JPS62112166A - Manufacture of photoconductive sensitive body - Google Patents

Manufacture of photoconductive sensitive body

Info

Publication number
JPS62112166A
JPS62112166A JP60253598A JP25359885A JPS62112166A JP S62112166 A JPS62112166 A JP S62112166A JP 60253598 A JP60253598 A JP 60253598A JP 25359885 A JP25359885 A JP 25359885A JP S62112166 A JPS62112166 A JP S62112166A
Authority
JP
Japan
Prior art keywords
flow rate
amorphous silicon
regulating
sih4
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60253598A
Other languages
Japanese (ja)
Inventor
Kazuki Wakita
脇田 和樹
Shoichi Nagata
永田 祥一
Shoji Nakamura
昌次 中村
Kunio Ohashi
邦夫 大橋
Tadashi Tonegawa
利根川 正
Katsuji Nagayama
永山 勝治
Yoshiko Murasato
村里 芳子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60253598A priority Critical patent/JPS62112166A/en
Priority to FR8615607A priority patent/FR2590077A1/en
Priority to DE19863638200 priority patent/DE3638200A1/en
Publication of JPS62112166A publication Critical patent/JPS62112166A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To relieve residual image phenomenon due to light fatigue by regulating B2H6/SiH4 feed ratio to >=3.3X10<-7> to form a carrier transfer layer. CONSTITUTION:The mu tau product of electrons can be controlled by regulating the B2H6 flow rate, i.e., the B2H6/SiH4 feed ratio to >=3.3X10<-7> in a film-forming process, thus permitting the residual image phenomenon to be eliminated and the photosensitive body obtained by using an amorphous silicon photoconductive material to have superior characteristics, such as high sensitivity, high durability, and no danger of polluting environments.

Description

【発明の詳細な説明】 〈産業上の利用外野〉 本発明は、電子写真用像形成部材や原稿:π取装置等に
用いられる尤専電性怒光体の製造方法に閃する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Applications> The present invention is directed to a method for manufacturing a proprietary electrophotographic body used in electrophotographic image forming members, original document/π capture devices, and the like.

ぐもC来の技術〉 複写機や光電変換装置等の感光体としては、Se、Cd
S、ZnO笠の無機光導電材f1や、PVK−TNF等
に代表される有機先導電材1′1が知、Zれでいる。し
かしながら、これらの材料は、光導電材flとして要求
さhる光恣度、分光感度、S/N比(明抵抗/′暗抵抗
)!Fの特性面や、耐久性、人体に対する安全性等の点
で満足できるものではなく、問題点に配J5・きしなが
らある程度条件を緩和した上で個々の状況に応じて使用
されているのが実情である。
Technology from the past > Se, Cd, etc. are used as photoconductors for copying machines, photoelectric conversion devices, etc.
Inorganic photoconductive materials f1 such as S, ZnO caps, and organic leading conductive materials 1'1 typified by PVK-TNF and the like are well known. However, these materials do not meet the requirements for optical flexibility, spectral sensitivity, and S/N ratio (bright resistance/'dark resistance) as photoconductive materials. F is not satisfactory in terms of characteristics, durability, safety for the human body, etc., and it is used according to individual situations after relaxing the conditions to some extent while paying attention to the problems. is the reality.

一方、これへの問題点を解決する新しい材f’lとして
非晶質シリコンを用いた)℃導電材料力吐l:日さノL
、窩い尤恣度、高耐久性、1!!公害性等の長所が期(
Sされるため、近年盛んに研究が進められるようになっ
ている。
On the other hand, amorphous silicon was used as a new material to solve this problem.
, flexibility, high durability, 1! ! The advantages of pollution, etc.
In recent years, research has been actively carried out because of S.

〈発明が解決しようとする問題点〉 非晶質シリコン製光導電材料J)問題点の一つとして残
像現象がある。この現象は、非晶質シリコンが価電子帯
及び1云導帯のバンド端に指数関数分布したパントチイ
ルを持つことに起因している。
<Problems to be Solved by the Invention> Amorphous silicon photoconductive material J) One of the problems is the afterimage phenomenon. This phenomenon is caused by the fact that amorphous silicon has an exponentially distributed pantotile at the band edges of the valence band and the 1-band conduction band.

即ち、帯電露光を行なうと、過剰に生成されたフ4−ト
キャリアはパントチイルに捕獲され、このキャリアは長
時間放置しておくとフェルミレベルまで減衰するか、ま
たはバンドに励起された後、再結合して消滅する。しか
し、短時間に帯電露光を編返すと、次の帯電時の強い電
界によって捕獲されていたキャリアが解放される(Po
ol−Frcnkel効果)。
That is, when charged exposure is performed, excessively generated foot carriers are captured by pantotiles, and if these carriers are left for a long time, they will attenuate to the Fermi level or be excited to a band and then be regenerated. combine and disappear. However, if the charging exposure is repeated in a short period of time, the carriers captured by the strong electric field during the next charging are released (Po
ol-Frnckel effect).

残像現象は、このキャリアが3光体表面まで移動し、電
荷の一部を打ち消すことにより起きると考えられ、非晶
質セレン系の材料の場きには電荷を打ち消すキャリア(
電:′i−)のモビリティ(移動度)が十分率さいため
この現象は生じないが、非晶質シリコンでは電子のモビ
リティが正札よりも一般に大きいため、正帯電における
コピーサンプルでこの現象が現れるのである。
The afterimage phenomenon is thought to occur when this carrier moves to the surface of the 3-photo object and cancels out a part of the charge. In the case of amorphous selenium-based materials, the carrier (
This phenomenon does not occur because the mobility of the electron ('i-) is sufficiently low; however, in amorphous silicon, the mobility of electrons is generally larger than that of the original, so this phenomenon appears in positively charged copy samples. It is.

本発明は、このような光疲労による残像現象を軽減する
ことを目的としてなされたものである。
The present invention has been made for the purpose of reducing the afterimage phenomenon caused by such optical fatigue.

〈問題点を解決するための手段〉 上記の目的を達成するために、本発明基らは、感光体の
キャリア輸送層における電子のμτ積を減少させること
によって残像現象が軽減されることに着目し、キャリア
輸送層の生成条件についての検討を行なった結果、成膜
工程における8 2 Haガスの流量を規定することに
より電子のμτ積を制御できることを見出し、R2Hi
ガスとS i H4ガスの流量比を3.3:・10−7
以りとすることにより所期の目的を達成できることを確
認した。
<Means for Solving the Problems> In order to achieve the above object, the present inventors focused on the fact that the afterimage phenomenon is reduced by reducing the μτ product of electrons in the carrier transport layer of the photoreceptor. As a result of examining the formation conditions of the carrier transport layer, it was discovered that the μτ product of electrons could be controlled by regulating the flow rate of 8 2 Ha gas in the film formation process, and the R2Hi
The flow rate ratio of gas and S i H4 gas is 3.3:・10-7
It was confirmed that the intended purpose could be achieved by doing the following.

〈実施例〉 以下、図示の実施例について説明する。<Example> The illustrated embodiment will be described below.

第1図は、非晶質シリコンの成膜装置の概略構造図てあ
り、この装置によりアルミドラ11支持体上にグロー放
電によって非晶質シリコンの成膜を行なった0図におい
て、1は反応室、2はドラム支rFi体、3は支持木用
ヒータ1.4 、4 ’は電極、5はプラズマ分光用窓
、6は高周波電源、7は支持1本回転用モータ、8は排
気系の主バルブ、9はメカニカルブースターポンプ、1
0は油回転式真空ポンプ、11はリーク用バルブ、12
はガス導入管であり、これらは基本的には周知の成膜装
置と同じ物が使用可能である。
Fig. 1 is a schematic structural diagram of an amorphous silicon film forming apparatus. In Fig. 0, an amorphous silicon film is formed on an aluminum drum 11 support by glow discharge using this apparatus, and 1 is a reaction chamber. , 2 is the drum support rFi body, 3 is the support tree heater 1.4, 4' is the electrode, 5 is the window for plasma spectroscopy, 6 is the high frequency power supply, 7 is the motor for rotating one support, 8 is the main part of the exhaust system Valve, 9 is mechanical booster pump, 1
0 is an oil rotary vacuum pump, 11 is a leak valve, 12
is a gas introduction pipe, which can basically be the same as the well-known film forming apparatus.

生成される非晶質シリコンの層は3層となっており、各
層の詳しい成膜条件を第1表に示す。
Three layers of amorphous silicon were produced, and detailed film forming conditions for each layer are shown in Table 1.

ここで、第2層生成時に、水素希釈5[pp+*]のB
2 Hsガスの流量を6〜200[scc彌]の間で変
fヒさせ、S i H4ガスの流星に対する比(B 2
 H&/ S i H4)をlXl0−’−3.3X1
0−’としている。又、この時の総流星が900[sc
cm]になるようにII2ガスの流量を調整した。
Here, when generating the second layer, B with hydrogen dilution of 5 [pp+*]
2 The flow rate of Hs gas was varied between 6 and 200 [scc], and the ratio of S i H4 gas to the meteor (B 2
H&/S i H4) lXl0-'-3.3X1
It is set as 0-'. Also, the total number of meteors at this time was 900 [sc
The flow rate of II2 gas was adjusted so that

一直上人一 )11)第1層のn、o、ガスは■4□ガス希釈で濃度
1000[ppn’12) 第2屑のB 、 H,ガス
はIt、ガス希釈で濃度 5[四IIl]このようにし
て製作されたドラム感光体について、XeroBrap
l+ic法による光減衰からl−1ecbLの式を用い
て電子のμτ積を求めた結果を第2図に示す。横軸は流
量比(112IIs/ S i II Jt)であり、
流量比が大きくなるにつれてμτ績は低減してしするこ
とかわかる。
Ichichojonin 1) 11) The n, o, and gases in the first layer are ■4□ and the concentration is 1000 [ppn'12] B, H, and gas in the second layer are It, and the concentration is 5[4IIl when diluted with the gas] ] Regarding the drum photoreceptor manufactured in this way,
FIG. 2 shows the results of determining the μτ product of electrons from the optical attenuation by the l+ic method using the equation l−1ecbL. The horizontal axis is the flow rate ratio (112IIs/S i II Jt),
It can be seen that as the flow rate ratio increases, the μτ performance decreases.

又、このドラム感光体を用いて正帯電によるコピーサン
プルを(を成し、残像現竿を評価した結果を第2表に示
す。評価条1′1−は、ドラム周速254.4[cm/
5ca1.コロナ電流90[)lA]、バイアス電圧1
64[Vlであり、この時の初期表面電位は650〜5
00[Vlであった。
Further, using this drum photoreceptor, a copy sample was made by positive charging, and the results of evaluating the afterimage development rod are shown in Table 2. /
5ca1. Corona current 90 [)lA], bias voltage 1
64[Vl, and the initial surface potential at this time is 650~5
It was 00 [Vl.

一茅t1糺− ただし、X:戎(’IA現象がはっきり現れる△:残像
現象が僅かに現れる ○:残像現象が全く現れない 以」二の結果、流量比が大きく4−)てμτ琵が減少す
るにつれて残f象現象が生じにくくなり、流1比が3.
3xlO”以上であればほぼ望ましい結果がt)基゛、
れ、111に6.7xlO−7以上では残像現象は全く
現れず、Uト晶質シリコン製尤導電材料の問題点の一つ
である残像現象を解決できたことがわかる。
However, as a result of the second, the flow rate ratio is large and μτ is As the flow rate decreases, the residual f-effect phenomenon becomes less likely to occur, and the flow 1 ratio becomes 3.
If it is 3xlO” or more, the desired result is based on t)
The afterimage phenomenon does not appear at all when 111 is 6.7xlO-7 or more, and it can be seen that the afterimage phenomenon, which is one of the problems of the highly conductive material made of crystalline silicon, can be solved.

〈発明の効果)・ 」−述の左開から明らかなように、本発明は、光導電性
非晶質シリ−1ンの成膜工程において、B2ll5/′
膓1−I 、比を3.3X10−’以−1−に保−)で
キャリア輸送層を生成することにより、残像現虫をなく
したちのである。&t・−ノで、本発明は、高感度、1
すi′iJ久性、無公害性等のすぐれた特長を存する非
晶πシリコン製光導電材f1を用いたS光体の実用1ヒ
の促進に極めて有効である。
<Effects of the Invention> - As is clear from the left-hand side of the above, the present invention has the advantage that B2ll5/'
By forming a carrier transport layer with a ratio of 3.3 x 10-1 or higher, the afterimage was eliminated. &t・-no, the present invention has high sensitivity, 1
This is extremely effective in promoting the practical use of S light bodies using the amorphous π silicon photoconductive material f1, which has excellent features such as durability and non-polluting properties.

・11図面の簡j!1な説明 第111は、本発明を実施するための′A置σ)概略構
造図、 第2図は、Bz)i、/SiH,比と電子のμτ積との
関係を示す図である。
・11 simple drawings! 1. Explanation No. 111 is a schematic structural diagram for carrying out the present invention, and FIG. 2 is a diagram showing the relationship between the Bz)i,/SiH ratio and the μτ product of electrons.

1・・・反応室 、 2・・・ドラム支持体4.4゛・
・・電極、 6・・高周波電源12・・・ガス導入管
1...Reaction chamber, 2...Drum support 4.4゛・
...electrode, 6..high frequency power supply 12...gas introduction tube

Claims (1)

【特許請求の範囲】[Claims] (1)感光体として用いられる光導電性非晶質シリコン
の製膜工程において、B_2H_6ガスの流量比を3.
3×10^−^7以上に保ってキャリア輸送層の生成を
行なうことを特徴とする光導電性感光体の製造方法。
(1) In the process of forming a film of photoconductive amorphous silicon used as a photoreceptor, the flow rate ratio of B_2H_6 gas is set to 3.
A method for producing a photoconductive photoreceptor, characterized in that a carrier transport layer is generated while maintaining a carrier transport layer of 3×10^-^7 or more.
JP60253598A 1985-11-11 1985-11-11 Manufacture of photoconductive sensitive body Pending JPS62112166A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60253598A JPS62112166A (en) 1985-11-11 1985-11-11 Manufacture of photoconductive sensitive body
FR8615607A FR2590077A1 (en) 1985-11-11 1986-11-07 Method of manufacturing a photoconductor element
DE19863638200 DE3638200A1 (en) 1985-11-11 1986-11-08 METHOD FOR PRODUCING PHOTO-CONDUCTIVE COMPONENTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60253598A JPS62112166A (en) 1985-11-11 1985-11-11 Manufacture of photoconductive sensitive body

Publications (1)

Publication Number Publication Date
JPS62112166A true JPS62112166A (en) 1987-05-23

Family

ID=17253604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60253598A Pending JPS62112166A (en) 1985-11-11 1985-11-11 Manufacture of photoconductive sensitive body

Country Status (1)

Country Link
JP (1) JPS62112166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379852B2 (en) 1996-09-11 2002-04-30 Canon Kabushiki Kaisha Electrophotographic light-receiving member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379852B2 (en) 1996-09-11 2002-04-30 Canon Kabushiki Kaisha Electrophotographic light-receiving member

Similar Documents

Publication Publication Date Title
CA1159702A (en) Method for making photoconductive surface layer on a printing drum for electrostatic photocopying
JPS61100759A (en) Photoconductive material
JPS62112166A (en) Manufacture of photoconductive sensitive body
JPS6180160A (en) Electrophotographic sensitive body
JPS62178974A (en) Electrophotographic sensitive body
JPS6194054A (en) Photoconductive member
JPS61110152A (en) Photosensitive body
JPS6059356A (en) Photoconductive member
JPS62151857A (en) Photoconductive member
JPS61165761A (en) Electrostatic latent image carrier
JPH01204057A (en) Manufacture of electrophotographic sensitive body
JPS6261056A (en) Photoconductor
JPS62156667A (en) Photosensitive body
JPS62178975A (en) Electrophotographic sensitive body
JPS6063960A (en) Photoconductive member
JPS5962865A (en) Electrophotographic receptor
JPS61201480A (en) Manufacture of photoconductor
JPS6373264A (en) Electrophotographic sensitive body
JPS59131941A (en) Amorphous silicon photosensitive body
JPS59185344A (en) Photoconductive member
JPS6194055A (en) Photoconductive member
JPS62156665A (en) Photosensitive body
JPS61126558A (en) Photoconductive material
JPS62151856A (en) Photoconductive member
JPS60112047A (en) Photoconductive member