417B2 (en) * 2007-02-09 2009-11-10 Nec Electronics Corporation Semiconductor device including protection circuit and switch circuit and its testing method
JP2011066129A (en) * 2009-09-16 2011-03-31 Elpida Memory Inc Semiconductor device
CN104345761A (en) * 2013-08-05 2015-02-11 新唐科技股份有限公司 Reference voltage generating circuit and voltage adjusting device with negative charge protection mechanism
CN113189477A (en) * 2020-09-03 2021-07-30 成都利普芯微电子有限公司 Chip trimming circuit and trimming method

Also Published As

Publication number Publication date
JP4248658B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US4994904A (en) MOSFET having drain voltage detection function
JP4401500B2 (en) Semiconductor device and method for reducing parasitic bipolar effect in electrostatic discharge
US7916439B2 (en) Semiconductor switch arrangement and an electronic device
JP2731119B2 (en) Semiconductor power device and its shutoff circuit
JP4402109B2 (en) Low voltage NMOS type electrostatic discharge clamp
JPH0214792B2 (en)
JPH06196634A (en) Depletion control type separation stage
WO2020235233A1 (en) Trimming circuit and trimming method
US6351362B1 (en) Protection circuit for an LCD controller IC
JPH03272180A (en) Semiconductor integrated circuit
JPH0864812A (en) Overvoltage protection semiconductor switch
EP1137068B1 (en) Power semiconductor device having a protection circuit
JP2822915B2 (en) Semiconductor device
EP0892436B1 (en) Electrostatic protection structure for MOS circuits
US20030043517A1 (en) Electro-static discharge protecting circuit
JP2000236022A (en) Fuse trimming circuit
EP0632501B1 (en) A semiconductor device including protection means
JP3559075B2 (en) Polarity reversal protection device for integrated electronic circuits in CMOS technology
JP2018022848A (en) Trimming circuit and trimming method
JP2000133778A (en) Fuse trimming circuit for lcd controller ic
JP3082720B2 (en) Protection circuit for semiconductor integrated circuit
JP2004228317A (en) Semiconductor memory device
JP3431127B2 (en) Electronic device and electronic switch device
JPH0851184A (en) Semiconductor device
JP2859029B2 (en) High voltage MOS transistor output protection device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4248658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees