JPS6211253A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6211253A
JPS6211253A JP60296893A JP29689385A JPS6211253A JP S6211253 A JPS6211253 A JP S6211253A JP 60296893 A JP60296893 A JP 60296893A JP 29689385 A JP29689385 A JP 29689385A JP S6211253 A JPS6211253 A JP S6211253A
Authority
JP
Japan
Prior art keywords
layer
bump
wiring
stress relaxation
relaxation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60296893A
Other languages
Japanese (ja)
Other versions
JPS6223462B2 (en
Inventor
Susumu Sato
奨 佐藤
Hideo Tsunemitsu
常光 秀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60296893A priority Critical patent/JPS6211253A/en
Publication of JPS6211253A publication Critical patent/JPS6211253A/en
Publication of JPS6223462B2 publication Critical patent/JPS6223462B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Abstract

PURPOSE:To obtain connecting structure sufficiently resisting heat and pressure by forming a stress relaxation region onto an insulating film to a wiring layer from the tangential direction of a bump, a plane shape thereof takes a circle, and connecting the wiring layer to the bump through the region. CONSTITUTION:A stress relaxation region 330 extending to a wiring 230 from the tangential direction of a circle is shaped between a circular bump 130 and the wiring 230. An Au thin-layer 35 is laminated onto a Pi layer 33 in the region 330, and a thick Au layer 36 is formed onto the thin-layer 35, thus shaping the bump 130. The circular stress relaxation region displays an effect to breakdown larger than rectangular or tapered one, thus allowing joining having high quality and with high reliability on the simultaneous joining of multi-leads.

Description

【発明の詳細な説明】 本発明は半導体装置にかかり、特に電極端子と基板上配
線の接続構造、好ましくは、半導体素子に多数の外部導
出用リード端子を取付ける電極端子と、基板上配線の接
続の1:A造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a connection structure between an electrode terminal and wiring on a substrate, preferably a connection between an electrode terminal for attaching a large number of lead terminals for external extraction to a semiconductor element, and wiring on a substrate. No. 1: This concerns A construction.

半導体装置の電極と容器の外側へのリード線との間を電
気的に接続する方法が種々提案されている中で、細い導
線を使用して、相互に接続すべき点に接着する従来のワ
イヤボンディング方式に代って容器の内側のリード線を
延長し、又は可撓性の電気絶縁材料で作られたテープ面
に金属材料の連続箔のリボンを付着し、金属箔から、多
数のリードを形成し、かつ、その端部を先細として半導
体装置の’!ti端子に突起を設け(バンプ)直接接着
するに充分な接着端を形成し、電極端子(バンプ)に同
時に接続する方法がたとえば特公昭47−3206号公
報に提案されている。
While various methods have been proposed for electrically connecting the electrodes of semiconductor devices and the lead wires to the outside of the container, conventional wires that use thin conductive wires and adhere to the points to be connected to each other have been proposed. Instead of the bonding method, extend the lead wire inside the container, or attach a continuous foil ribbon of metal material to the tape surface made of flexible electrically insulating material, and make a large number of leads from the metal foil. of a semiconductor device with its edges tapered! For example, Japanese Patent Publication No. 47-3206 proposes a method in which a protrusion (bump) is provided on a ti terminal to form an adhesive end sufficient for direct bonding, and the terminal is simultaneously connected to an electrode terminal (bump).

上記接続方法には、銅を基体とするリードに錫を被せ、
表面が金で覆われたバンプとの間で熱により金/錫の共
晶合金を作り接続する方法と、銅を基体とするリードに
金を被せ、金のバンプとの間で、熱を圧力により接続す
る熱圧着接続法とがある。熱圧着を行なう、金属構成と
して高信頼性を要求される半導体装置には金/金が用い
られ、一方経済性を要求される半導体装置には銅/鋼が
用いられる傾向にある。
The above connection method involves covering a copper-based lead with tin,
One method is to create a gold/tin eutectic alloy using heat between the bumps whose surface is covered with gold, and the other is to apply heat and pressure between the copper-based lead, which is covered with gold, and the gold bump. There is a thermocompression bonding method that connects the There is a tendency for gold/gold to be used for semiconductor devices that are bonded by thermocompression and that require high reliability as a metal composition, while copper/steel is used for semiconductor devices that require economic efficiency.

熱圧着を利用して接続する方法は、熱と同時に圧力もか
かることから、機械的強度の強いバンプが要求され、機
械的強度を改善したバンプ構造が特開@51−1472
53号公報で提案されている。これは階段状にパンダを
構成し、ボンディング時における応力集中の緩和を断面
形状的に考察し、それな9の効果を有するものである。
Since the method of connecting using thermocompression bonding applies both heat and pressure, a bump with strong mechanical strength is required, and a bump structure with improved mechanical strength is disclosed in JP-A-51-1472.
This is proposed in Publication No. 53. In this method, the panda is configured in a step-like manner, and the relaxation of stress concentration during bonding is considered in terms of the cross-sectional shape, and it has nine effects.

しかしながら、応力集中による基板あるいは基板上の絶
縁膜の破壊を十分に防止するには、基板に対して平面的
に視た応力分布をも考慮することが、バンプには必ず内
部配線が接続されているから重要となる。このことは応
力分布すなわち応力集中の形態が機械的のみならず熱的
な要因にも関係することを考えれば、十分念頭に置かな
ければならない。
However, in order to sufficiently prevent the destruction of the substrate or the insulating film on the substrate due to stress concentration, it is necessary to consider the stress distribution viewed from the plane of the substrate. It is important because it exists. This must be kept in mind since the stress distribution, that is, the form of stress concentration, is related not only to mechanical factors but also to thermal factors.

すなわち従来に於いてバンプと、′内部配線との接続に
ついては、配線に流れる電流容量から配線幅が定まシ、
一定11幅の配線と接続すべきバンプとの間を出来るだ
け短かい距離で、又、接続部分についても細い配線層の
巾のまま、バンプ部に接続されていた。このため従来の
配線層とバンプの接続構造を持った半導体装置を実際に
、熱圧着により、リードとバンプを接続し、接続強度の
確認の為引張り破壊強度試験を行なうと、破壊モードと
して、バンプと内部配線層との接続部分の底部のシリコ
ン基板、絶縁膜から破壊するものが発生した。これは、
この接続部分に応力が集中するためであシ、その接合部
は、熱ストレスなどに起因する経時変化によ)機械的劣
弱になる可能性をもっていることとなシ、信頼性見地か
ら望ましく危い。  ゛本発明の目的は、上記の欠点を
除いて、リードの熱圧着の際かえられる熱と、圧力に充
分耐える、新規なるバンプと配線の接続構造を提供する
ことにある。
In other words, in the past, for the connection between bumps and internal wiring, the wiring width was determined based on the current capacity flowing through the wiring.
The distance between the wiring having a constant width of 11 and the bump to be connected was as short as possible, and the connection portion was also connected to the bump portion while keeping the width of the thin wiring layer. For this reason, when a semiconductor device with a conventional wiring layer and bump connection structure is actually connected to the leads and bumps by thermocompression bonding and a tensile fracture strength test is performed to confirm the connection strength, the failure mode is determined to be due to the bumps. Destruction occurred in the silicon substrate and insulating film at the bottom of the connection area between the internal wiring layer and the internal wiring layer. this is,
This is because stress is concentrated at this connection, and the joint has the possibility of becoming mechanically weak (due to changes over time due to thermal stress, etc.). stomach. An object of the present invention is to provide a new bump-to-wiring connection structure that can sufficiently withstand the heat and pressure applied during thermocompression bonding of leads, while eliminating the above-mentioned drawbacks.

本発明の特徴は、半導体基板上の絶縁膜上のバンプ(電
極端子突起)部と一定の巾の配線層部とが接続される半
導体装置において、前記バンプ部は平面形状で円形をな
し、前記配線層部より該円形状のバンプの外径に向って
広がってゆく平面形状の応力緩和領域が該絶縁膜上に設
けられ、該応力緩和領域を介して該配線層が該771部
に接続している半導体装置である。この応力緩和領域は
広い平面積の第1の層と、該第1の層上に設けられ該第
1の層よりも小さい平面の第2の層とを有し、該第1の
層および該第2の層KJ:D段部を形成していることが
好ましい。
A feature of the present invention is that in a semiconductor device in which a bump (electrode terminal protrusion) portion on an insulating film on a semiconductor substrate is connected to a wiring layer portion having a constant width, the bump portion has a circular planar shape; A planar stress relaxation region that spreads from the wiring layer portion toward the outer diameter of the circular bump is provided on the insulating film, and the wiring layer is connected to the 771 portion via the stress relaxation region. It is a semiconductor device that This stress relaxation region has a first layer having a large planar area, and a second layer provided on the first layer and having a smaller planar surface than the first layer, Second layer KJ: Preferably, a D step portion is formed.

以下図面に基ずいて本発明を説明する。The present invention will be explained below based on the drawings.

第1回国、Q3)は従来技術による半導体装置を示すも
ので、1はシリコン基板を示し、2はシリコン酸化膜、
窒化膜等の絶縁膜、3はチタン層、4は白金層、5は配
線用、およびバンプの中間層の金薄膜、6は厚膜金属を
示す。又ここで100がバンクの部分で、l、200が
内部配線層の部分となる。このバンプの厚膜金属6の上
部に鋼を基体とし表面に金メッキを施したリード(図示
せず)を乗せ、熱と圧力をかけると、リード表面の金と
、厚膜金6が熱圧着によシ接合される。
1st country, Q3) indicates a semiconductor device according to the conventional technology, 1 indicates a silicon substrate, 2 indicates a silicon oxide film,
An insulating film such as a nitride film, 3 a titanium layer, 4 a platinum layer, 5 a thin gold film for wiring and as an intermediate layer of bumps, and 6 a thick metal film. Further, 100 is a bank portion, and l and 200 are an internal wiring layer portion. A lead (not shown) with a steel base and gold plating on the surface is placed on top of the thick film metal 6 of this bump, and when heat and pressure are applied, the gold on the lead surface and the thick film gold 6 are bonded by thermocompression. It is well joined.

この接合された半導体装置からリードをテンシ曹ンゲー
ジで、半導体装置主面に対し垂直方向に引張シ、破壊試
験を行ない、強度、及び破壊モードを調べた。
A lead from the bonded semiconductor device was subjected to a tensile test using a tensile strength gauge in a direction perpendicular to the main surface of the semiconductor device to examine the strength and mode of failure.

本実験に使用した基板には、リファレンスとして、全く
配線を持たない第1図と同一形状のバンプを同一半導体
装置内に設置し、同一接合条件でバンプ底部のシリコン
基板の破壊発生の割合を調べた。その結果破壊モードで
は、バンプ底部のシリコン基板から破壊するものが2.
5倍発生した。本欠陥の発生はリファレンスバンプとの
比較から配線及び、その接続部による影響は明らかであ
る。引張り破壊試験で、バンプ底部のシリコン基板が破
壊しているものを詳細に観察すると、バンプ外周と配線
の両端部の交点、7.8から破壊が発生していることが
判った。
As a reference for the substrate used in this experiment, a bump with the same shape as in Figure 1 without any wiring was installed in the same semiconductor device, and the rate of destruction of the silicon substrate at the bottom of the bump was investigated under the same bonding conditions. Ta. As a result, in the destruction mode, 2.
It occurred 5 times more. From comparison with reference bumps, it is clear that the occurrence of this defect is influenced by the wiring and its connections. A detailed observation of the fractured silicon substrate at the bottom of the bump in the tensile fracture test revealed that the fracture occurred at the intersection point 7.8 between the outer periphery of the bump and both ends of the wiring.

ここで接合の際加えられる熱と圧力に関しバンプ部に印
加される圧力によシ発生する。集中応力及び熱による否
によ#)、バンプと配線層の接続部の底部のシリコン基
板を破壊するという事実、およびバンクに配線、が接続
された構造では、熱圧着に際し加えられる熱と圧力に関
し、配線部には、熱による歪が加わることが考えられる
。すなわち配線層は導電体であることから、熱伝導率も
良く、接合の際加えられる熱が配線部を伝わり、配線部
と配線層の下層の絶縁膜、さらに下層のシリコン基板と
の間に大きな温度勾配が発生し、この温度勾配によシ、
配線の下層の基板に歪(熱歪)が、配線の長手方向に特
に大きく発生する。又、熱は、バンプを通して、配線に
加えられることから、バンプ近傍の配線特にバンプと配
線の接続部で、最大となる、との認識に基すいて本発明
が達成された。すなわちバンプと配線の接続部では、バ
ンプからの圧力による歪、熱による歪に配線部からの熱
による歪が、複合されて基板にクラックが発生し、破壊
強度試験で、このクラックが核となり基板破壊が発生す
るものと考えられる。
Here, the heat and pressure applied during bonding are caused by the pressure applied to the bump portion. Due to the fact that concentrated stress and heat can destroy the silicon substrate at the bottom of the connection between the bump and the wiring layer, and in the structure where the wiring is connected to the bank, the heat and pressure applied during thermocompression bonding It is conceivable that heat-induced distortion may be applied to the wiring section. In other words, since the wiring layer is a conductor, it has good thermal conductivity, and the heat applied during bonding is transmitted through the wiring, and there is a large A temperature gradient occurs, and due to this temperature gradient,
Strain (thermal strain) occurs in the substrate underlying the wiring, particularly in the longitudinal direction of the wiring. Furthermore, the present invention was achieved based on the recognition that heat is applied to the wiring through the bump, and therefore is greatest at the wiring near the bump, particularly at the connection between the bump and the wiring. In other words, at the connection between the bump and the wiring, the strain caused by the pressure from the bump, the strain caused by the heat, and the strain caused by the heat from the wiring part are combined to cause a crack in the board, and in a destructive strength test, this crack becomes the nucleus and the board is damaged. It is thought that destruction will occur.

以上の理論に基すき、さらに配線、バンプ形成プロセス
を変えることなく、応力集中、熱歪による基板の破壊を
解決したのが本発明によるバンプと配線の接続部の構造
である。
Based on the above theory, the structure of the bump-to-wiring connection portion according to the present invention solves the problem of substrate destruction caused by stress concentration and thermal strain without changing the wiring or bump formation process.

第2図は本発明の実施例を示すものであυ、円型のバン
プ130と配線部230との間に円型の接線方向から配
線部230に延在する応力緩和領域330が設けられて
いる。同図から明らかのように応力緩和領域330は絶
縁膜32上の第1の層33および第2の層35が配線部
へ延在する領域から構成されている。この実施例の構造
は直方形状もしくはテーパー状の平面形状の応力緩和領
域よりも破壊に対して一番効来が期待される。この実施
例ではチタン、白金よシなる第1の層33と、その上の
うすい金属の第20層35と、その上の厚い金の第3の
層36よシ2段形状のバンプ130が構成される。応力
緩和領域330はこの第1の層および第2の1−から、
図から明らかのように1段形状の構成となっている。配
線部230は同じ平面形状の第1の層および第2の層に
より無段形状となっている。
FIG. 2 shows an embodiment of the present invention, in which a stress relaxation region 330 is provided between the circular bump 130 and the wiring section 230, and extends from the tangential direction of the circular shape to the wiring section 230. There is. As is clear from the figure, the stress relaxation region 330 is composed of a region where the first layer 33 and the second layer 35 on the insulating film 32 extend to the wiring portion. The structure of this embodiment is expected to be more effective against fracture than a rectangular parallelepiped or tapered planar stress relaxation region. In this embodiment, a bump 130 having a two-step shape is composed of a first layer 33 made of titanium or platinum, a 20th layer 35 made of thin metal thereon, and a third layer 36 made of thick gold thereon. be done. The stress relief region 330 is formed from this first layer and the second layer 1-,
As is clear from the figure, it has a one-stage configuration. The wiring section 230 has a stepless shape due to the first layer and the second layer having the same planar shape.

本発明により、従来の配線製造グロセスを変えることな
く、高温、高圧力に耐える電極端子と配線の接続部構造
が実現出来、リードとバンプの接合金属の選択がより広
範囲なものとなり、高品質、信頼性の接合が可能となっ
た。又、大規模集積化されたリード数の多い半導体装置
の高品質で、安価な、同時接合が可能となり、その工業
的意義は極めて大きい。又、実施例ではバンク部は2階
段状であったが、本発明はこれに限定されることでは勿
論なく、1段又は無段あるいは3段以上の多段でもよい
。又、応力緩和領域は1段状に限定されず、無段あるい
は2段以上の多段でもよい。
The present invention makes it possible to realize a connection structure between electrode terminals and wiring that can withstand high temperatures and pressures without changing the conventional wiring manufacturing process, and allows for a wider selection of bonding metals for leads and bumps, resulting in high quality, Reliable bonding is now possible. In addition, it becomes possible to simultaneously bond high-quality, inexpensive, large-scale integrated semiconductor devices with a large number of leads, which is of extremely great industrial significance. Further, in the embodiment, the bank portion has a two-step shape, but the present invention is of course not limited to this, and may have one step, no steps, or multiple steps of three or more steps. Further, the stress relaxation region is not limited to a single stage shape, but may be stepless or multistaged with two or more stages.

さらにバンク部、応力緩和領域部、配線層部の電気伝導
層は実施例に限定されることはなし、又、場合によって
は各々の部分の対応する層を異なる材料で作シそれぞれ
を連続的に形成してもよい。
Furthermore, the electrically conductive layers in the bank part, stress relaxation area part, and wiring layer part are not limited to the examples, and in some cases, the corresponding layers in each part may be formed successively using different materials. You may.

【図面の簡単な説明】[Brief explanation of drawings]

第1回国および第1図(B)は従来技術による半導体装
置を示す平面図および側面図である。第2図は本発明の
実施例を示す平面図である。 尚、図において、1はシリコン基板、2% 32は絶縁
膜、3はチタン層、4は白金属、7.8はバンプ外周と
配線の両端部との交点、33は最下層、35はバンプ部
の中間層および配線部の最上層、36はバンプ部の最上
層、100,130  は)<71部、200,230
は配線層部、330は応力緩和領域である。
FIG. 1(B) is a plan view and a side view showing a semiconductor device according to the prior art. FIG. 2 is a plan view showing an embodiment of the present invention. In the figure, 1 is the silicon substrate, 2% 32 is the insulating film, 3 is the titanium layer, 4 is the white metal, 7.8 is the intersection of the bump outer periphery and both ends of the wiring, 33 is the bottom layer, and 35 is the bump. 36 is the uppermost layer of the bump part, 100, 130 is) < 71 part, 200, 230
330 is a wiring layer portion, and 330 is a stress relaxation region.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上の絶縁膜上のバンプ部と一定の巾の
配線層部とが接続される半導体装置において、前記バン
プ部は平面形状で円形をなし、該バンプの接線方向から
該配線層部に向って応力緩和領域が該絶縁膜上に設けら
れ、該応力緩和領域を介して該配線層が該バンプ部に接
続していることを特徴とする半導体装置。
(1) In a semiconductor device in which a bump portion on an insulating film on a semiconductor substrate is connected to a wiring layer portion of a constant width, the bump portion has a circular planar shape, and the wiring layer portion is connected from the tangential direction of the bump. A semiconductor device characterized in that a stress relaxation region is provided on the insulating film toward the bump portion, and the wiring layer is connected to the bump portion via the stress relaxation region.
(2)前記応力緩和領域は広い平面積の第1の層と、該
第1の層上に設けられ該第1の層よりも小さい平面の第
2の層とを有し、該第1の層および該第2の層により段
部を形成していることを特徴とする特許請求の範囲第(
1)項記載の半導体装置。
(2) The stress relaxation region has a first layer having a large planar area, and a second layer provided on the first layer and having a smaller planar surface than the first layer, and Claim 1, characterized in that the layer and the second layer form a stepped portion.
1) The semiconductor device described in item 1).
JP60296893A 1985-12-27 1985-12-27 Semiconductor device Granted JPS6211253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60296893A JPS6211253A (en) 1985-12-27 1985-12-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60296893A JPS6211253A (en) 1985-12-27 1985-12-27 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12631877A Division JPS5459080A (en) 1977-10-19 1977-10-19 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6211253A true JPS6211253A (en) 1987-01-20
JPS6223462B2 JPS6223462B2 (en) 1987-05-22

Family

ID=17839525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60296893A Granted JPS6211253A (en) 1985-12-27 1985-12-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6211253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120066044A (en) * 2009-09-17 2012-06-21 네덜란제 오르가니자티에 포오르 토에게파스트-나투우르베텐샤펠리즈크 온데르조에크 테엔오 Geometry of contact sites at brittle inorganic layers in electronic devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120066044A (en) * 2009-09-17 2012-06-21 네덜란제 오르가니자티에 포오르 토에게파스트-나투우르베텐샤펠리즈크 온데르조에크 테엔오 Geometry of contact sites at brittle inorganic layers in electronic devices
JP2013505570A (en) * 2009-09-17 2013-02-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Contact site composition in the fragile inorganic layer of electronic devices
US9449939B2 (en) 2009-09-17 2016-09-20 Koninklijke Philips N.V. Geometry of contact sites at brittle inorganic layers in electronic devices

Also Published As

Publication number Publication date
JPS6223462B2 (en) 1987-05-22

Similar Documents

Publication Publication Date Title
JPS6138612B2 (en)
US6309913B1 (en) Technique for attaching die to leads
US7629687B2 (en) Semiconductor device and method for manufacturing the same
JP2509422B2 (en) Semiconductor device and manufacturing method thereof
US4051508A (en) Semiconductor device having multistepped bump terminal electrodes
JPH06302653A (en) Semiconductor device
US5124277A (en) Method of ball bonding to non-wire bonded electrodes of semiconductor devices
EP1367644A1 (en) Semiconductor electronic device and method of manufacturing thereof
JPH07169797A (en) Method and structure for bonding
JPS6211253A (en) Semiconductor device
JPS6223461B2 (en)
JPH02168640A (en) Connection structure between different substrates
US20030052416A1 (en) Thick film circuit connection
JPS62196839A (en) Hybrid type semiconductor device
JPH11195095A (en) Noncontact ic card and its manufacture
TW200305266A (en) Semiconductor device and a method of manufacturing the same
JPH03208355A (en) Semiconductor device and manufacture thereof
JPH07254632A (en) Semiconductor device and manufacture thereof
JPH07249648A (en) Semiconductor device
JPH0525182B2 (en)
JPH07273143A (en) Resin sealed semiconductor device
JPS63266841A (en) Resin-sealed semiconductor device
US20140120661A1 (en) Flip chip packaging method
JPH0448742A (en) Semiconductor device and manufacture thereof
JPS6032335A (en) Semiconductor device