JPS62114646A - Preparation of carbon monoxide adsorbent - Google Patents

Preparation of carbon monoxide adsorbent

Info

Publication number
JPS62114646A
JPS62114646A JP60253873A JP25387385A JPS62114646A JP S62114646 A JPS62114646 A JP S62114646A JP 60253873 A JP60253873 A JP 60253873A JP 25387385 A JP25387385 A JP 25387385A JP S62114646 A JPS62114646 A JP S62114646A
Authority
JP
Japan
Prior art keywords
carbon monoxide
copper
adsorbent
hydrochloric acid
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60253873A
Other languages
Japanese (ja)
Other versions
JPH0712427B2 (en
Inventor
Masahito Shimomura
下村 雅人
Hideto Mitsutake
光武 秀人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60253873A priority Critical patent/JPH0712427B2/en
Publication of JPS62114646A publication Critical patent/JPS62114646A/en
Publication of JPH0712427B2 publication Critical patent/JPH0712427B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To enhance carbon monoxide adsorbing capacity, by immersing activated carbon in a hydrochloric acid solution of copper (I) halide or copper (I) oxide and taking out the imipregnated activated carbon and drying the same to form a carbon monoxide adsorbent. CONSTITUTION:A hydrochloric acid solution of copper (I) halide such as copper (I) chloride, copper (I) bromide or copper (I) iodide or copper (I) oxide is prepared. In this case, the concn. of hydrogen chloride of hydrochloric acid is pref. 15-25wt% and 10-40g of copper (I) halide or copper (I) oxide is pref. added to 100ml hydrochloric acid. Activated carbon is immersed in said hydrochloric acid solution and taken out from said solution to be dried at about 200-300 deg.C in an inert gas atmosphere under atmospheric pressure or reduced pressure to obtain a carbon monoxide adsorbent. This adsorbent rapidly adsorbs carbon monoxide at 0-40 deg.C under atmospheric pressure and easily releases carbon monoxide if the temp. thereof is raised to 40 deg.C or more.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一酸化炭素を含有する混合ガス力)ら一酸化
炭素を吸着し、圧力あるいは温度を変えることにより吸
着された一酸化炭素を脱着することができる固体吸着剤
を製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention adsorbs carbon monoxide from a mixed gas containing carbon monoxide, and changes the pressure or temperature to remove the adsorbed carbon monoxide. The present invention relates to a method for producing a solid adsorbent that can be desorbed.

〔従来の技術〕[Conventional technology]

一酸化炭素は合成化学の基礎原料であり、コークス、石
炭から発生炉、水性ガス炉、ウィンクラ−炉、ルルギ炉
およびコツノ(−ス炉などを用いて製造される。また、
天然ガスおよび石ン由炭化水素から水蒸気改質法および
部分酸化法により製造される。これらの方法では、生成
物は、−11化炭素、水素、二酸化炭素、メタンおよび
窒素などの混合ガスとして得られる。たとえば、水性ガ
スの場合、一酸化炭素35〜40%、水素45〜51%
、二酸化炭素4〜5%、メタン[1,5〜1.0%、窒
素4−9%の組成をもち、通常1000〜2000 p
pmの水を含んでいる。
Carbon monoxide is a basic raw material in synthetic chemistry, and is produced from coke and coal using generator furnaces, water gas furnaces, Winkler furnaces, Lurgi furnaces, Kotsunos furnaces, etc.
Produced from natural gas and stone-derived hydrocarbons by steam reforming and partial oxidation. In these methods, the product is obtained as a mixture of gases such as carbon-11, hydrogen, carbon dioxide, methane and nitrogen. For example, in the case of water gas, carbon monoxide 35-40%, hydrogen 45-51%
, carbon dioxide 4-5%, methane [1.5-1.0%, nitrogen 4-9%, usually 1000-2000 p
Contains pm water.

また、製鉄所や製油所あるいは石油化学工場で副生ずる
一酸化炭素も、同様に、混合ガスとして得られる。
Carbon monoxide, which is produced as a by-product in steel mills, oil refineries, and petrochemical plants, can also be obtained as a mixed gas.

これらの一酸化炭素を合成化学原料として用いるために
は、混合ガスから一酸化炭素を分離することが必要であ
る。
In order to use these carbon monoxides as synthetic chemical raw materials, it is necessary to separate them from the mixed gas.

一方、水素も化学工業における重要な原料であり、前述
の各種混合ガスあるいは、石油化学工場の廃ガス、たと
えば、炭化水素の脱水素工程からの廃ガスから分離され
るが、少鼠の一酸化炭素を含有することが多い。この一
酸化炭素は、水素を用いる反応の触媒に対して触媒毒と
なるので、分離除去する必要がある。また、これらの溌
ガス中には、少量の水が含まれるのが常である。
On the other hand, hydrogen is also an important raw material in the chemical industry, and is separated from the various gas mixtures mentioned above or from the waste gas of petrochemical plants, such as the waste gas from the hydrocarbon dehydrogenation process. Often contains carbon. Since this carbon monoxide acts as a catalyst poison for the catalyst of reactions using hydrogen, it is necessary to separate and remove it. Furthermore, these gases usually contain a small amount of water.

混合ガスから一酸化炭素を分離除去するには、通常、液
体吸収剤が用いられる。銅銭洗浄法は、ギ酸銅(I)の
アンモニア性水溶液や塩化銅(I)の塩酸懸濁液に、混
合ガスを室温で150〜.20゜at+nに加圧し吸収
させて一酸化炭素を分離除去し、次に、この銅族を減圧
下で加熱することにより一酸化炭素を放出させて分離し
、銅族を再生させる方法であるが、液体吸収剤取扱い操
作の難しさ、装置の腐蝕、溶液損失、沈殿物生成を防ぐ
ための運転管理の難しさ、ならびに、高圧のため建設費
が高いなどの短所を有している。
A liquid absorbent is usually used to separate and remove carbon monoxide from a mixed gas. The copper coin cleaning method involves adding a mixed gas to an ammoniacal aqueous solution of copper (I) formate or a hydrochloric acid suspension of copper (I) chloride at room temperature. The method is to pressurize to 20°at+n and absorb it to separate and remove carbon monoxide, then heat this copper group under reduced pressure to release and separate carbon monoxide, regenerating the copper group. However, it has disadvantages such as difficulty in handling liquid absorbent, difficulty in operation management to prevent equipment corrosion, solution loss, and precipitation formation, and high construction cost due to high pressure.

英国特許第i、31a790号によれば、銅アルミニウ
ム四塩化物(au(Azo/、) )のトルエフ溶液は
、25℃で一酸化炭素30 mo’1%を含む混合ガス
と接触させると、一酸化炭素を吸収し、これを80℃に
温めると、95%の一酸化炭素が回収されるという。こ
の吸収液は、混合ガス中に含まれる水素、二酸化炭素、
メタン、窒素および酸素の影響を受けず、吸収圧力が低
いなどの長所を有するが、水とは不可逆的に反応して吸
収能力の劣化および沈殿物の生成をきたし、塩酸を発生
する。工業的に実施するためには、混合ガス中の水は1
 ppm以下に厳重に抑制しなければならない。従って
、吸収工程の前に、 i/IIL合ガスの強力な脱水処
理工程が必要となυ、厳重な管理が不可欠である。なお
、銅アルミニウム四塩化物は、水と強く反応して一酸化
炭素の吸収能を不可逆的に失うので、たとえ1 ppm
の水を含有する混合ガスを接触させた場合でも混合ガス
の処理量の増加とともに次第に失活量分増加して行くば
かシでなく、水との反応で生成する塩酸によって装置腐
蝕が進行するという短所含有している。また、この吸収
液を用いた場合には、回収した一酸化炭素中にトルエン
蒸気が混入することが不可避であり、このトルエンを除
去する装置が必要であること、および液体吸収剤を用い
るためにプロセス上の制約を受けるなどの短所を有する
According to British patent no. By absorbing carbon oxide and heating it to 80 degrees Celsius, 95% of the carbon monoxide can be recovered. This absorption liquid absorbs the hydrogen and carbon dioxide contained in the mixed gas.
Although it has advantages such as being unaffected by methane, nitrogen, and oxygen and having a low absorption pressure, it irreversibly reacts with water, resulting in deterioration of absorption capacity and formation of precipitates, and generates hydrochloric acid. For industrial implementation, the water in the gas mixture must be 1
It must be strictly controlled to below ppm. Therefore, a strong dehydration process of the i/IIL gas is required before the absorption process, and strict control is essential. Copper aluminum tetrachloride reacts strongly with water and irreversibly loses its ability to absorb carbon monoxide, so even if it is 1 ppm
Even when a mixed gas containing water is brought into contact, the deactivation amount gradually increases as the amount of mixed gas processed increases, and equipment corrosion progresses due to the hydrochloric acid produced by the reaction with water. Contains disadvantages. In addition, when this absorption liquid is used, it is inevitable that toluene vapor will be mixed into the recovered carbon monoxide, and a device to remove this toluene is required. It has disadvantages such as being subject to process constraints.

上記の、銅アルミニウム四塩化物(Cu(A/C/、)
 )のトルエン溶液による一酸化炭素分離法の短所を解
決した一酸化炭素分離法として、ハロゲン化銅(I)お
よび活性炭から構成される固体吸着剤を用いる一酸化炭
素分離法が知られている(特開昭58−156517)
。この方法では、該固体吸着剤を室温付近で一酸化炭素
を含む混合ガスと接触させると迅速に一酸化炭素が吸収
され、次いで、吸収剤を一定の温度に昇温するか、ある
いは一酸化炭素分圧を減少させることにより容易に一酸
化炭素を放出させることができる。
The above copper aluminum tetrachloride (Cu(A/C/,)
A carbon monoxide separation method using a solid adsorbent composed of copper(I) halide and activated carbon is known as a carbon monoxide separation method that solves the disadvantages of the carbon monoxide separation method using a toluene solution ( JP-A-58-156517)
. In this method, carbon monoxide is rapidly absorbed when the solid adsorbent is brought into contact with a mixed gas containing carbon monoxide at around room temperature, and then the absorbent is heated to a certain temperature or Carbon monoxide can be easily released by reducing the partial pressure.

この分離法に用いられる一酸化炭素吸着剤の製法として
は、ハロゲン化銅II+まだは酸化銅(月の溶液あるい
は懸濁液に活性炭を加え、しかる後に溶媒を留去する方
法が知られている(特開昭59−105841)。
A known method for manufacturing the carbon monoxide adsorbent used in this separation method is to add activated carbon to a solution or suspension of copper II halide + copper oxide (moon), and then distill off the solvent. (Japanese Patent Application Laid-Open No. 59-105841).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前述の、一酸化炭素吸着剤の製法では、
■溶媒の留去に多量のエネルギーを要し、また、工業的
に実施する場合には大規模な溶剤処理設備が必要である
という問題、及びハロゲン化銅(I)または酸化銅(I
)の溶液が高濃度かつ多量の場合には溶媒留去後に未反
応のハロゲン化鋼(I)または酸化銅(I)が多量に析
出するので実際上高濃度かつ多量の溶液が用い′られず
、そのため活性炭に十分一酸化炭素吸着成分であるハロ
ゲン化銅江)または酸化銅(I)を担持させることがで
きないので、得られる吸着剤の一酸化炭素吸着特性が十
分でないという問題があった。
However, in the above-mentioned manufacturing method of carbon monoxide adsorbent,
■ Problems such as requiring a large amount of energy to distill off the solvent and the need for large-scale solvent treatment equipment when implementing it industrially, as well as copper (I) halide or copper oxide (I)
) If the solution is highly concentrated and large, a large amount of unreacted halogenated steel (I) or copper oxide (I) will precipitate after the solvent is distilled off, so in practice, a solution with high concentration and large amount cannot be used. Therefore, activated carbon cannot sufficiently support carbon monoxide adsorption components such as copper halide) or copper(I) oxide, resulting in the problem that the resulting adsorbent does not have sufficient carbon monoxide adsorption properties.

本発明は、十分な一酸化炭素吸着能を有する吸着剤の簡
単な製法を提供せんとするものである。
The present invention aims to provide a simple method for producing an adsorbent having sufficient carbon monoxide adsorption capacity.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

発明者らは、これらの問題点を解決するために、新規な
、一酸化炭素吸着剤の製法について鋭意研究を重ねた結
果、ハロゲン化銅(I)または酸化銅fIlの塩酸溶液
中に浸漬した活性炭を、該溶液から取り出した後、乾燥
させることにより、一酸化炭素吸着能の優れた吸着剤が
得られることを見出し、本発明の完成に至った。
In order to solve these problems, the inventors conducted extensive research on a new method for producing a carbon monoxide adsorbent, and as a result, they discovered that copper (I) halide or copper oxide fil was immersed in a hydrochloric acid solution. The inventors have discovered that an adsorbent with excellent carbon monoxide adsorption ability can be obtained by removing activated carbon from the solution and then drying it, leading to the completion of the present invention.

すなわち、本発明は活性炭を、ハロゲン化銅(I)また
は酸化銅(I)の塩酸溶液中に浸漬し、該溶液から取り
出した後、乾燥させることを特徴とする、一酸化炭素吸
着剤の製造方法である。
That is, the present invention is a method for producing a carbon monoxide adsorbent, which is characterized in that activated carbon is immersed in a hydrochloric acid solution of copper (I) halide or copper (I) oxide, taken out from the solution, and then dried. It's a method.

〔作用〕[Effect]

本発明の一酸化炭素吸着剤の製法では、・・ロゲン化銅
(I)または酸化銅(I)の塩酸溶液中に浸漬した活性
炭を、該溶液から取シ出した後、乾燥させることにより
、一酸化炭素吸着剤を製造するため、該溶液から取り出
した活性炭に付着した塩酸のみが乾燥時に除去の対象と
なる溶媒である。このため、本発明の一酸化炭素吸着剤
の製法では、ハロゲン化銅(エンまたは酸化銅(工)の
塩酸溶液で処理した活性炭から溶媒である塩酸を除去す
るために要するエネルギーは少量であり、乾燥工程に必
要な塩酸処理設備は小規模でよいという利点がある。
In the method for producing a carbon monoxide adsorbent of the present invention, activated carbon is immersed in a hydrochloric acid solution of copper (I) chloride or copper (I) oxide, taken out from the solution, and then dried. In order to produce a carbon monoxide adsorbent, the hydrochloric acid adhering to the activated carbon taken out from the solution is the only solvent to be removed during drying. Therefore, in the method for manufacturing the carbon monoxide adsorbent of the present invention, only a small amount of energy is required to remove the hydrochloric acid solvent from activated carbon treated with a hydrochloric acid solution of copper halide (ene or copper oxide). There is an advantage that the hydrochloric acid treatment equipment required for the drying process can be small-scale.

本発明の製法に用いられるハロゲン化銅+I+とは、た
とえば、塩化銅(月、臭化銅(I)、ヨウ化銅(I)な
どである。
The copper halide +I+ used in the production method of the present invention is, for example, copper chloride (moon, copper (I) bromide, copper (I) iodide, etc.).

一方、本発明の製法に用いられる活性炭は、木材、ヤシ
殻、石炭、石油系ピッチ、セルロース繊維、化学繊維な
どを原料として、薬品付活方式、ガス付活方式などの方
法で付活したものであり、形状的には全く限定されず、
粉状、粒状、繊維状、あるいはこれらを任意の幾何学形
状に成型したものなどが用いられる。
On the other hand, the activated carbon used in the manufacturing method of the present invention is activated using a method such as a chemical activation method or a gas activation method using wood, coconut shell, coal, petroleum pitch, cellulose fiber, chemical fiber, etc. as raw materials. , and is not limited in shape at all,
Powder, granule, fiber, or any of these molded into an arbitrary geometric shape can be used.

本発明の製法に用いられる塩酸の塩化水素濃度は1〜5
0重量〜、好ましくは15〜25重量%であシ、ハロゲ
ン化銅(I)′または酸化銅(I)の塩酸溶液とは、塩
酸100tIltに対して[15〜601、好ましくは
10〜409のハロゲン化銅(I)または酸化鋼(刀を
加えて得られる溶液である。
The hydrogen chloride concentration of the hydrochloric acid used in the production method of the present invention is 1 to 5.
A hydrochloric acid solution of copper(I) halide or copper(I) oxide in an amount of [15 to 601, preferably 10 to 409% by weight] per 100 tIlt of hydrochloric acid is 0 to 25% by weight, preferably 15 to 25% by weight. It is a solution obtained by adding copper (I) halide or oxidized steel (katana).

本発明の製法に用いられるハロゲン化鋼(I)または酸
化鋼(I)の塩酸溶液の温度は10〜150℃、好まし
くは50〜120℃である。また、該溶液に活性炭を浸
漬する時間は1分〜10時間、好ましくは30分〜3時
間であり、活性炭を浸漬している際には該溶液をかくは
んすることが好ましい。
The temperature of the hydrochloric acid solution of halogenated steel (I) or oxidized steel (I) used in the production method of the present invention is 10 to 150°C, preferably 50 to 120°C. Further, the time for immersing the activated carbon in the solution is 1 minute to 10 hours, preferably 30 minutes to 3 hours, and it is preferable to stir the solution while the activated carbon is being immersed.

本発明の製法におけるハロゲン化銅(I)または酸化銅
(I)の塩酸溶液から取り出した活性炭の乾燥は、窒素
、アルゴンなどの不活性ガス雰囲気中で、常圧または減
圧下、好ましくはα01〜10鴫Hgの減圧下において
、20〜500℃、好ましくは80〜200℃の温度で
行われる。
In the production method of the present invention, the activated carbon taken out from the hydrochloric acid solution of copper (I) halide or copper (I) oxide is dried in an inert gas atmosphere such as nitrogen or argon under normal pressure or reduced pressure, preferably α01~ It is carried out at a temperature of 20 to 500°C, preferably 80 to 200°C, under a reduced pressure of 10 Hg.

本発明の製法で得られる一酸化炭素吸着剤は、常圧下、
0〜40℃で迅速に一酸化炭素を吸着し、この吸着剤を
60℃以上に昇温するか、あるいは一酸化炭素分圧を下
げることにより、吸着された一酸化炭素を容易に放出さ
せることができる。
The carbon monoxide adsorbent obtained by the production method of the present invention can be
Rapid adsorption of carbon monoxide at 0 to 40°C, and easy release of adsorbed carbon monoxide by raising the temperature of this adsorbent to 60°C or higher or lowering the partial pressure of carbon monoxide. I can do it.

次に、本発明を実施例によってさらに説明する。Next, the present invention will be further explained by examples.

〔実施例〕〔Example〕

実施例1 本発明の製法によυ、一酸化炭素吸着剤を次のように調
製した。まず、乾燥窒素下で、内容i 500 mtの
セパラブルフラスコ中に塩化銅(I)s 9.6y (
Q、a mox )を入れ、塩化水素濃度20重量%の
塩酸200−を加えて、磁気かくはん機を用いてかき混
ぜながらフラスコ内を100℃に昇温し、塩化銅(I)
を該塩酸に溶解させた。
Example 1 A carbon monoxide adsorbent was prepared according to the manufacturing method of the present invention as follows. First, under dry nitrogen, copper(I) chloride s 9.6y (
Add 200% hydrochloric acid with a hydrogen chloride concentration of 20% by weight, heat the inside of the flask to 100°C while stirring using a magnetic stirrer, and add copper(I) chloride.
was dissolved in the hydrochloric acid.

次いで、このフラスコ内の塩酸溶液中に、乾葉窒素下で
、5■Hgの減圧下において18[]℃で3時間の乾燥
を行った市販の石炭系粒状活性炭(平均粒径1.0II
Ill11比表面積115om”/り)102を浸漬し
、フラスコ内容物を100℃に保ちながら2時間かくは
んした後、乾燥窒素下で、浸漬した活性炭を該塩酸溶液
から取シ出し、5BHgの減圧下、120℃において3
時間の乾燥を行い、一酸化炭素吸着剤を得だ。
Next, in the hydrochloric acid solution in this flask, commercially available coal-based granular activated carbon (average particle size 1.0 II
After stirring for 2 hours while keeping the contents of the flask at 100° C., the soaked activated carbon was taken out from the hydrochloric acid solution under dry nitrogen, and under a reduced pressure of 5 BHg. 3 at 120℃
Perform drying for an hour and get carbon monoxide adsorbent.

上記の一酸化炭素吸着剤10yを内容f*100−のな
す形フラスコ中に入れ、再度、5111+1Hgの減圧
下で排気しながら120℃に1時間保った後、減圧下で
室温になるまで放置した。次いで、このなす型フラスコ
を1 atmの一酸化炭素31を入れた容器と結合し、
20℃において、一酸化炭素を該吸着剤と接触させ、一
酸化炭素吸d遣をガスビューレット法により測定した。
The above carbon monoxide adsorbent 10y was placed in an eggplant-shaped flask with a content of f*100-, and again kept at 120°C for 1 hour while being evacuated under a reduced pressure of 5111+1Hg, and then left under reduced pressure until it reached room temperature. . The eggplant-shaped flask is then combined with a container containing 1 atm of carbon monoxide, and
Carbon monoxide was brought into contact with the adsorbent at 20°C, and carbon monoxide adsorption was measured by the gas buret method.

一酸化炭素の吸着は迅速であり、3分後には12、0 
mmox  の一酸化炭素が吸着され、60分後の一酸
化炭素吸着量は1a 8 mmol  となり、はぼ平
衡吸着量に達した。
The adsorption of carbon monoxide is rapid, with 12,0
mmox of carbon monoxide was adsorbed, and the amount of carbon monoxide adsorbed after 60 minutes was 1a 8 mmol, almost reaching the equilibrium adsorption amount.

次に、真空ポンプを用いて、この一酸化炭素吸着剤の入
ったなす形フラスコ内を、20℃において、5emHg
の減圧下で10分間排気して、吸着された一酸化炭素を
放出させた後、このなすをフラスコを1 atmの一酸
化炭素3tを入れだ容器と結合し、20℃において、一
酸化炭素を吸着剤と接触させた。
Next, using a vacuum pump, the inside of the eggplant-shaped flask containing this carbon monoxide adsorbent was heated to 5<em>Hg at 20°C.
After evacuation for 10 minutes under a reduced pressure of contacted with an adsorbent.

一酸化炭素の吸着は迅速であり、3分後には11、7 
mmol  の一酸化炭素が吸着され、60分後の一酸
化炭素吸着量はI FL 2 mmol  となり、は
ぼ平衡吸着蓋に達した。
The adsorption of carbon monoxide is rapid, with 11,7
mmol of carbon monoxide was adsorbed, and the amount of carbon monoxide adsorbed after 60 minutes was I FL 2 mmol, almost reaching the equilibrium adsorption lid.

以後、上記の操作を繰り返しても、一酸化炭素の吸着速
度および吸着itK変化は見られなかった。
Thereafter, even if the above operation was repeated, no change in the carbon monoxide adsorption rate or adsorption itK was observed.

実施例2 実施例1と同様に調製した一酸化炭素吸着剤10rを内
容積100−のなす形フラスコ中に入れ、5IOIHg
の減圧下で排気しながら120℃に1時間保った後、減
圧下で室温になるまで放置した。次いで、このなす形フ
ラスコヲ1 atmの一酸化炭素31を入れた容器と結
合し、20℃において、一酸化炭素を該吸着剤と接触さ
せ、一酸化炭素吸着量をガスビューレット法により測定
した。
Example 2 10 r of carbon monoxide adsorbent prepared in the same manner as in Example 1 was placed in an oval-shaped flask with an internal volume of 100 -, and 5IOIHg
The mixture was kept at 120° C. for 1 hour while being evacuated under reduced pressure, and then left to stand under reduced pressure until it reached room temperature. Next, this eggplant-shaped flask was combined with a container containing 1 atm of carbon monoxide, and carbon monoxide was brought into contact with the adsorbent at 20° C., and the amount of carbon monoxide adsorbed was measured by the gas burette method.

一酸化炭素の吸着は迅速であり、3分後には12、0 
mmol  の一酸化炭素が吸着され、60分後の一酸
化炭素吸着量は1 a 8 mmol  となり、はぼ
平衡吸着量に達した。
The adsorption of carbon monoxide is rapid, with 12,0
mmol of carbon monoxide was adsorbed, and the amount of carbon monoxide adsorbed after 60 minutes was 1 a 8 mmol, almost reaching the equilibrium adsorption amount.

次に、この吸着剤を1 atmで120℃に加熱し、一
酸化炭素放出量をガスビューレット法により測定した。
Next, this adsorbent was heated to 120° C. at 1 atm, and the amount of carbon monoxide released was measured by the gas buret method.

一酸化炭素は迅速に放出され、放出量は10分後に11
.5 rnmol  に達した。放出ガスをガスクロマ
トグラフで分析した結果、放出ガスは一酸化炭素のみで
あシ、他の成分は検出されなかった。
Carbon monoxide is released quickly, the amount released is 11 after 10 minutes.
.. It reached 5 rnmol. Analysis of the released gas using a gas chromatograph revealed that the released gas was only carbon monoxide and no other components were detected.

その後、一酸化炭素を放出させた吸着剤の入ったなす形
フラスコを、乾燥窒素を通じながら冷却した後、1at
mの一酸化炭素3/を入れた容器と結合し、20℃にお
いて、一酸化炭素を吸着剤と接触させた。
After that, the eggplant-shaped flask containing the adsorbent that released carbon monoxide was cooled while passing dry nitrogen, and then 1 at.
The carbon monoxide was brought into contact with the adsorbent at 20°C.

一酸化炭素の吸着は迅速であり、3分後にはj Q、 
A mm01  の一酸化炭素が吸着され、60分後の
一酸化炭素吸着量は1 & A mmo’l  となり
、はぼ平衡吸着量に達した。
The adsorption of carbon monoxide is rapid; after 3 minutes, j Q,
A mm01 of carbon monoxide was adsorbed, and the amount of carbon monoxide adsorbed after 60 minutes was 1 & A mmo'l, almost reaching the equilibrium adsorption amount.

この吸着剤を1 atmで120℃に加熱すると、−m
化炭素は迅速に放出され、放出量は10分後に16.6
 mmol  に達した。
When this adsorbent is heated to 120°C at 1 atm, -m
The carbon dioxide is released quickly, and the amount released is 16.6% after 10 minutes.
mmol was reached.

以後、上記の操作を繰り返しても、一酸化炭素の吸着速
度および吸着量に変化は見られなかった。
Thereafter, even if the above operation was repeated, no change was observed in the adsorption rate and amount of carbon monoxide.

実施例3 本発明の製法により、一酸化炭素吸着剤を次のように調
製した。まず、乾燥窒素下で、内容積500−のセパラ
ブルフラスコ中に酸化銅+112 a A f (0,
2+n+n1. ) f入れ、塩化水素濃度20重量う
の塩酸200−を加えて、磁気かくはん機を用いてかき
混ぜながらフラスコ内を100℃に昇温し、酸化鋼(I
)を該塩酸に溶解させた。
Example 3 A carbon monoxide adsorbent was prepared according to the manufacturing method of the present invention as follows. First, copper oxide +112 a A f (0,
2+n+n1. ), add 200% of hydrochloric acid with a hydrogen chloride concentration of 20% by weight, and heat the inside of the flask to 100°C while stirring using a magnetic stirrer.
) was dissolved in the hydrochloric acid.

次いで、このフラスコ内の塩酸溶液中に、乾燥窒素下で
、実施例1と同様の乾燥を行った実施例1と同一の活性
炭10rQ浸漬し、フラスコ内容物を100℃に保ちな
がら2時間かくはんした後、乾燥窒素下で、浸漬した活
性炭を該塩酸溶液から取り出し、5.Hgの減圧下、1
20℃において3時間の乾燥を行い、一酸化炭素吸着剤
を得た。
Next, the same activated carbon as in Example 1, which had been dried in the same manner as in Example 1, was immersed in 10 rQ of the same activated carbon as in Example 1 under dry nitrogen in the hydrochloric acid solution in this flask, and stirred for 2 hours while keeping the contents of the flask at 100°C. Afterwards, the soaked activated carbon is removed from the hydrochloric acid solution under dry nitrogen; 5. Under reduced pressure of Hg, 1
Drying was performed at 20° C. for 3 hours to obtain a carbon monoxide adsorbent.

上記の一酸化炭素吸着剤102を内容積100−のなす
形フラスコ中に入れ、再度、5嘘Hgの減圧下で排気し
ながら120℃に1時間保った後、減圧下で室温になる
まで放置した。次いで、このなす型フラスコを1 at
mの一酸化炭素3eを入れた容器と結合し、20℃にお
いて、一酸化炭素を該吸着剤と接触させ、一酸化炭素吸
着量ヲガスビューレット法により測定した。
The above carbon monoxide adsorbent 102 was placed in an oval-shaped flask with an internal volume of 100 mm, and again kept at 120°C for 1 hour while being evacuated under a reduced pressure of 5 Hg, and then left under reduced pressure until it reached room temperature. did. Next, this eggplant-shaped flask was heated to 1 at
The adsorbent was connected to a container containing carbon monoxide 3e, and carbon monoxide was brought into contact with the adsorbent at 20° C., and the amount of carbon monoxide adsorbed was measured by the gas buret method.

一酸化炭素の吸着は迅速であり、3分後には11、4 
mm0IL  の一酸化炭素が吸着され、60分後の一
酸化炭素吸着量は17.9 mmol  となり、はぼ
平衡吸着量に達した。
The adsorption of carbon monoxide is rapid, with 11,4
mm0IL of carbon monoxide was adsorbed, and the amount of carbon monoxide adsorbed after 60 minutes was 17.9 mmol, almost reaching the equilibrium adsorption amount.

次に、真空ポンプを用いて、この一酸化炭素吸着剤の入
ったなす形フラスコ内を、20℃において、5mHgの
減圧下で10分間排気して、吸着された一酸化炭素を放
出させた後、このなす型フラスコを1 atmの一酸化
炭素3tを入れた容器と結合し、20℃において、一酸
化炭素を吸着剤と接触させた。
Next, the inside of the eggplant-shaped flask containing this carbon monoxide adsorbent was evacuated for 10 minutes at 20°C under a reduced pressure of 5 mHg using a vacuum pump to release the adsorbed carbon monoxide. This eggplant flask was connected to a container containing 3 tons of carbon monoxide at 1 atm, and the carbon monoxide was brought into contact with the adsorbent at 20°C.

一酸化炭素の吸着は迅速であり、3分後には11、1 
mmal  の一酸化炭素が吸着され、60分後の一酸
化炭素吸着量はj 7.4 mmal  となシ、はぼ
平衡吸着量に達した。
The adsorption of carbon monoxide is rapid, with 11,1
mmal of carbon monoxide was adsorbed, and the amount of carbon monoxide adsorbed after 60 minutes was j 7.4 mmal, almost reaching the equilibrium adsorption amount.

以後、上記の操作を繰り返しても、一酸化炭素の吸着速
度および吸着量に変化は見られなかった。
Thereafter, even if the above operation was repeated, no change was observed in the adsorption rate and amount of carbon monoxide.

実施例4 実施例3と同様に調製した一酸化炭素吸着剤10tを内
容積100−のなす形フラスコ中に入れ、5ItIIH
gの減圧下で排気しながら120℃に1時間保った後、
減圧下で室温になるまで放置した。次いで、このなす形
フラスコを1atmの一酸化炭素3tを入れた容器と結
合し、20℃において、一酸化炭素を該吸着剤と接触さ
せ、一酸化炭素吸着量をガスビューレット法により測定
した。
Example 4 10 tons of carbon monoxide adsorbent prepared in the same manner as in Example 3 was placed in an oval-shaped flask with an internal volume of 100-
After being kept at 120°C for 1 hour while being evacuated under a reduced pressure of
It was left under reduced pressure until it reached room temperature. Next, this eggplant-shaped flask was combined with a container containing 3 tons of carbon monoxide at 1 atm, and the carbon monoxide was brought into contact with the adsorbent at 20° C., and the amount of carbon monoxide adsorbed was measured by the gas buret method.

一酸化炭素の吸着は迅速であり、3分後には11、4 
mmol  の一酸化炭素が吸着され、60分後の一酸
化炭素吸着は17.9 mmol  となり、はぼ平衡
吸着量に達した。
The adsorption of carbon monoxide is rapid, with 11,4
mmol of carbon monoxide was adsorbed, and the carbon monoxide adsorption after 60 minutes was 17.9 mmol, almost reaching the equilibrium adsorption amount.

次に、この吸着剤を1 atmで120℃に加熱し、一
酸化炭素放出量をガスビューレット法により測定した。
Next, this adsorbent was heated to 120° C. at 1 atm, and the amount of carbon monoxide released was measured by the gas buret method.

一酸化炭素は迅速に放出され、放出量は10分後に15
.5mmo1[達した。放出ガスをガスクロマトグラフ
で分析した結果、放出ガスは一酸化炭素のみであり、他
の成分は検出されなかった。
Carbon monoxide is released quickly, with the amount released being 15% after 10 minutes.
.. 5 mmol [reached. Analysis of the released gas using a gas chromatograph revealed that the released gas was only carbon monoxide and no other components were detected.

その後、一酸化炭素?放出させた吸着剤の入ったなす形
フラスコを、乾燥窒素を通じながら冷却した後、1 a
tmの一酸化炭素3/を入れた容器と結合し、20℃に
おいて、一酸化炭素を吸着剤と接触させた。
Then carbon monoxide? After cooling the eggplant-shaped flask containing the released adsorbent while passing through dry nitrogen, 1 a
The carbon monoxide was brought into contact with the adsorbent at 20°C.

一酸化炭素の吸着は迅速であり、3分後には10、1 
mmQ’l  の一酸化炭素が吸着され、60分後の一
酸化炭素3/量は15.8 mmol  となり、Q〕
ぼ平衡吸着1に達した。
Carbon monoxide adsorption is rapid, with 10,1
mmQ'l of carbon monoxide is adsorbed, and the amount of carbon monoxide 3/amount after 60 minutes is 15.8 mmol, Q]
Almost equilibrium adsorption 1 was reached.

この吸着剤を1 atmで120℃に加熱すると、一酸
化炭素は迅速に放出され、放出量は10分後に15.8
 mmで)1 に達した。
When this adsorbent is heated to 120°C at 1 atm, carbon monoxide is rapidly released, with the amount released being 15.8% after 10 minutes.
mm) reached 1.

以後、上記の操作を繰り返しても、一酸化炭素の吸着速
度および吸着量に変化は見られなかった。
Thereafter, even if the above operation was repeated, no change was observed in the adsorption rate and amount of carbon monoxide.

〔発明の効果〕〔Effect of the invention〕

本発明は、所要エネルギーの低減ならびに必要設備の小
規模化を可能とした、全く新規な、一酸化炭素吸着剤の
製法を提供するものである。
The present invention provides a completely new method for producing a carbon monoxide adsorbent, which enables reduction in energy requirements and downsizing of necessary equipment.

さらに、本発明の一酸化炭素吸着剤の製法に用いられる
ハロゲン化銅(I)または酸化銅(Ilの塩酸fd液は
繰り返し再使用することが可能であり、本発明により、
経済的に極めて有利な、一酸化炭素吸着剤の製造が実現
した。
Furthermore, the hydrochloric acid FD solution of copper (I) halide or copper oxide (Il) used in the method for producing the carbon monoxide adsorbent of the present invention can be repeatedly reused, and according to the present invention,
A highly economically advantageous carbon monoxide adsorbent has been produced.

復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫Sub-agent: 1) Akira Sub-agent Ryo Hagi Hara - Sub-agent Atsuo Yasunishi

Claims (1)

【特許請求の範囲】[Claims] 活性炭を、ハロゲン化銅( I )または酸化銅( I )の
塩酸溶液中に浸漬し、該溶液から取り出した後、乾燥さ
せることを特徴とする、一酸化炭素吸着剤の製造方法。
A method for producing a carbon monoxide adsorbent, which comprises immersing activated carbon in a hydrochloric acid solution of copper (I) halide or copper (I) oxide, taking it out from the solution, and then drying it.
JP60253873A 1985-11-14 1985-11-14 Manufacturing method of carbon monoxide adsorbent Expired - Lifetime JPH0712427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60253873A JPH0712427B2 (en) 1985-11-14 1985-11-14 Manufacturing method of carbon monoxide adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60253873A JPH0712427B2 (en) 1985-11-14 1985-11-14 Manufacturing method of carbon monoxide adsorbent

Publications (2)

Publication Number Publication Date
JPS62114646A true JPS62114646A (en) 1987-05-26
JPH0712427B2 JPH0712427B2 (en) 1995-02-15

Family

ID=17257320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60253873A Expired - Lifetime JPH0712427B2 (en) 1985-11-14 1985-11-14 Manufacturing method of carbon monoxide adsorbent

Country Status (1)

Country Link
JP (1) JPH0712427B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673588A (en) * 1992-06-26 1994-03-15 Elf Atochem Sa Method for purifying alkali metal chloride aqueous solution by removing iodine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673588A (en) * 1992-06-26 1994-03-15 Elf Atochem Sa Method for purifying alkali metal chloride aqueous solution by removing iodine

Also Published As

Publication number Publication date
JPH0712427B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JPH08332375A (en) Adsorbent and method for removing trace of oxygen from inertgas
JP3678251B2 (en) Method for producing high specific surface area carbon material
JPS58156517A (en) Adsorptive separation method of carbon monoxide
JPS62114646A (en) Preparation of carbon monoxide adsorbent
JPS58124516A (en) Separation of carbon monooxide from mixed gas
JPS6126417B2 (en)
US6652826B1 (en) Process for elimination of low concentrations of hydrogen sulfide in gas mixtures by catalytic oxidation
US3014899A (en) Reduced group valpha metal oxide on silica/alumina support
JPH0218896B2 (en)
JPS634844A (en) Adsorbent for carbon monoxide
US3667908A (en) Removal and recovery of sulfur oxides from gases
JPH0716604B2 (en) Carbon monoxide adsorbent
JPS63248701A (en) Thermochemical production of hydrogen utilizing high yield decomposition of hydrogen iodide
JPS6135128B2 (en)
JPS60151207A (en) Separation of carbon monoxide
US2716664A (en) Removal of selenium in aldehyde
JPH0252539B2 (en)
JPS6041987B2 (en) Method for separating carbon monoxide from mixed gas
JPS63205140A (en) Adsorbent for nitrogen monoxide and method for separating and removing nitrogen monoxide
JPH09290150A (en) Novel composite, its preparation, and carbon monoxide adsorbing agent composed of the composite
JPH0232040A (en) Production of terephthalic acid
JPS63267434A (en) Carbon monoxide adsorbent
JPS6240333B2 (en)
JPS62237942A (en) Preparation of carbon monoxide adsorbent
JP2947478B2 (en) Carbon monoxide remover