JPS6211196B2 - - Google Patents

Info

Publication number
JPS6211196B2
JPS6211196B2 JP56209068A JP20906881A JPS6211196B2 JP S6211196 B2 JPS6211196 B2 JP S6211196B2 JP 56209068 A JP56209068 A JP 56209068A JP 20906881 A JP20906881 A JP 20906881A JP S6211196 B2 JPS6211196 B2 JP S6211196B2
Authority
JP
Japan
Prior art keywords
conduit
exhaust
air ejector
air
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56209068A
Other languages
Japanese (ja)
Other versions
JPS58110873A (en
Inventor
Moritaka Nakamura
Mikio Fujii
Keiji Nishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20906881A priority Critical patent/JPS58110873A/en
Publication of JPS58110873A publication Critical patent/JPS58110873A/en
Publication of JPS6211196B2 publication Critical patent/JPS6211196B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Jet Pumps And Other Pumps (AREA)

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明は化学反応ガスの排気装置に関し、特に
空気エゼクタ及び水封型真空ポンプを含む排気装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an exhaust system for chemically reactive gases, and more particularly to an exhaust system including an air ejector and a water ring vacuum pump.

(2) 技術の背景 集積回路の基板等に薄膜又は回路パターンを化
学的に形成するために、減圧CVD(chemical
Vapor Deposition)、プラズマCVD、又はプラズ
マエツチング、リアクテイブイオンエツチング等
の化学反応装置が用いられる。この種の装置では
反応室を真空状態に保ち、反応ガスを反応室の一
方から連続的に流入させると共に他方から排気さ
せる必要がある。このため、反応後のガスを反応
室から吸出して反応室を真空状に保つと共に上記
ガスを排出するための排気装置が設けられてい
る。この排気装置にロータリ型真空ポンプが用い
られたものがあつた。しかし、この排気装置で
は、排気する反応ガスの影響によるロータリ型真
空ポンプの腐食、ポンプ油の劣化及びこの劣化に
起因するポンプの故障、あるいはポンプ油交換に
手間がかかる等の問題があり実用的でなかつた。
(2) Background of the technology In order to chemically form thin films or circuit patterns on integrated circuit substrates, low pressure CVD (chemical
A chemical reaction device such as vapor deposition, plasma CVD, plasma etching, or reactive ion etching is used. In this type of apparatus, it is necessary to maintain the reaction chamber in a vacuum state, and to allow the reaction gas to continuously flow in from one side of the reaction chamber and to exhaust it from the other side. For this reason, an exhaust device is provided to suck out the gas after the reaction from the reaction chamber to keep the reaction chamber in a vacuum state and to discharge the gas. Some of these exhaust devices used rotary vacuum pumps. However, with this exhaust system, there are problems such as corrosion of the rotary vacuum pump due to the influence of the reactive gas being exhausted, deterioration of the pump oil and pump failure due to this deterioration, and the time-consuming process of replacing the pump oil, making it impractical. It wasn't.

これらの問題を解決する対策として、上記ロー
タリ型真空ポンプの代りに水封型真空ポンプを採
用し、これと空気エゼクタとを組合せて構成され
た排気装置が提案され用いられている。この排気
装置の場合はポンプ油の劣化等の問題は解決され
たが、新たに別の問題を含んでいる。すなわち、
WF6(六フツ化タングスン)、TiCl4(四塩化チタ
ン)、BCl3(三塩化硼素)、SiCl4(四塩化珪素)、
GeCl4(四塩化ゲルマニウム)、AlCl3(三塩化ア
ルミニウム)等のように水分と反応して分解し易
い反応ガスを排気する場合には、これらのガスと
水分が反応して固形物が生成される。そしてこれ
らの固形物が空気エゼクタの内壁等に付着して排
出反応ガスの流れを阻害し排気性能を低下させる
という問題がある。従つて、これらの付着固形物
を取り除くために、定期的又は必要に応じてひん
ぱんに空気エゼクタの分解洗浄が必要である。こ
の分解洗浄は人手(作業者)を必要とし、手間が
かかる。またこのために排気装置の稼働率を低下
させる結果になる。従つて、分解せずに空気エゼ
クタ内壁の洗浄が簡便に行ない得る排気装置が要
望されている。
As a measure to solve these problems, an exhaust system has been proposed and used in which a water ring vacuum pump is used in place of the rotary vacuum pump, and this is combined with an air ejector. In the case of this exhaust system, problems such as deterioration of pump oil have been solved, but new problems have arisen. That is,
WF 6 (tungsten hexafluoride), TiCl 4 (titanium tetrachloride), BCl 3 (boron trichloride), SiCl 4 (silicon tetrachloride),
When exhausting reactive gases that easily decompose by reacting with moisture, such as GeCl 4 (germanium tetrachloride) and AlCl 3 (aluminum trichloride), these gases and moisture may react to form solids. Ru. There is a problem in that these solids adhere to the inner wall of the air ejector, etc., obstructing the flow of the exhaust reaction gas and deteriorating the exhaust performance. Therefore, in order to remove these adhered solids, it is necessary to disassemble and clean the air ejector periodically or as often as necessary. This disassembly and cleaning requires manual labor (operators) and is time-consuming. This also results in a reduction in the operating rate of the exhaust system. Therefore, there is a need for an exhaust device that can easily clean the inner wall of the air ejector without disassembling it.

(3) 従来技術と問題点 第1図は従来の化学反応ガス排気装置のブロツ
ク図、第2図は第1図の空気エゼクタ7と水封型
真空ポンプ8の部分の縦断面図である。両図にお
いて、符号1はガス反応室、1aは反応室1の排
気口、2は開閉弁2aを備えた第1排気導管、3
は第1メカニカルブースタ(真空ポンプ)、4は
第2排気導管、5は第2メカニカルブースタ(真
空ポンプ)、6は第3排気導管、7は空気エゼク
タ、7aは空気エゼクタの噴出ノズル、7bは空
気供給導管、7cはスロート部分、7dはデイフ
ユーザ部分、8は水封型真空ポンプ、8aと8b
はそれぞれ水封型真空ポンプ8の吸込導管と吐出
導管、8cは封水、8dは吸込口、8eは吐出口
をそれぞれ示す。第1図において、反応室1の排
気口1aに第1排気導管2の一端が接続され、そ
の他端が第1メカニカルブースタ3の吸込口に接
続されている。第1メカニカルブースタ3の吐出
口は第2メカニカルブースタ5の吸込口に第2排
気導管4を介して接続されている。第2ブースタ
5の吐出口は空気エゼクタ7に第3排気導管6を
介して接続されている。空気エゼクタ7の吐出口
は水封型真空ポンプ8の吸込導管8aに接続され
ている。この排気装置は以上の如く構成されたも
ので、水封型真空ポンプ8、空気エゼクタ7、第
2メカニカルブースタ5、第1メカニカルブース
タ3の順に順次多段式に減圧するように構成され
ている。水封型真空ポンプ8は封水8cの蒸気圧
以下に減圧することができず、その到達圧力(到
達真空度)は封水8cが常温の場合で大体20トー
ル(1トール=1mmHg)程度である。例えば、
第1図の排気装置における各真空ポンプの到達圧
力は、水封型真空ポンプ8で約20トール、空気エ
ゼクタ7で約6トール、第2メカニカルブースタ
5で約0.5トール、第1メカニカルブースタ3で
約0.03トールである。従つて、反応室1内は約
0.03トールの真空度に保たれることになる。第1
図において、反応ガスは矢印A方向から反応室1
に吸込まれ、反応室1内を流れながら反応作用を
して排気口1aを介して排気導管2に吸込まれ、
次いで矢印B方向に上記第1、第2ブースタ3,
5及び空気エゼクタ7を通過して水封ポンプ8か
ら吐出導管8bを介して排気される。尚、エツチ
ング装置の場合は、上記排気ガスに対しさらに基
板から奪取したガスも混入して排気される。この
排気装置の場合は、前述のWF6、TiCl4、BCl3
のガスを排気しても、これらのガスが水封型真空
ポンプ8の封水8cにほとんど溶け込んで排出さ
れるのでポンプ8内に残留せず、また第1及び第
2メカニカルブースタは密封用のポンプ油を使用
していないので、前述のポンプ油の劣化等の問題
がなく良好に反応ガスが排気される。しかしなが
ら、この装置ではポンプ油劣化の問題は解消され
たが、水封型真空ポンプ8を用いているため、す
なわち密封用として封水8cを用いているために
別の問題がある。この問題について、第2図を参
照して説明する。第2図において、空気供給導管
7bに吸込まれた空気は噴出ノズル7aから噴出
され、スロート部7bを矢印D方向に超音速で流
れ、つづいてデイフユーザ部分7dで断熱膨張し
ながら流れて、導管6内の排出反応ガスを矢印E
方向に吸引しかつデイフユーザ7d内における封
水8cの水蒸気と共に水封ポンプ8に向けて流動
する。しかしながら、この場合水蒸気の一部が逆
流してデイフユーザ部分7d及びスロート部分7
cの内壁上に侵入し、そこで排出反応ガスと化学
反応して固形物が生成される。この固形物が上記
内壁上に付着堆積する。例えば、BCl3(三塩化
硼素)の反応ガスを排気する場合は、このガスが
水蒸気の水分と反応して、反応式「2BCl3+3H2O
→B2O3+6HCl」で示されるようにB2O3(酸化硼
素)とHCl(塩化水素)が生成される。このHCl
は気体であるので排出されるがB2O3は上記内壁
上に固形物として付着する。特に、スロート部分
7cの内壁上に固形物が付着すると、該内壁部に
おける流体通路の横断面形状及び断面積が縮小変
形して排出ガスの流れが悪影響をうけ排気装置の
排気性能が低下する。従つてこの排気装置は、こ
のような付着固形物を取り除くために、定期的又
は必要に応じてひんぱんにスロート7cとデイフ
ユーザ7dの部分を分解して洗浄する必要があ
る。この分解洗浄は必ず人手(作業者)を必要と
し、煩雑で手間がかかる。例えば、この分解洗浄
作業に1時間程度の時間を必要とする。従つてこ
の分解洗浄のために排気装置の稼動率が著しく低
下され、この結果化学反応装置の稼動率も低下す
る。
(3) Prior Art and Problems FIG. 1 is a block diagram of a conventional chemical reaction gas exhaust system, and FIG. 2 is a longitudinal sectional view of the air ejector 7 and water ring vacuum pump 8 in FIG. 1. In both figures, reference numeral 1 is a gas reaction chamber, 1a is an exhaust port of the reaction chamber 1, 2 is a first exhaust conduit equipped with an on-off valve 2a, and 3 is a gas reaction chamber.
is the first mechanical booster (vacuum pump), 4 is the second exhaust pipe, 5 is the second mechanical booster (vacuum pump), 6 is the third exhaust pipe, 7 is the air ejector, 7a is the jet nozzle of the air ejector, and 7b is the Air supply conduit, 7c is the throat part, 7d is the differential user part, 8 is the water ring type vacuum pump, 8a and 8b
8c, 8d, and 8e respectively indicate a suction conduit and a discharge conduit of the water ring type vacuum pump 8, a water seal, 8d, and a discharge port, respectively. In FIG. 1, one end of the first exhaust conduit 2 is connected to the exhaust port 1a of the reaction chamber 1, and the other end is connected to the suction port of the first mechanical booster 3. The discharge port of the first mechanical booster 3 is connected to the suction port of the second mechanical booster 5 via a second exhaust conduit 4. The outlet of the second booster 5 is connected to the air ejector 7 via a third exhaust conduit 6. A discharge port of the air ejector 7 is connected to a suction conduit 8a of a water ring vacuum pump 8. This exhaust system is configured as described above, and is configured to reduce the pressure in a multistage manner in order of the water ring vacuum pump 8, the air ejector 7, the second mechanical booster 5, and the first mechanical booster 3. The water ring type vacuum pump 8 cannot reduce the pressure below the vapor pressure of the seal water 8c, and its ultimate pressure (achieved vacuum degree) is approximately 20 torr (1 torr = 1 mmHg) when the seal water 8c is at room temperature. be. for example,
The ultimate pressure of each vacuum pump in the exhaust system shown in FIG. It is approximately 0.03 torr. Therefore, the inside of reaction chamber 1 is approximately
It will be maintained at a vacuum level of 0.03 Torr. 1st
In the figure, the reaction gas flows into the reaction chamber 1 from the direction of arrow A.
, reacts while flowing in the reaction chamber 1, and is sucked into the exhaust pipe 2 through the exhaust port 1a,
Next, in the direction of arrow B, the first and second boosters 3,
5 and the air ejector 7, and is exhausted from the water ring pump 8 via the discharge conduit 8b. In the case of an etching apparatus, the exhaust gas is further mixed with gas taken from the substrate and exhausted. In the case of this exhaust device, even if the aforementioned gases such as WF 6 , TiCl 4 , BCl 3 are exhausted, most of these gases dissolve in the water seal 8c of the water ring vacuum pump 8 and are discharged. Also, since the first and second mechanical boosters do not use sealing pump oil, the reaction gas is successfully exhausted without problems such as the aforementioned deterioration of the pump oil. However, although this device has solved the problem of pump oil deterioration, there is another problem because the water ring type vacuum pump 8 is used, that is, the water seal 8c is used for sealing. This problem will be explained with reference to FIG. In FIG. 2, the air sucked into the air supply conduit 7b is ejected from the jet nozzle 7a, flows at supersonic speed through the throat portion 7b in the direction of arrow D, and then flows through the diffuser portion 7d while expanding adiabatically, and flows through the conduit 7b. Arrow E indicates the exhaust gas in
direction and flows toward the water seal pump 8 together with the water vapor of the seal water 8c in the differential user 7d. However, in this case, some of the water vapor flows backward into the diffuser portion 7d and the throat portion 7.
It penetrates onto the inner wall of c, where it chemically reacts with the discharged reaction gas to produce solid matter. This solid matter adheres and accumulates on the inner wall. For example, when exhausting the reaction gas of BCl 3 (boron trichloride), this gas reacts with water vapor and the reaction formula ``2BCl 3 + 3H 2 O
→B 2 O 3 +6HCl”, B 2 O 3 (boron oxide) and HCl (hydrogen chloride) are generated. This HCl
Since it is a gas, it is discharged, but B 2 O 3 adheres to the inner wall as a solid substance. In particular, if solid matter adheres to the inner wall of the throat portion 7c, the cross-sectional shape and cross-sectional area of the fluid passage in the inner wall portion will be reduced and deformed, which will adversely affect the flow of exhaust gas and reduce the exhaust performance of the exhaust system. Therefore, it is necessary to disassemble and clean the throat 7c and diffuser 7d of this exhaust system periodically or as often as necessary in order to remove such adhering solid matter. This disassembly and cleaning always requires manual labor (operators) and is complicated and time-consuming. For example, this disassembly and cleaning work requires about one hour. Therefore, the operating rate of the exhaust system is significantly reduced due to this decomposition and cleaning, and as a result, the operating rate of the chemical reaction apparatus is also reduced.

(4) 発明の目的 本発明は上記従来装置の欠点に鑑み、分解洗浄
の必要がなく簡便かつ短時間で空気エゼクタ内壁
の洗浄が可能な洗浄手段を有する化学反応ガス排
気装置を提供することを目的とするものである。
(4) Purpose of the Invention In view of the above-mentioned drawbacks of the conventional devices, the present invention aims to provide a chemical reaction gas exhaust device having a cleaning means that can clean the inner wall of the air ejector easily and in a short time without the need for disassembly and cleaning. This is the purpose.

(5) 発明の構成 そして、上記の目的を達成するために、本発明
に依れば、化学反応ガス排出のために、水封型真
空ポンプに連結された空気エゼクタをガス反応室
の排気口に排気導管及び機械的真空ポンプを介在
して接続せしめた排気装置において、上記空気エ
ゼクタの上流側排気導管上に第1開閉弁を設け、
上記空気エゼクタの空気噴出ノズルに導かれる供
給空気導管途上に上記空気エゼクタ内壁洗浄流体
供給用の分岐導管を分岐配設し、該分岐部上流の
上記空気導管と洗浄流体導管上にそれぞれ第2開
閉弁と第3開閉弁を設けて成る空気エゼクタ内壁
洗浄手段を具備せしめたことを特徴とする化学反
応ガス排気装置が提供される。
(5) Structure of the Invention In order to achieve the above object, according to the present invention, an air ejector connected to a water ring vacuum pump is connected to an exhaust port of a gas reaction chamber for discharging chemical reaction gas. In the exhaust system connected to the air ejector via an exhaust conduit and a mechanical vacuum pump, a first on-off valve is provided on the upstream exhaust conduit of the air ejector,
A branch conduit for supplying cleaning fluid to the inner wall of the air ejector is branched in the middle of the supply air conduit led to the air ejection nozzle of the air ejector, and a second opening/closing conduit is provided on the air conduit and the cleaning fluid conduit upstream of the branch part, respectively. There is provided a chemical reaction gas exhaust device characterized in that it is equipped with an air ejector inner wall cleaning means that includes a valve and a third on-off valve.

(6) 発明の実施例 第3図は本発明による化学反応ガス排気装置の
ブロツク図、第4図は第3図の第3排気導管6、
空気エゼクタ7及び水封型真空ポンプ8の部分の
縦断面図である。両図において、7eは分岐部、
11は第1開閉弁、12は第2開閉弁、13は第
3開閉弁、14は分岐導管をそれぞれ示し、他の
符号は前出の第1及び第2図と同一部分をそれぞ
れ示す。図示のように、本装置は第3排気導管6
上に第1開閉弁11を設け、供給空気導管7b途
上に洗浄水供給用の分岐導管14を分岐配設し、
さらに分岐部7e上流の上記空気導管7bと洗浄
水供給用の分岐導管14上にそれぞれ第2開閉弁
12と第3開閉弁13を設けたもので、他の部分
は前出の第1図と第2図に示す従来例と同様に構
成されている。これらの第1、第2及び第3開閉
弁11,12及び13と、分岐導管14を設ける
ことにより空気エゼクタ内壁の洗浄装置が形成さ
れる。すなわち、本装置では第1開閉弁11と第
2開閉弁12を開放して第3開閉弁13を閉鎖し
た場合は前述の従来装置と同様に反応ガスの排気
が行われる。次に洗浄方法を説明すると、水封ポ
ンプ8を作動させたままの状態で、上記と逆に第
1開閉弁11と第2開閉弁12を閉鎖して第3開
閉弁13を開放する。この結果、分岐導管14か
ら洗浄水が吸入され噴出ノズル7aから噴出し、
この噴出流によつてスロート部分7c及びデイフ
ユーザ部分7dの内壁に付着している固形物が簡
単に例えば1〜2分間で取り除かれる。次いで、
第3開閉弁13を閉鎖し第2開閉弁12を開放す
ると、今度は噴出ノズル7aから空気が噴出して
スロート部分7c及びデイフユーザ部分7dの内
壁がきわめて短時間で乾燥されて洗浄作業が完了
する。このように本排気装置では、これら開閉弁
の開閉操作のみで簡便に洗浄が行なわれるので分
解洗浄の必要がなくまたそのための人手も不要で
ある。これら開閉弁の操作は手動で行なつてもよ
く、また別に制御装置を設けて自動化にすること
も可能である。また、上記実施例ではメカニカル
ブースタが2個使用された場合を例示したが、本
発明はこれらの個数又は機種に関係なく適用でき
る。
(6) Embodiments of the invention FIG. 3 is a block diagram of a chemical reaction gas exhaust system according to the present invention, and FIG. 4 shows the third exhaust pipe 6 of FIG.
FIG. 3 is a longitudinal cross-sectional view of the air ejector 7 and the water ring vacuum pump 8. FIG. In both figures, 7e is a branch,
11 is a first on-off valve, 12 is a second on-off valve, 13 is a third on-off valve, and 14 is a branch conduit, and other symbols indicate the same parts as in FIGS. 1 and 2, respectively. As shown, the device includes a third exhaust conduit 6
A first on-off valve 11 is provided at the top, a branch conduit 14 for supplying cleaning water is disposed in the middle of the supply air conduit 7b,
Further, a second on-off valve 12 and a third on-off valve 13 are provided on the air conduit 7b upstream of the branch part 7e and the branch conduit 14 for supplying washing water, respectively, and the other parts are similar to those shown in FIG. The structure is similar to the conventional example shown in FIG. By providing these first, second, and third on-off valves 11, 12, and 13 and the branch conduit 14, a cleaning device for the inner wall of the air ejector is formed. That is, in this apparatus, when the first on-off valve 11 and the second on-off valve 12 are opened and the third on-off valve 13 is closed, the reaction gas is exhausted in the same manner as in the conventional apparatus described above. Next, the cleaning method will be described. While the water seal pump 8 is kept operating, the first on-off valve 11 and the second on-off valve 12 are closed and the third on-off valve 13 is opened, contrary to the above. As a result, cleaning water is sucked in from the branch pipe 14 and ejected from the ejection nozzle 7a.
The solid matter adhering to the inner walls of the throat portion 7c and the diffuser portion 7d is easily removed by this jet flow in, for example, 1 to 2 minutes. Then,
When the third on-off valve 13 is closed and the second on-off valve 12 is opened, air is ejected from the ejection nozzle 7a, and the inner walls of the throat portion 7c and the diffuser portion 7d are dried in a very short time, completing the cleaning operation. . In this way, in this exhaust system, cleaning can be easily performed by simply opening and closing these on-off valves, so there is no need for disassembly and cleaning, and no human effort is required for this purpose. These on-off valves may be operated manually, or may be automated by providing a separate control device. Further, although the above embodiment illustrates a case in which two mechanical boosters are used, the present invention can be applied regardless of the number or types of mechanical boosters.

(7) 発明の効果 以上、詳細に説明したように、本発明の化学反
応ガス排気装置は、きわめて簡便にしかもそのた
めの人手を必要とせず空気エゼクタ内壁の洗浄を
行ない得るものであつて、省力化、装置の稼働率
の向上等効果大なるものがある。
(7) Effects of the Invention As explained above in detail, the chemical reaction gas exhaust device of the present invention can clean the inner wall of the air ejector very easily and without requiring any human labor, and is labor-saving. There are significant effects such as improvement in optimization and equipment availability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の化学反応ガス排気装置のブロツ
ク図、第2図は第1図の空気エゼクタ7と水封型
真空ポンプ8の部分の縦断面図、第3図は本発明
による化学反応ガス排気装置のブロツク図、第4
図は第3図の第3排気導管6と空気エゼクタ7と
水封型真空ポンプ8の部分の縦断面図である。 1……化学反応室、1a……反応室1の排気
口、2……第1排気導管、3……第1メカニカル
ブースタ(真空ポンプ)、4……第2排気導管、
5……第2メカニカルブースタ(真空ポンプ)、
6……第3排気導管、7……空気エゼクタ、7a
……噴出ノズル、7b……空気供給導管、7c…
…スロート部分、7d……デイフユーザ部分、7
e……分岐部、8……水封型真空ポンプ、11…
…第1開閉弁、12……第2開閉弁、13……第
3開閉弁、14……洗浄水供給用分岐導管。
FIG. 1 is a block diagram of a conventional chemical reaction gas evacuation device, FIG. 2 is a longitudinal sectional view of the air ejector 7 and water ring vacuum pump 8 in FIG. 1, and FIG. 3 is a chemical reaction gas exhaust system according to the present invention. Block diagram of exhaust system, No. 4
The figure is a longitudinal cross-sectional view of the third exhaust conduit 6, air ejector 7, and water ring type vacuum pump 8 in FIG. DESCRIPTION OF SYMBOLS 1... Chemical reaction chamber, 1a... Exhaust port of reaction chamber 1, 2... First exhaust pipe, 3... First mechanical booster (vacuum pump), 4... Second exhaust pipe,
5...Second mechanical booster (vacuum pump),
6...Third exhaust pipe, 7...Air ejector, 7a
...Blowout nozzle, 7b...Air supply conduit, 7c...
...Throat part, 7d...Diff user part, 7
e...Branch portion, 8...Water ring vacuum pump, 11...
...First on-off valve, 12... Second on-off valve, 13... Third on-off valve, 14... Branch conduit for supplying wash water.

Claims (1)

【特許請求の範囲】[Claims] 1 化学反応ガス排出のために、水封型真空ポン
プに連結された空気エゼクタをガス反応室の排気
口に排気導管及び機械的真空ポンプを介在して接
続せしめた排気装置において、上記空気エゼクタ
の上流側排気導管上に第1開閉弁を設け、上記空
気エゼクタの空気噴出ノズルに導かれる供給空気
導管途上に上記空気エゼクタ内壁洗浄流体供給用
の分岐導管を分岐配設し、該分岐部上流の上記空
気導管と洗浄流体導管上にそれぞれ第2開閉弁と
第3開閉弁を設けて成る空気エゼクタ内壁洗浄手
段を具備せしめたことを特徴とする化学反応ガス
排気装置。
1. In an exhaust system in which an air ejector connected to a water ring vacuum pump is connected to an exhaust port of a gas reaction chamber via an exhaust conduit and a mechanical vacuum pump for discharging chemical reaction gases, the air ejector is A first on-off valve is provided on the upstream exhaust conduit, and a branch conduit for supplying cleaning fluid for the inner wall of the air ejector is provided in the middle of the supply air conduit leading to the air jet nozzle of the air ejector, and A chemical reaction gas exhaust device characterized in that the air ejector inner wall cleaning means is provided with a second on-off valve and a third on-off valve provided on the air conduit and the cleaning fluid conduit, respectively.
JP20906881A 1981-12-25 1981-12-25 Chemical reaction gas exhausting apparatus Granted JPS58110873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20906881A JPS58110873A (en) 1981-12-25 1981-12-25 Chemical reaction gas exhausting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20906881A JPS58110873A (en) 1981-12-25 1981-12-25 Chemical reaction gas exhausting apparatus

Publications (2)

Publication Number Publication Date
JPS58110873A JPS58110873A (en) 1983-07-01
JPS6211196B2 true JPS6211196B2 (en) 1987-03-11

Family

ID=16566713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20906881A Granted JPS58110873A (en) 1981-12-25 1981-12-25 Chemical reaction gas exhausting apparatus

Country Status (1)

Country Link
JP (1) JPS58110873A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535203U (en) * 1976-06-26 1978-01-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535203U (en) * 1976-06-26 1978-01-18

Also Published As

Publication number Publication date
JPS58110873A (en) 1983-07-01

Similar Documents

Publication Publication Date Title
TW200936886A (en) Multi-port pumping system for substrate processing chambers
JP5996834B2 (en) Vacuum exhaust device
TWI377291B (en) Apparatus and method for control, pumping and abatement for vacuum process chambers
JP4113755B2 (en) Processing equipment
JPH02290223A (en) Thermal cracking apparatus
JP2010504847A5 (en)
US6149729A (en) Film forming apparatus and method
CN100415587C (en) Purgeable container for low vapor pressure chemicals
JPS6211196B2 (en)
JP2020059002A (en) Detoxification device, method for exchanging piping part of detoxification device and method for cleaning pipeline of detoxification device
JPS6126412B2 (en)
JPS6128837B2 (en)
JPH0637074A (en) Cleaning method for semiconductor manufacturing apparatus
JP2004218648A (en) Vacuum device
JP3350590B2 (en) Semiconductor manufacturing apparatus and cleaning method thereof
KR20100073338A (en) Vacuum pump system for semiconductor process chamber
JP2830585B2 (en) Semiconductor manufacturing equipment
JP2520592Y2 (en) Decompression exhaust device
KR100669856B1 (en) Device for connecting two pipes and apparatus for processing a semiconductor substrate using the same
US20230258191A1 (en) Dry vacuum pump regeneration mechanism and dry vacuum pump regeneration method
KR20040053452A (en) Apparatus for eliminating particle in vaccum chamber
KR100280467B1 (en) Apparatus for purging piping of semiconductor wafer deposition system
JPH11219908A (en) Substrate processor and method therefor
TWI386513B (en) Method and apparatus for maintaining by-product volatility in deposition process
KR200173020Y1 (en) Lower pressure chemical vapor deposition (lpcvd)