JPS62113792A - Production unit for band silicon crystal - Google Patents
Production unit for band silicon crystalInfo
- Publication number
- JPS62113792A JPS62113792A JP25321385A JP25321385A JPS62113792A JP S62113792 A JPS62113792 A JP S62113792A JP 25321385 A JP25321385 A JP 25321385A JP 25321385 A JP25321385 A JP 25321385A JP S62113792 A JPS62113792 A JP S62113792A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- crystal
- silicon melt
- band
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、帯状シリコン結晶の製造装置に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an apparatus for manufacturing band-shaped silicon crystals.
[発明の技術的背景とその問題点1
帯状シリコン結晶は、形状が薄板状であるため、チョク
ラルスキー法等で得られたインゴット状のシリコン結晶
とは異なり、その得られた形状のままで半導体素子用基
板として使用できる。すなわち、チョクラルスキー法等
によって成長されたインゴット状シリコン結晶をスライ
シングして7IIIfi状の半導体素子用基板を作り出
すときのような材料ロスが少なくてすみ、安価な半導体
素子用基板の実現が可能となる。[Technical background of the invention and its problems 1 Band-shaped silicon crystals have a thin plate-like shape, so unlike ingot-shaped silicon crystals obtained by the Czochralski method, etc., band-shaped silicon crystals can remain in the obtained shape. Can be used as a substrate for semiconductor devices. In other words, there is less material loss, which is required when creating a 7IIIfi-shaped semiconductor element substrate by slicing an ingot-shaped silicon crystal grown by the Czochralski method, etc., and it is possible to realize an inexpensive semiconductor element substrate. Become.
第7図はこのような帯状シリコン結晶を成長するための
帯状シリコン結晶製造装置の従来例を示す概略構成図で
ある。カーボン製るつぼ1中におかれたシリコン原料を
外部より加熱して溶融し、シリコン融液6を得る。るつ
ぼ底部にあけられた2つの穴よりシリコン融液面と垂直
に一定距離を保持するよう一対の糸状支持体3a、3b
を挿入し、この一対の糸状支持体3a、3bの間にシリ
コン融液6に接するように薄板状種子4を配する。FIG. 7 is a schematic diagram showing a conventional example of a band-shaped silicon crystal manufacturing apparatus for growing such a band-shaped silicon crystal. A silicon raw material placed in a carbon crucible 1 is heated and melted from the outside to obtain a silicon melt 6. A pair of filamentous supports 3a, 3b are placed so as to maintain a certain distance perpendicularly to the silicon melt surface from the two holes drilled at the bottom of the crucible.
is inserted, and the thin plate-like seed 4 is arranged between the pair of filamentous supports 3a and 3b so as to be in contact with the silicon melt 6.
この際、一対の糸状支持体3a、3b及び種子4はシリ
コン融液6と濡れ性がよい物質で構成され、種子4と糸
状支持体3a、3bとの間に浸潤したシリコン融液によ
り両者は付着する。従って、種子基i4を引上げること
によって一対の糸状支持体3a、3bも引上げられ、種
子結晶4と一対の糸状支持体3a 、3bを支えとして
シリコン融液が融液面より上方に持ち上げられて結晶化
し、帯状シリコン融液5が成長されることになる。At this time, the pair of filamentous supports 3a, 3b and the seeds 4 are composed of a substance that has good wettability with the silicon melt 6, and the silicon melt that has infiltrated between the seeds 4 and the filamentous supports 3a, 3b makes both of them adhere to. Therefore, by pulling up the seed base i4, the pair of filamentous supports 3a and 3b are also pulled up, and the silicon melt is lifted above the melt surface using the seed crystal 4 and the pair of filamentous supports 3a and 3b as support. It is crystallized and a band-shaped silicon melt 5 is grown.
上述の装置で製造される帯状シリコン結晶の厚さは主に
温度と引上げ速度のとの関数であり、るつぼ加熱温度を
低くするほど、或いは引上げ速度を遅くするほど結晶は
厚くなり第8図に示す如き結果が得られた。第8図は引
上げ速度を変化させて成長させた幅約100mの結晶の
厚さを示したものである。例えば厚さ0.5Mとするに
は、結晶引上げ速度は18履/分であった。ある厚さの
結晶を高速で引上げるには、加熱温度を下げる必要があ
ることがわかる。これは以下の理由による。The thickness of the band-shaped silicon crystal produced by the above-mentioned apparatus is mainly a function of temperature and pulling rate, and the lower the crucible heating temperature or the slower the pulling rate, the thicker the crystal becomes, as shown in Figure 8. The results shown are obtained. FIG. 8 shows the thickness of crystals with a width of about 100 m grown by varying the pulling speed. For example, to obtain a thickness of 0.5M, the crystal pulling rate was 18 shoes/min. It can be seen that in order to pull a crystal of a certain thickness at high speed, it is necessary to lower the heating temperature. This is due to the following reasons.
即ち、一定の幅、厚さをもつ結晶を引上げる速度Vと温
度(詳しくは固液界面における融液側及び結晶側の温度
勾配それぞれ
d T4/dz、 d Ts /dz)との間にはなる
関係がある。ここにしは結晶化潜熱、KS。In other words, there is a difference between the speed V at which a crystal with a certain width and thickness is pulled and the temperature (specifically, the temperature gradients d T4/dz and d Ts /dz on the melt side and crystal side at the solid-liquid interface, respectively). There is a relationship. This is the latent heat of crystallization, KS.
KJlはそれぞれ結晶、融液の熱伝導率であり2は上方
を正とすると、dTs/dz及びdTJL/dzは通常
負の値をとる。固液界面の温度はシリコンの融点(約1
400℃)で一定であるため、るつぼ加熱温度を下げる
ことは上式における融液側の温度勾配d7s/dzの絶
対値1dTJl/dzlを小さくすることになり速度V
が大きくなるわけである。KJl is the thermal conductivity of the crystal and melt, respectively, and assuming that 2 is positive in the upper direction, dTs/dz and dTJL/dz usually take negative values. The temperature of the solid-liquid interface is about 1
400℃), lowering the crucible heating temperature reduces the absolute value 1dTJl/dzl of the temperature gradient d7s/dz on the melt side in the above equation, and the speed V
becomes larger.
ところが、第7図に示した従来装置で結晶成長を行った
場合、るつぼの加熱温度をある温度以下にすると、シリ
コン融液はるつぼ壁面から固化し始め、やがて固化が結
晶に達して結晶が固着し成長が中断される。これを防ぐ
ためるつぼ加熱温度を上げていくと、結晶の固着及びる
つぼ壁面からの固化はなくなり結晶成長を続けることが
できるが、るつぼ加熱濃度を上げたために再びシリコン
融液の温度が上がり、高速引上げの妨げとなる。However, when crystal growth is performed using the conventional apparatus shown in Figure 7, when the heating temperature of the crucible is lowered below a certain temperature, the silicon melt starts to solidify from the crucible wall surface, and eventually the solidification reaches the crystals and the crystals become fixed. and growth is interrupted. If the crucible heating temperature is increased to prevent this, the crystals will no longer stick and solidify from the crucible wall, allowing crystal growth to continue, but as the crucible heating concentration is increased, the temperature of the silicon melt will rise again, resulting in a high rate of growth. This will impede lifting.
以上のように従来装置では、ある一定の厚さ、例えば5
00μ僧の結晶を上記した速度以上(20aS1分以上
)で製造することができないという問題があった。As mentioned above, in the conventional device, a certain thickness, for example, 5
There was a problem in that it was not possible to produce crystals of 00μ at a speed higher than the above-mentioned speed (20aS 1 minute or higher).
(発明の目的]
本発明は上記の問題に鑑みてなされたもので、るつぼ壁
面からの固化の進行によって結晶成長が中断されること
なく長時間安定して結晶成長が行なわれ、かつ高速引上
げが可能な帯状シリコン結晶製造装置を提供することを
目的とする。(Objective of the Invention) The present invention has been made in view of the above-mentioned problems, and is capable of stable crystal growth for a long period of time without being interrupted by the progress of solidification from the crucible wall surface, and capable of high-speed pulling. The purpose of the present invention is to provide a band-shaped silicon crystal manufacturing device that is possible.
[発明のW要]
本発明は、シリコン融液収容るつぼの底部上面に、前記
るつぼ底部にあけられた糸状支持体挿入用穴を結ぶ直線
上に凸部を設けたことにより、るつぼ内の温度分布をる
つぼ壁付近よりも結晶が成長されるるつぼ中央部の方の
濃度が低(なるようにし、るつぼ壁面からの固化進行に
よる結晶成長の中断なしに高速でしかも長時間安定して
結晶成長が可能な帯状シリコン結晶製造装置である。[Summary of the Invention] The present invention provides a convex portion on the upper surface of the bottom of the crucible for storing silicon melt on a straight line connecting the hole for inserting the filamentous support formed in the bottom of the crucible, thereby reducing the temperature inside the crucible. The distribution is made so that the concentration is lower in the center of the crucible where crystals grow than in the vicinity of the crucible walls, and crystal growth is maintained at high speed and stably for a long time without interrupting crystal growth due to solidification progressing from the crucible walls. This is a possible band-shaped silicon crystal manufacturing device.
[発明の実施例]
本発明に係る帯状シリコン結晶製造用るつぼの概略図を
第1図に示す。即ち、カーボン製るっぽ1の底部上の凸
部101は、るつぼ底部にあけられた糸状支持体挿入用
の2つの穴2a、2bを結ぶ直線上に位置し、前記2つ
の穴2a、2bの間に細長く、すなわち成長すべき結晶
の幅方向に細長く配置されている。凸部101の大きさ
は、成長される結晶幅以下の長さ、幅は結晶厚さの5〜
30倍の範囲、高さは凸部101の上端がシリコン融液
下3〜5awとなるようにする。[Embodiments of the Invention] FIG. 1 shows a schematic diagram of a crucible for producing band-shaped silicon crystals according to the present invention. That is, the protrusion 101 on the bottom of the carbon-made Luppo 1 is located on a straight line connecting the two holes 2a, 2b for inserting the filamentous support formed in the bottom of the crucible, and the two holes 2a, 2b are connected to each other. In other words, they are arranged in an elongated manner in the width direction of the crystal to be grown. The size of the convex portion 101 is less than or equal to the crystal width to be grown, and the width is 5 to 5 times the crystal thickness.
The range of 30 times and the height are set so that the upper end of the convex portion 101 is 3 to 5 aw below the silicon melt.
上記るつぼ1を用いた帯状シリコン結晶製造の実施例を
以下に説明する。An example of manufacturing a band-shaped silicon crystal using the crucible 1 described above will be described below.
第2図に示す様な構成の帯状シリコン結晶製造装置にて
幅10Gの帯状シリコン結晶を成長させた。第2図中、
第7図と同一部分は同一符号を付してその説明を省略す
る。A band-shaped silicon crystal having a width of 10 G was grown using a band-shaped silicon crystal manufacturing apparatus configured as shown in FIG. In Figure 2,
The same parts as in FIG. 7 are given the same reference numerals, and the explanation thereof will be omitted.
本実施例では、るつぼ底部の凸部101を矩形とし、長
さを98IWi、幅5Mとした。また凸部101の高さ
は、るつぼ1の深さ30sのものを使用し、るつぼ底部
上面より20mとした。このるつぼ1を用いて帯状シリ
コン結晶5を成長させた結果を第3図に示す。第3図は
横軸に引上げ速度(m /分)、縦軸に結晶厚さく m
)を示し、従来のるつぼ底部上面に凸部がないものA
では結晶厚さ500 、cxmのものを得るには引上げ
速度は約20d/分であったが、本発明によるるつぼ底
部上面に凸部を設けたちのBでは、引上げ速度30m/
分で厚さ約500μmの結晶を得ることができた。In this example, the protrusion 101 on the bottom of the crucible was rectangular, with a length of 98IWi and a width of 5M. Further, the height of the convex portion 101 was set to 20 m from the upper surface of the bottom of the crucible, using a crucible 1 having a depth of 30 s. FIG. 3 shows the results of growing a band-shaped silicon crystal 5 using this crucible 1. In Figure 3, the horizontal axis shows the pulling speed (m/min), and the vertical axis shows the crystal thickness (m).
), and there is no protrusion on the top surface of the bottom of the conventional crucible A
In order to obtain a crystal with a crystal thickness of 500 cxm, the pulling speed was approximately 20 d/min, but in B, in which a convex portion was provided on the top surface of the bottom of the crucible according to the present invention, the pulling speed was 30 m/min.
Crystals with a thickness of about 500 μm could be obtained in minutes.
このように、本発明によるシリコン収容るつぼ1の底部
上面に、前記るつぼ底部にあけられた穴2a、2bを結
ぶ直線上に凸部101を設けたことによって、結晶成長
が行なわれるるつぼ1の中央部分のシリコン融液6の温
度がるつぼ1の壁付近のシリコン融液6の温度よりも低
くなるような温度分布とすることにより、るつぼ1の壁
面からの固化進行による結晶成長が中断することなく高
速でしかも長時間安定して結晶成長が行なえるようにな
った。また、本発明のその他の効果として、るつぼ中央
の結晶が成長される部分のシリコン融液面の温度分布が
ほぼ均一となり、その結果、厚さがほぼ均一で平坦な帯
状シリコン結晶が得られ、これを太陽電池用基板として
素子化したところ良好の特性のものを得ることができた
。 ・[発明の他の実施例]
上記実施例ではるつぼ底部の凸部形状を矩形としたが、
その他の形状においても前記実施例とほぼ同様な効果が
得られた。るつぼ底部上面凸部の形状例を第4因、第5
図に示す。第4図は凸部101を三角柱状にしたもので
、第5図は凸部101の中央部がるつぼの両側壁面側に
ふくらんだ凸レンズ形状をしたものである。この第5図
の形状においては、結晶幅方向中央部のシリコン融液の
温度が結晶端部の温度より低くなり、結晶成長が結晶の
中央部より結晶幅方向端部に向って進む。これにより結
晶成長中に発生する歪みを結晶両端に逃がし、半導体素
子用基板として用いる場合には、歪みの多い結晶両端部
を取除くことにより、高品質の半導体素子用基板が得ら
れ、しかも成長された結晶を有効に利用することができ
る。As described above, by providing the convex portion 101 on the upper surface of the bottom of the silicon containing crucible 1 according to the present invention on the straight line connecting the holes 2a and 2b drilled in the bottom of the crucible, the center of the crucible 1 where crystal growth is performed is formed. By creating a temperature distribution such that the temperature of the silicon melt 6 in that part is lower than the temperature of the silicon melt 6 near the wall of the crucible 1, crystal growth due to progress of solidification from the wall of the crucible 1 is not interrupted. Crystal growth can now be performed at high speed and stably for long periods of time. In addition, as another effect of the present invention, the temperature distribution of the silicon melt surface in the part where the crystal is grown in the center of the crucible becomes almost uniform, and as a result, a flat band-shaped silicon crystal with a substantially uniform thickness is obtained. When this was made into a device as a substrate for a solar cell, it was possible to obtain a device with good characteristics. - [Other embodiments of the invention] In the above embodiments, the convex shape at the bottom of the crucible was rectangular,
Even with other shapes, almost the same effects as in the above example were obtained. Examples of the shape of the convex portion on the upper surface of the bottom of the crucible are the fourth factor and the fifth factor.
As shown in the figure. In FIG. 4, the convex portion 101 is shaped like a triangular prism, and in FIG. 5, the center portion of the convex portion 101 is shaped like a convex lens, bulging toward both side walls of the crucible. In the shape shown in FIG. 5, the temperature of the silicon melt at the center in the width direction of the crystal is lower than the temperature at the ends of the crystal, and crystal growth proceeds from the center of the crystal toward the ends in the width direction. This allows the strain that occurs during crystal growth to escape to both ends of the crystal, and when used as a substrate for semiconductor devices, by removing both ends of the crystal with a lot of distortion, a high quality substrate for semiconductor devices can be obtained, and the growth The resulting crystals can be used effectively.
また、第6図に示すようにるつぼ底部上面凸部101の
結晶幅方向の両端上部を斜めに落とすことによっても、
結晶中央部のシリコン融液の温度が結晶端部の温度より
低くなるような温度分布となり、上記と同様な効果が得
られた。他の形状においても凸部両端部を斜めに落とす
ことによって上記と同様な効果が得られる。Alternatively, as shown in FIG. 6, by dropping the upper portions of both ends of the crucible bottom upper surface convex portion 101 in the crystal width direction obliquely,
The temperature distribution was such that the temperature of the silicon melt at the center of the crystal was lower than the temperature at the ends of the crystal, and the same effect as above was obtained. In other shapes as well, the same effect as above can be obtained by dropping both ends of the convex portion obliquely.
他にるつぼを底部上面の凸部を成長すべく結晶の幅より
長くして結晶成長を行ってみたが、結晶両端部の糸状支
持体部分のシリコン融液温度が下がり、結晶成長を高速
で行うためにるつぼ加熱温度を下げていくと、糸状支持
体部が固着し、結晶成長が中断することが起きた。I also tried growing the crucible by making the crucible longer than the width of the crystal in order to grow the convex part on the top surface of the bottom, but the temperature of the silicon melt at the filamentous supports at both ends of the crystal decreased and the crystal grew at high speed. When the heating temperature of the crucible was lowered for this reason, the filamentous support portions became fixed and crystal growth was interrupted.
[発明の効果]
以上述べたように本発明によれば、るつぼ内に収容され
たシリコン融液の温度を、結晶幅方向中央部のシリコン
融液の温度が結晶幅方向端部のシリコン融液の温度より
低くすることにより、帯状シリコン結晶成長中にるつぼ
壁面からの固化の進行によって結晶成長が中断されるこ
となく長時間安定して結晶成長が行なわれ、かつ高速引
上げが可能な帯状シリコン結晶製造装置を提供すること
ができる。[Effects of the Invention] As described above, according to the present invention, the temperature of the silicon melt contained in the crucible is lower than that of the silicon melt at the center in the crystal width direction. By setting the temperature lower than Manufacturing equipment can be provided.
第1図は本発明に係るるつぼの一例を示す概略斜視図、
第2図は本発明の帯状シリコン結晶製造装置の一実施例
を示す概略断面図、第3図は本発明の引上げ速度結晶厚
さ特性の一例を従来と比較して示す図、第4図、第5図
、第6図はそれぞれ本発明の他の実施例を示す概略斜視
図、第7図は従来の帯状シリコン結晶製造装置の概略断
面図、第8図は従来装置の引き上げ速度−結晶厚さ特性
を示す図である。
1・・・カーボン製るつぼ、2a、2b・・・糸状支持
体挿入用穴、3a 、3b・・・糸状支持体、4・・・
種子、5・・・帯状シリコン結晶、6・・・シリコン融
液、101・・・凸部。
出願人代理人 弁理士 鈴江武彦
第1図
第2図
第4図
第5図
第6図FIG. 1 is a schematic perspective view showing an example of a crucible according to the present invention;
FIG. 2 is a schematic cross-sectional view showing an embodiment of the belt-shaped silicon crystal manufacturing apparatus of the present invention, FIG. 3 is a diagram showing an example of the pulling speed crystal thickness characteristics of the present invention in comparison with the conventional one, and FIG. 5 and 6 are schematic perspective views showing other embodiments of the present invention, FIG. 7 is a schematic cross-sectional view of a conventional belt-shaped silicon crystal manufacturing apparatus, and FIG. 8 is a drawing speed-crystal thickness of the conventional apparatus. FIG. DESCRIPTION OF SYMBOLS 1...Carbon crucible, 2a, 2b...Thread-like support insertion hole, 3a, 3b...Thread-like support, 4...
Seed, 5... Band-shaped silicon crystal, 6... Silicon melt, 101... Convex portion. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 4 Figure 5 Figure 6
Claims (2)
べき帯状シリコン結晶の幅と略等間隔にあけられた穴よ
り、シリコン融液を通してシリコン融液面と垂直に一対
の糸状支持体を配し、この一対の糸状支持体の間に前記
一対の糸状支持体及びシリコン融液に種子を接触させ、
前記種子を引上げることによつて帯状のシリコン結晶を
製造する装置において、シリコン融液収容るつぼの底部
上面に、前記るつぼ底部にあけられた穴を結ぶ直線状に
凸部を設けたことを特徴とする帯状シリコン結晶製造装
置。(1) A pair of filamentous supports are passed perpendicularly to the surface of the silicon melt through holes drilled at the bottom of the crucible containing the silicon melt at approximately equal intervals to the width of the band-shaped silicon crystal to be grown. and bringing the seeds into contact with the pair of filamentous supports and the silicon melt between the pair of filamentous supports,
The device for manufacturing band-shaped silicon crystals by pulling up the seeds, characterized in that a convex portion is provided on the upper surface of the bottom of the crucible containing the silicon melt in a linear shape connecting holes drilled in the bottom of the crucible. A device for producing band-shaped silicon crystals.
べき帯状シリコン結晶の幅以下としたことを特徴とする
特許請求の範囲第1項記載の帯状シリコン結晶製造装置
。(2) The device for producing a band-shaped silicon crystal according to claim 1, wherein the convex portion on the upper surface of the bottom of the crucible containing the silicon melt is set to be less than or equal to the width of the band-shaped silicon crystal to be grown.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25321385A JPS62113792A (en) | 1985-11-12 | 1985-11-12 | Production unit for band silicon crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25321385A JPS62113792A (en) | 1985-11-12 | 1985-11-12 | Production unit for band silicon crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62113792A true JPS62113792A (en) | 1987-05-25 |
Family
ID=17248130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25321385A Pending JPS62113792A (en) | 1985-11-12 | 1985-11-12 | Production unit for band silicon crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62113792A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019189505A (en) * | 2018-04-27 | 2019-10-31 | 京セラ株式会社 | Method for manufacturing single crystal body |
-
1985
- 1985-11-12 JP JP25321385A patent/JPS62113792A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019189505A (en) * | 2018-04-27 | 2019-10-31 | 京セラ株式会社 | Method for manufacturing single crystal body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4329195A (en) | Lateral pulling growth of crystal ribbons | |
JPH02133389A (en) | Production device of silicon single crystal | |
KR100799362B1 (en) | Method for producing silicon single crystal | |
JPH035392A (en) | Production device of silicon single crystal | |
JPS62113792A (en) | Production unit for band silicon crystal | |
KR100714215B1 (en) | High quality silicon single crystal ingot and high quality silicon wafer manufactured from the same | |
JP2010248003A (en) | METHOD FOR PRODUCING SiC SINGLE CRYSTAL | |
JPS62212292A (en) | Equipment for making silicon crystal band | |
JPS6047236B2 (en) | Band-shaped silicon crystal manufacturing equipment | |
JPS6111916B2 (en) | ||
JPS6111914B2 (en) | ||
JPS5973492A (en) | Apparatus for preparation of silicon strip crystal | |
JPS62270488A (en) | Production apparatus for beltlike silicon crystal | |
JP2024528341A (en) | Device and method for manufacturing single crystal silicon rods | |
JPS6111913B2 (en) | ||
JPH0450188A (en) | Method and apparatus for production of single crystal | |
JPH0733303B2 (en) | Crystal growth equipment | |
JPH0475880B2 (en) | ||
JP2000327490A (en) | Method and apparatus for producing silicon crystal | |
JP2600078B2 (en) | Crystal growth equipment | |
JPS63319286A (en) | Method for growing single crystal | |
KR101339151B1 (en) | Apparatus and method for growing monocrystalline silicon ingots | |
JPH11130579A (en) | Production of compound semiconductor single crystal and apparatus for producing the same | |
JPS63295498A (en) | Production of single-crystal of group iii-v compound semiconductor | |
JP3660604B2 (en) | Single crystal manufacturing method |