JPS62110831A - Forming method for inner wheel of uniform joint - Google Patents

Forming method for inner wheel of uniform joint

Info

Publication number
JPS62110831A
JPS62110831A JP25001885A JP25001885A JPS62110831A JP S62110831 A JPS62110831 A JP S62110831A JP 25001885 A JP25001885 A JP 25001885A JP 25001885 A JP25001885 A JP 25001885A JP S62110831 A JPS62110831 A JP S62110831A
Authority
JP
Japan
Prior art keywords
end surface
forging
guide groove
inflection
center line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25001885A
Other languages
Japanese (ja)
Other versions
JPH0257458B2 (en
Inventor
Hisashi Sakurai
桜井 久之
Tomonori Nakamura
中村 智範
Haruo Meguro
晴夫 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP25001885A priority Critical patent/JPS62110831A/en
Publication of JPS62110831A publication Critical patent/JPS62110831A/en
Publication of JPH0257458B2 publication Critical patent/JPH0257458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/2237Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts where the grooves are composed of radii and adjoining straight lines, i.e. undercut free [UF] type joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/762Coupling members for conveying mechanical motion, e.g. universal joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To obtain the product having smooth bond on an inflection face by performing the optimum distribution of the ironing allowance for the adjustment of the relative positional relation of the inflection face for both end faces and the 2nd forging stage in case of forming an intermediate forming item in the 1st forging stage. CONSTITUTION:The intermediate forming item 42b that the distance from the 1st end face 45 upto the position of an inflection face 47 is longer than that of a completed item 42c and that from the inflection face 47 upto the 2nd end face 46 is shorter than that of the completed item 42c, is formed in the 1st stage. The ironing allowance t' for the 2nd stage is made thickest at the bottom part of each guide groove part 43 and thinner gradually from the bottom part toward the outmost peripheral part 44. In the 2nd stage the completed item 42c is subjected to a die forming by a die push-in forging in the stage of giving the relief gap of the material accompanied by the material deformation to each the outmost peripheral part 44 and 2nd end face 46 part. In this way the inner wheel of the uniform joint having smooth bond on the inflection face can be forged.

Description

【発明の詳細な説明】 A6発明の目的 +11  産業上の利用分野 本発明は、等速ジヨイントの内輪の成形方法に関し、特
に側周面上に周方向に等間隔を置いて中心線を通る縦断
平面に沿う複数条のトルク伝達用ボールの案内溝が形成
され、この案内溝に沿って転動するボールの中心の軌跡
線が、中心線と平行な直線部と、この直線部に滑らかに
連続する円弧部とよりなる等速ジヨイントの内輪の鍛造
成形方法に関する。
Detailed Description of the Invention A6 Object of the Invention +11 Industrial Field of Application The present invention relates to a method of forming an inner ring of a constant velocity joint, and particularly relates to a method for forming an inner ring of a constant velocity joint. A plurality of guide grooves for torque transmission balls are formed along a plane, and the locus line of the center of the ball rolling along the guide groove smoothly continues to a straight line parallel to the center line and to this straight line. The present invention relates to a method for forging an inner ring of a constant velocity joint, which comprises a circular arc portion.

(2)従来の技術 先ず、本発明が対象とする等速ジヨイントについて図面
により説明する。
(2) Prior Art First, a constant velocity joint to which the present invention is directed will be explained with reference to the drawings.

第1図において、回転軸1の端部に回転軸1と一体的に
回転し得るように取り付けられた等速ジヨイントの外輪
2の内周面部には、周方向に等間隔を置いて外輪2の縦
断面に沿った複数個の案内溝3が形成されていると共に
、回転軸1に対し軸方向に対向する回転軸4の端部に回
転軸4と一体的に回転し得るように取り付けられた等速
ジヨイントの内輪5の外周面部には、各案内溝3に対向
して内輪5の縦断面に沿った複数個の案内溝6が形成さ
れており、それぞれ互いに対向する案内溝3と案内溝6
との間には、ボール保持リング8により保持されたトル
ク伝達用ボール7が介装されている。そして、外輪2の
端縁外周部と回転軸4の外周部との間には、等速ジヨイ
ントの内部機構を保護するための防塵ブーツ9が装着さ
れている。
In FIG. 1, on the inner peripheral surface of the outer ring 2 of the constant velocity joint, which is attached to the end of the rotating shaft 1 so as to be able to rotate integrally with the rotating shaft 1, outer rings 2 are arranged at equal intervals in the circumferential direction. A plurality of guide grooves 3 are formed along the longitudinal section of the rotary shaft 1, and the rotary shaft 1 is attached to an end of the rotary shaft 4 facing the rotary shaft 1 in the axial direction so as to be able to rotate integrally with the rotary shaft 4. On the outer peripheral surface of the inner ring 5 of the constant velocity joint, a plurality of guide grooves 6 are formed along the vertical cross section of the inner ring 5, facing each guide groove 3, and the guide grooves 3 and guide grooves facing each other are formed on the outer peripheral surface of the inner ring 5 of the constant velocity joint. Groove 6
A torque transmitting ball 7 held by a ball holding ring 8 is interposed between the two. A dustproof boot 9 is installed between the outer circumference of the outer ring 2 and the outer circumference of the rotating shaft 4 to protect the internal mechanism of the constant velocity joint.

か(して、回転軸1の中心線と回転軸4の中心線とが一
直線上にあるときはもとより、互いに交差した状態にお
いても、回転軸lと回転軸4との間で自由にトルク伝達
が行われる。
(Thus, torque can be freely transmitted between the rotating shaft 1 and the rotating shaft 4 not only when the center line of the rotating shaft 1 and the center line of the rotating shaft 4 are in a straight line, but also when they cross each other. will be held.

第2図及び第3図において、内輪5は、その中心線Cに
対して垂直で軸方向に互いに離隔している第1の端面1
0及び第2の端面11を有し、各案内溝6とボール7と
の接点12.13は、内輪5の中心線Cに垂直な任意の
横断面上において、内輪5の中心線Cから相互に等距離
にあり、各ボール7の中心は円14上にある。内輪5の
最外側周面15は、各案内溝6を挟んで同一円周上にあ
るが、鍛造後、機械加工をして球面状に研摩仕上げされ
るため鍛造素材精度は各案内溝6の表面程には要求され
ない。
In FIGS. 2 and 3, the inner ring 5 has first end surfaces 1 perpendicular to its center line C and spaced apart from each other in the axial direction.
0 and a second end surface 11, and the contact points 12, 13 between each guide groove 6 and the ball 7 are mutually located from the center line C of the inner ring 5 on any cross section perpendicular to the center line C of the inner ring 5. The center of each ball 7 is on the circle 14. The outermost circumferential surface 15 of the inner ring 5 is on the same circumference with each guide groove 6 in between, but after forging, it is machined and polished into a spherical shape, so the accuracy of the forged material is the same as that of each guide groove 6. It's not as demanding as it seems on the surface.

本発明が対象とする等速ジヨイントの内輪5は特に縦断
面形状に特徴があり、案内溝6に沿って転動するボール
7の中心の軌跡線17は、第1の端面10から内輪5の
中心線Cに垂直な仮想の変曲面16までは直線で、変曲
面16から第2の端面11までは、第1の端面10から
変曲面16までの直線部に滑らかに連続し、第2の端面
11に向かうに従って漸次中心線Cに近づく半径Rの円
弧を描くように、内輪5の縦断面形状が設定されている
The inner ring 5 of the constant velocity joint, which is the object of the present invention, is particularly characterized by its vertical cross-sectional shape. It is a straight line up to the virtual inflection surface 16 perpendicular to the center line C, and the line from the inflection surface 16 to the second end surface 11 smoothly continues to the straight line from the first end surface 10 to the inflection surface 16. The longitudinal cross-sectional shape of the inner ring 5 is set so as to draw a circular arc with a radius R that gradually approaches the center line C toward the end face 11.

以上のような内輪5の形状は、金型による鍛造を行った
としても金型からの離型が容易な形状であり、又案内溝
6に沿って転動するボール7の中心の軌跡線17が直線
部と円弧部とよりなるような複合形状の成形体に対して
は通常の研摩機による加工が困難であると共に、案内溝
6に対する鍛造後の加工が不要であれば生産性も向上す
る等の理由により、従来内輪5を金型による鍛造により
成形することが試みられた。
The shape of the inner ring 5 as described above is such that it can be easily released from the mold even if it is forged using a mold, and the trajectory line 17 of the center of the ball 7 rolling along the guide groove 6 is a shape that allows the inner ring 5 to be easily released from the mold. It is difficult to process a molded body with a composite shape, which consists of a straight part and a circular arc part, using a normal polishing machine, and if the post-forging processing of the guide groove 6 is not required, productivity will be improved. For these reasons, conventional attempts have been made to form the inner ring 5 by forging with a die.

第4図には内輪5を成形するための従来の鍛造工程が示
されている。まず第4図(a)において、鍛造型は凹型
18と凸型19とよりなり、凹型18は、内輪5の各案
内溝6を形成するための突条20と、第2の端面11を
規定するための底面21とを有し、各突条20は内輪5
の変曲面16 (第3図)に対応する変曲面22より凹
型18の開口端側においては凹型18の中心線に平行な
直線状縦断面形状を有していると共に、変曲面22から
底面21までは直線状縦断面形状に滑らかに連続し、底
面21に向かうに従って凹型18の中心線に接近する円
弧状縦断面形状を有している。これに対し凸型19は凹
型18の各突条20と整合する軸方向の溝23と鍛圧面
23aとを有している。
FIG. 4 shows a conventional forging process for forming the inner ring 5. First, in FIG. 4(a), the forging die consists of a concave die 18 and a convex die 19, and the concave die 18 defines the protrusions 20 for forming each guide groove 6 of the inner ring 5 and the second end surface 11. each protrusion 20 has a bottom surface 21 for
The side of the opening end of the concave mold 18 from the inflection surface 22 corresponding to the inflection surface 16 (FIG. 3) has a linear longitudinal cross-sectional shape parallel to the center line of the concave mold 18, and from the inflection surface 22 to the bottom surface 21. It has an arcuate vertical cross-sectional shape that smoothly continues to the linear vertical cross-sectional shape up to and approaches the center line of the concave mold 18 as it goes toward the bottom surface 21 . In contrast, the convex die 19 has an axial groove 23 that aligns with each protrusion 20 of the concave die 18 and a forging surface 23a.

内輪5の成形に当たっては、第4図(a)に示されるよ
うに丸棒素材25を凹型18内に位置決めしてから、第
4図(b)に示されるように凸型19を凹型18内へ圧
入すると、丸棒素材25は鍛圧されて凹型18の形状に
沿って変形する。
In forming the inner ring 5, the round bar material 25 is positioned in the concave mold 18 as shown in FIG. 4(a), and then the convex mold 19 is placed in the concave mold 18 as shown in FIG. 4(b). When press-fitted, the round bar material 25 is forged and deformed along the shape of the concave die 18.

そして凸型19を凹型18から後退させ、成形品25′
を第4図(C)に示されるように凹型18内から離型さ
せて、第1の端面26、第2の端面27及び変曲面28
を有する成形品25′を得る。
Then, the convex mold 19 is retreated from the concave mold 18, and the molded product 25'
is released from the concave mold 18 as shown in FIG. 4(C), and the first end surface 26, second end surface 27 and curved surface 28 are
A molded article 25' is obtained.

(3)発明が解決しようとする問題点 以上のような従来の成形方法においては、材料の変形量
が大きく、成形時の鍛圧荷重も大きいので、鍛圧時にお
ける金型の歪や第4図(C)の矢印29により示される
円弧部を中心として鍛圧後の成形品の弾性戻りによる寸
法のばらつきが多く、金型の精度を高めたとしても成形
品の精度の向上には限界があった。特に案内溝6を形成
する部分の材料の伸び率が大きく、金型に対する接触圧
力も高いので、第4図(a)の矢印24で示された部分
を中心として金型の摩耗が著しく、同一の金型を利用し
て多数の内輪5を製造する際には、金型及び製品の寸法
が急速に変化していくと共に、成形品25′の案内溝部
にかじり傷が生じ易くなり、又成形品25′の熱処理後
の寸法の狂いも大きく、そのままでは等速ジヨイントの
内輪として使用することが出来なかった。
(3) Problems to be Solved by the Invention In the conventional forming method as described above, the amount of material deformation is large and the forging load during forming is also large, resulting in distortion of the mold during forging and There were many variations in dimensions due to the elastic return of the molded product after forging around the circular arc portion shown by the arrow 29 in C), and even if the precision of the mold was improved, there was a limit to the improvement of the precision of the molded product. In particular, the elongation rate of the material in the area forming the guide groove 6 is high and the contact pressure against the mold is high, so the wear of the mold is significant around the part indicated by the arrow 24 in FIG. 4(a), and the same When manufacturing a large number of inner rings 5 using a mold of The dimensional deviation of product 25' after heat treatment was large, and it could not be used as the inner ring of a constant velocity joint as it was.

又材料の変形抵抗を下げるために、あらかじめ素材25
を加熱した場合には、素材25の温度のばらつき、成形
品25′の熱歪や収縮による寸法の変化、金型の軟化や
潤滑性能のばらつき等の問題が生じ、金型や成形品25
′の精度維持は一層困難なものとなった。
In addition, in order to lower the deformation resistance of the material, the material 25
If the material 25 is heated, problems such as variations in the temperature of the material 25, changes in dimensions due to thermal distortion and shrinkage of the molded product 25', softening of the mold and variations in lubrication performance may occur, causing the mold and the molded product 25' to be heated.
Maintaining the accuracy of ′ has become even more difficult.

そこで、内輪5を成形するための鍛造工程を第1工程及
び第2工程の2工程に分け、第1工程においては第5図
に示されるように成形品の側周面部には第2工程のため
の一定の厚さのしごき代tを見込んで、比較的容易に成
形される中間成形品30を鍛圧成形し、第2工程におい
て第1工程により得られた中間成形品30に対して鍛造
仕上げ加工を行うことが考えられる。第6図には、第1
工程により得られた第5図に示される中間成形品30に
対して行われる第2工程について示されている。
Therefore, the forging process for forming the inner ring 5 is divided into two processes, the first process and the second process, and in the first process, as shown in FIG. The intermediate molded product 30, which is relatively easily molded, is forged, taking into consideration a certain ironing allowance t, and in the second step, the intermediate molded product 30 obtained in the first step is forged finished. It is possible to perform processing. Figure 6 shows the first
The second step performed on the intermediate molded product 30 shown in FIG. 5 obtained by the step is shown.

第6図(a)に示されるように中間成形品30を凹型3
1の開口部に位置決めし、第6図(b)のように凸型3
2により中間成形品30を凹型31内へ圧入した後、更
に第6図(C)に示されるように中間成形品30を最終
成形品30′となるまで鍛圧すると、第6図(d)に示
されるように、第1の端面35、第2の端面36、変曲
面37及び案内溝39を有する最終成形品30′が得ら
れる。
As shown in FIG. 6(a), the intermediate molded product 30 is placed in the concave mold 3.
Position the convex mold 3 at the opening 1 as shown in Fig. 6(b).
After press-fitting the intermediate molded product 30 into the concave mold 31 in step 2, the intermediate molded product 30 is further pressed until it becomes the final molded product 30' as shown in FIG. 6(d). As shown, a final molded article 30' having a first end surface 35, a second end surface 36, an inflection surface 37 and a guide groove 39 is obtained.

しかしこの場合、最終成形品30′の第1の端面35か
ら変曲面37までの部分はしごかれて表面の精度は向上
するが、変曲面を境にして、これより上の部分は主とし
てしごきであり、また下の部分は主としてしごきと潰し
であって上の部分と下の部分とでは変形様式、成形度合
が異なり、第6図の場合には下の部分の成形度合の方が
大きく段差を生じる。同様に、図示しないが第1工程で
完成品とほぼ同じ軸方向長さ、円弧長さI、を持つ素材
を形成し、第2工程で溝部をしごき成形した場合には変
曲面より下の部分では材料が主として型に押し付けられ
るだけでほとんど変形を受けないので充分、引き伸ばさ
れず面粗度が向上しない。
However, in this case, although the part from the first end surface 35 to the inflection surface 37 of the final molded product 30' is ironed to improve surface accuracy, the part above the inflection surface is mainly ironed. In addition, the lower part is mainly squeezed and crushed, and the deformation style and degree of forming are different between the upper part and the lower part, and in the case of Fig. 6, the degree of forming of the lower part is larger and the difference in level occurs. . Similarly, although not shown, in the first step, a material having approximately the same axial length and arc length I as the finished product is formed, and in the second step, the groove portion is iron-formed, the portion below the inflection surface. In this case, the material is mainly pressed against the mold and undergoes almost no deformation, so it is not sufficiently stretched and the surface roughness does not improve.

また成形度合も小さく逆の段差を生じる。この様に、直
線部と円弧部の複合形状を有する等速ジヨイント内輪の
溝成形に於いては、変曲面でのつなぎの良し悪しが大き
な問題となる。特に第6図(b)に示されるように、凹
型31の変曲面33部には過度の圧力が加わって異常摩
耗が進行すると共に、第6図(d)に示されるように最
終成形品30′の変曲面37と第2の端面36との間の
矢印38により示された部分においては弾性戻り量が多
い。又成形品の案内溝部については、半径方向外方へ向
かうに従ってしごき方向は半径方向から周方向へと変化
するので、単純に一様なしごき代tの下でしごいた場合
には、半径方向外方はど溝のしごき率が大きくなって周
方向の絞りが困難となり、金型に対するかじりが生じ易
く精度の向上にも限界がある。また、第2工程において
、最外周部及び第2の端面が型により拘束されると溝の
しごき成形及び円弧部の絞り成形に際し材料の一方向へ
の自由な流れが阻害され干渉を起こしてうまく型に倣わ
ない。
Furthermore, the degree of forming is also small, resulting in an opposite level difference. As described above, in forming grooves in the inner ring of a constant velocity joint having a composite shape of a straight line portion and a circular arc portion, the quality of the connection at the curved surface is a major issue. In particular, as shown in FIG. 6(b), excessive pressure is applied to the curved surface 33 of the concave mold 31, causing abnormal wear, and as shown in FIG. 6(d), the final molded product 33 The amount of elastic return is large in the portion indicated by the arrow 38 between the curved surface 37 and the second end surface 36. Regarding the guide groove of a molded product, the ironing direction changes from the radial direction to the circumferential direction as it goes radially outward, so if it is simply ironed under a uniform ironing width t, the radial direction On the outside, the ironing rate of the grooves increases, making it difficult to squeeze in the circumferential direction, which tends to cause galling against the mold, and there is a limit to the improvement of precision. In addition, in the second step, if the outermost periphery and the second end surface are restrained by the mold, the free flow of the material in one direction during ironing of the groove and drawing of the arc portion will be inhibited, causing interference and resulting in poor performance. Don't follow the pattern.

かくして実験の結果、第7図に示されるように、最終成
形品30′の各案内溝39においては、変曲面37を境
にして、第1の端面35側の縦断面直線部にはボールと
接触する点軌跡である接触線40.40’が生じるのに
対して第2の端面36側の縦断面円弧部には接触線41
.41’が生じ、接触線40と接触線41、及び接触線
40’と接触線41′とはそれぞれ滑らかに連続せず、
等速ジジイントのボール転勤面としては使用出来ないも
のとなってしまう。
As a result of the experiment, as shown in FIG. 7, in each guide groove 39 of the final molded product 30', a ball and a straight part of the longitudinal section on the first end surface 35 side, with the curved surface 37 as a boundary, were found. A contact line 40.40', which is a contact point locus, is generated, whereas a contact line 41 is formed on the arcuate longitudinal section on the second end surface 36 side.
.. 41' occurs, and the contact line 40 and the contact line 41 and the contact line 40' and the contact line 41' do not continue smoothly, respectively.
This means that it cannot be used as a ball transfer surface for constant-velocity gravity.

以上のような実情にかんがみ、本発明は鍛造工程のみに
より精度が高く実用に供し得るような等速ジヨイントの
内輪を成形するための方法を得ることを主な目的とする
ものである。
In view of the above-mentioned circumstances, the main object of the present invention is to provide a method for forming the inner ring of a constant velocity joint using only a forging process with high precision and which can be put to practical use.

B0発明の構成 (1)  問題点を解決するための手段本発明によれば
、中心線に対して垂直な第1の端面と第2の端面とを有
し、前記第1の端面と第2の端面との間の側周面上には
、周方向に等間隔を置いて前記中心線を通る縦断平面に
沿う複数条のトルク伝達用ボールの案内溝が形成され、
前記各案内溝に沿って転動する前記ボールの中心の軌跡
線は、前記中心線に垂直な任意の横断面上において前記
中心線から互いに等距離にあり、前記第1の端面から前
記中心線に垂直な仮想の変曲面までは前記中心線と平行
な直線で、前記変曲面から前記第2の端面までは前記直
線部と滑らかに接続し、前記第2の端面に向かうに従っ
て漸次前記中心線に接近する円弧形状となるような等速
ジヨイントの内輪を成形するための方法であって、第1
の鍛造工程と第2の鍛造工程とよりなり、前記第1の鍛
造工程においては、第1の端面から変曲面の位置までは
完成品の前記第1の端面から変曲面までの軸方向の長さ
より長く、前記変曲面から第2の端面までは完成品の前
記変曲面から前記第2の端面までの軸方向の長さよりも
短くなるように形成すると共に、その量は第2の工程に
於いて、変曲面より上の成形度合と変曲面より下の成形
度合がうまくバランスする様に設定し第2の工程のため
のしごき代については、各案内溝部の底部において最も
厚く、各案内溝部の底部から最外周部に向かうに従って
漸次薄くなるように形成し、前記第2の鍛造工程におい
ては、前記各最外周部及び前記第2の端面部に材料の変
形に伴う材料の逃げ空隙を与えた状態で型押し込み鍛造
により型成形を行うことを特徴とする等速ジヨイントの
内輪の成形方法が得られる。
B0 Configuration of the Invention (1) Means for Solving the Problems According to the present invention, the invention has a first end face and a second end face perpendicular to the center line, and the first end face and the second end face are perpendicular to the center line. A plurality of guide grooves for torque transmission balls are formed along a longitudinal plane passing through the center line at equal intervals in the circumferential direction on the side circumferential surface between the end face of the
The locus lines of the centers of the balls rolling along each of the guide grooves are equidistant from the center line on any cross section perpendicular to the center line, and extend from the first end surface to the center line. A straight line is parallel to the center line up to an imaginary inflection surface perpendicular to , a straight line is connected smoothly to the straight line from the inflection surface to the second end surface, and the center line gradually extends toward the second end surface. 1. A method for forming an inner ring of a constant velocity joint to have an arc shape approaching .
and a second forging step, and in the first forging step, the distance from the first end surface to the position of the inflection surface is the axial length of the finished product from the first end surface to the inflection surface. The length from the curved surface to the second end surface is shorter than the length in the axial direction from the curved surface to the second end surface of the finished product, and the amount is determined in the second step. The ironing allowance for the second step is set so that the degree of forming above the curved surface and the degree of forming below the curved surface are well balanced. It is formed so that it becomes gradually thinner from the bottom toward the outermost periphery, and in the second forging step, an escape gap for the material is provided at each outermost periphery and the second end surface as the material deforms. A method for forming an inner ring of a constant velocity joint is obtained, which is characterized in that die forming is performed by die forging in a state in which the inner ring of a constant velocity joint is formed.

(2)作 用 第1の鍛造工程においては、中間成形品を成形すること
を目的とするもので、特に高い精度は要求されない。こ
のため、例えば丸棒素材から従来の型鍛造により、第1
の端面から変曲面の位置までは完成品の第1の端面から
変曲面までの軸方向の長さより長く、変曲面から第2の
端面までは完成品の変曲面から第2の端面までの軸方向
の長さよりも短く、またしごき代については、各案内溝
部の底部において最も厚く、各案内溝部の底部から最外
周部に向かうに従って漸次薄くなっている形状の内輪の
中間成形品が得られる。
(2) Function The purpose of the first forging process is to form an intermediate molded product, and particularly high precision is not required. For this reason, for example, by conventional die forging from a round bar material, the first
The distance from the end surface to the inflection surface is longer than the axial length from the first end surface to the inflection surface of the finished product, and the length from the inflection surface to the second end surface is longer than the axial length from the inflection surface to the second end surface of the finished product. An intermediate molded product of the inner ring is obtained, which is shorter than the length in the direction and has a shape in which the ironing allowance is thickest at the bottom of each guide groove and gradually becomes thinner from the bottom of each guide groove toward the outermost periphery.

第2の鍛造工程においては、中間成形品の各案内溝部の
底部において半径方向内方への鍛圧力を最も多く受け、
各案内溝部の底部から最外周部へ向かうに従って周方向
の鍛圧力を受けることによって、材料は軸方向へ伸びる
と同時に各案内溝部の底部から最外周部へと流動し、最
外周部は凹型の逃げ空隙に向けて半径方向外方へと押し
やられる。その結果、各案内溝部の要所が重点的にしご
かれ、材料の流れが阻害されず無理なく型に倣うこと、
またしごき代に変化を持たせたことによって鍛圧荷重が
従来の方法に比較して少なくて済むと共に、案内溝全体
がバランス良くしごかれ、精度が向上する。
In the second forging step, the bottom of each guide groove of the intermediate molded product receives the most radially inward forging force,
By receiving circumferential forging force from the bottom of each guide groove toward the outermost periphery, the material stretches in the axial direction and at the same time flows from the bottom of each guide groove to the outermost periphery. is forced radially outward toward the relief gap. As a result, important points in each guide groove are squeezed intensively, and the flow of material is not hindered and can easily follow the mold.
Also, by varying the ironing distance, the forging load can be reduced compared to the conventional method, and the entire guide groove can be squeezed in a well-balanced manner, improving accuracy.

また第2の鍛造工程においては、先ず中間成形品の縦断
面直線部が先にしごかれ、次いで材料が縦断面円弧部へ
と流動し第2の端面部は凹型の逃げ空隙へ向けて押し出
される。その結果、鍛造終工時においては、中間成形品
の変曲面から第2の端面までの間隔は伸長し、完成品の
変曲面から第2の端面までの間隔に達する。この時も第
2の端面部は型により拘束されないので流動が阻害され
ず、無理なく型に倣い精度が向上する。同時に変曲面よ
り上部と、変曲面より下部の成形度合がバランスし、上
部と下部の寸法差の無い、従って変曲面でのつなぎの滑
らかな製品が得られる。
In the second forging process, the straight longitudinal section of the intermediate molded product is squeezed first, then the material flows into the arcuate longitudinal section, and the second end surface is pushed out toward the concave escape gap. . As a result, at the end of forging, the distance from the curved surface of the intermediate molded product to the second end surface increases to reach the distance from the curved surface to the second end surface of the finished product. At this time, the second end face portion is not restrained by the mold, so the flow is not hindered, and the second end face portion is easily imitated to the mold, improving accuracy. At the same time, the degree of molding above the curved surface and below the curved surface is balanced, and a product with no dimensional difference between the top and bottom, and therefore a smooth connection at the curved surface can be obtained.

(3)実施例 以下、図面により本発明の一実施例について説明する。(3) Examples An embodiment of the present invention will be described below with reference to the drawings.

第8図において、先ず第1の鍛造工程により第8図(a
)に示されるような丸棒素材42aから例えば従来の鍛
造方法により第8図(b)に示されるような中間成形品
42bを得る。以下、第9図及び第1O図に従って中間
成形品42bについて詳細に説明する。中間成形品42
bは、案内溝部43と、最外周部44と、中心線C′に
対して垂直な第1の端面45及び第2の端面46を有す
ると共に、中心線C′に対して垂直な仮想の変曲面47
を有する。第1の端面45から変曲面47までは完成品
の第1の端面から変曲面までの軸方向の長さより長く、
変曲面47から第2の端面46までの軸方向の長さは、
完成品の変曲面から第2の端面、即ち基準面48までの
間隔りよりも縮少長さpだけ短い。又しごき代t′につ
いては、各案内溝部43の底部において最も厚いしごき
代t’maxを有し、各案内溝部43の底部から最外周
部44に向かうに従ってしごき代t′は漸次薄くなって
いる。
In Fig. 8, first, the first forging process is performed as shown in Fig. 8 (a).
) An intermediate molded product 42b as shown in FIG. 8(b) is obtained from a round bar material 42a as shown in FIG. 8(b) by, for example, a conventional forging method. Hereinafter, the intermediate molded product 42b will be explained in detail according to FIG. 9 and FIG. 1O. Intermediate molded product 42
b has a guide groove portion 43, an outermost peripheral portion 44, a first end surface 45 and a second end surface 46 perpendicular to the center line C', and has an imaginary change perpendicular to the center line C'. Curved surface 47
has. The length from the first end surface 45 to the curved surface 47 is longer than the length in the axial direction from the first end surface to the curved surface of the finished product;
The length in the axial direction from the curved surface 47 to the second end surface 46 is
The distance from the curved surface of the finished product to the second end surface, that is, the reference surface 48, is shorter by the reduced length p. Regarding the ironing allowance t', the ironing allowance t'max is the thickest at the bottom of each guide groove part 43, and the ironing allowance t' gradually becomes thinner as it goes from the bottom of each guide groove part 43 toward the outermost peripheral part 44. .

中間成形品42bに対しては、焼鈍、ショツトブラスト
、潤滑処理等の中間処理を行った後、第2の鍛造工程に
より第8図(b)に示される中間成形品から第8図(C
)に示される完成品42Cを得る。以下、第2の鍛造工
程について詳細に説明する。
The intermediate molded product 42b is subjected to intermediate treatments such as annealing, shot blasting, and lubrication, and then undergoes a second forging process to transform the intermediate molded product shown in FIG. 8(b) into a shape shown in FIG.
) is obtained as a finished product 42C. The second forging process will be described in detail below.

第11図(a)において、金型は凹型49とパンチ即ち
凸型50とよりなり、凹型49は、中間成形品42bの
案内溝部43をしごくための突条51と、仮想の変曲面
52と、仮想の基準面53とを有すると共に、その基準
面53に対向してノックアウト部材55が配設されてお
り、基準面53の位置には材料の逃げ空隙54が形成さ
れている。同様にして、第12図に示されるように中間
成形品42bの各最外周部44に対向する凹型49の各
溝底部56にはそれぞれ材料の逃げ空隙57が形成され
ている。他方、凸型50の外周部には凹型49の各突条
51と整合する溝58が形成されている。
In FIG. 11(a), the mold consists of a concave mold 49 and a punch or convex mold 50, and the concave mold 49 has a protrusion 51 for squeezing the guide groove 43 of the intermediate molded product 42b and an imaginary curved surface 52. , a virtual reference plane 53, and a knockout member 55 is disposed opposite the reference plane 53, and a material escape gap 54 is formed at the position of the reference plane 53. Similarly, as shown in FIG. 12, a material escape gap 57 is formed in each groove bottom 56 of the concave mold 49 facing each outermost peripheral portion 44 of the intermediate molded product 42b. On the other hand, grooves 58 are formed on the outer periphery of the convex mold 50 to match the respective protrusions 51 of the concave mold 49.

第11図<a>に示されるように中間成形品42bを凹
型49の開口部に位置付けしてから凸型50により鍛圧
すると、まず矢印59で示される凹型49の開口部にお
いて案内溝部43に対するしごきが開始される。案内溝
部43に対するしごきが進むに従って、材料は軸方向へ
移動すると同時に最外周部44の方向へと流動し、最外
周部44は逃げ空隙57へ向けて押し出される。かくし
て最外周部44は逃げ場を失って封じ込められるという
ことがないため、鍛圧荷重は従来方法に比較して少なく
て済むと共に材料中に応じてしごき代が変化しているの
で、案内溝部43全体がバランス良くしごかれ、精度が
向上する。
As shown in FIG. 11<a>, when the intermediate molded product 42b is positioned at the opening of the concave mold 49 and then pressed by the convex mold 50, the guide groove 43 is first pressed against the guide groove 43 at the opening of the concave mold 49 as indicated by the arrow 59. is started. As the ironing against the guide groove portion 43 progresses, the material moves in the axial direction and simultaneously flows toward the outermost peripheral portion 44 , and the outermost peripheral portion 44 is pushed out toward the escape gap 57 . In this way, the outermost periphery 44 does not lose its escape and is sealed, so the forging load can be reduced compared to the conventional method, and since the ironing allowance changes depending on the material, the entire guide groove 43 is It is well-balanced and improves accuracy.

中間成形品42bの押し込みが更に続くと、中間成形品
42bの縦断面円弧部が凹型49の縦断面円弧部により
鍛圧されて、第2の端面46寄りの材料は、逃げ場を失
って封じ込められるということがなく第11図(b)に
示されるように逃げ空隙54へ向けて押し出される。こ
のときの第2の端面46寄りの材料の軸方向の押し出さ
れ量は縮少長さlとなるようにあらかじめ設定される。
When the intermediate molded product 42b continues to be pushed further, the arcuate longitudinal section of the intermediate molded product 42b is forged by the arcuate longitudinal section of the concave die 49, and the material near the second end face 46 has no place to escape and is trapped. 11(b), it is pushed out toward the escape gap 54. At this time, the amount by which the material near the second end surface 46 is pushed out in the axial direction is set in advance to be the reduced length l.

かくして得られた成形品を凹型49から離型して取り出
すと、第8図(c)に示されるように完成品42Cが得
られる。
When the molded product thus obtained is released from the concave mold 49 and taken out, a finished product 42C is obtained as shown in FIG. 8(c).

この完成品42Cにおいては、第1の端面45から変曲
面47までの間隔は目的とする第3図の内輪5の第1の
端面10から変曲面16までの軸方向の間隔に等しく、
又変曲面47から第2の端面46′までの間隔は内輪5
の変曲面16から第2の端面11までの軸方向の間隔り
に等しい。□この時、縮少長さlの設定が特に重要であ
る。成る一定のしごき代と完成品の円弧長さしに対して
縮少長さlが小さ過ぎると変曲面より下の部分は上の部
分に比べ成形度合が不足して後述の第14図における(
PCR−PCD)はマイナス方向になり、円弧部の面粗
度は向上しない。逆に縮少長さlが大き過ぎると変曲面
を境にして上の部分より下の部分の成形度合が大きくな
り、円弧部の面粗度は向上するものの、後述の第14図
における(PCR−PCD)はプラスの方向となりlの
設定が適切でないと上記いずれの場合にも変曲面に於い
て寸法差、即ち段差を生じボール転勤面として実用に供
さない。縮少長さlの量はしごき代t′waxや完成品
円弧長さLにより異なるが変曲面より上の部分と下の部
分の成形度合、つまり弾性もどり量が等しくなるように
設定すればよい。第14図には実験により得られたグラ
フを示すもので、RCD :変曲面より上の垂直部での
ボール中心のピッ千円径 PCR:変曲面より下の円弧部でのボール中心のピッチ
円径 t’max:案内溝底部におけるしごき代t’max/
D:案内溝底部における最大しごき率C:実験により定
めた係数 として横軸には縮少長さβを円弧長さしとしごき率t’
max/Dに関連させてとり、縦軸には第2工程におけ
る成形荷重p(ton)、円筒度cy(μ)、寸法差P
CR−PCDの絶対値をとったもので、しごき率t’/
D、円弧長さLに対し最適な縮少長さlが存在し、変曲
面より上の部分と下の部分とで成形比率が等しくなる横
軸の値1.0付近で寸法差が少なくボール転勤面として
使用範囲Aであることを示す。
In this finished product 42C, the distance from the first end surface 45 to the curved surface 47 is equal to the distance in the axial direction from the first end surface 10 to the curved surface 16 of the target inner ring 5 in FIG.
Also, the distance from the curved surface 47 to the second end surface 46' is equal to that of the inner ring 5.
is equal to the axial distance from the inflection surface 16 to the second end surface 11. □At this time, the setting of the reduced length l is particularly important. If the reduction length 1 is too small with respect to the constant ironing allowance and the arc length of the finished product, the degree of forming of the part below the curved surface will be insufficient compared to the part above it, resulting in (
PCR-PCD) is in the negative direction, and the surface roughness of the arc portion is not improved. On the other hand, if the reduction length l is too large, the degree of forming of the lower part of the curved surface will be greater than that of the upper part, and although the surface roughness of the circular arc part will improve, -PCD) is in the positive direction, and if the setting of 1 is not appropriate, a dimensional difference, that is, a step difference will occur in the curved surface in any of the above cases, making it unusable as a ball transfer surface. The amount of reduction length l varies depending on the ironing allowance t'wax and the arc length L of the finished product, but it should be set so that the degree of forming, that is, the amount of elastic return, of the part above and below the inflection surface is equal. . Figure 14 shows a graph obtained from the experiment. Diameter t'max: Ironing allowance t'max/ at the bottom of the guide groove
D: Maximum ironing rate at the bottom of the guide groove C: As a coefficient determined by experiment, the horizontal axis shows the reduction length β as the arc length and the ironing rate t'
max/D, and the vertical axis shows the forming load p (ton), cylindricity cy (μ), and dimensional difference P in the second step.
The absolute value of CR-PCD is taken, and the scrubbing rate t'/
D, there is an optimal reduction length l for the arc length L, and the ball has small dimensional differences near the value 1.0 on the horizontal axis, where the molding ratio is equal in the part above and below the curved surface. Indicates that it is within usage range A as a transfer aspect.

テストの結果、しごき率(t’ 1nax /DX 1
00%)は1.3〜1.5%で充分満足のいく精度のも
のが得られたが、これに限定されるものではない。
As a result of the test, the stroke rate (t' 1nax /DX 1
00%) was 1.3 to 1.5%, and a sufficiently satisfactory accuracy was obtained, but it is not limited to this.

縮少長さlは以上の説明より完成品円弧長さLに応じて
決定すればよい。そして、第9図において、点線で示さ
れる成形後の案内溝43′については、材料の流動が無
理なく行われて成形されているため、第1の端面45か
ら変曲面47までの案内溝と変曲面47から第2の端面
46′までの案内溝とが滑らかに連続し、後加工が必要
としない程度に実用的なボール転勤面を形成している。
The reduced length l may be determined according to the finished product arc length L from the above explanation. In FIG. 9, the guide groove 43' shown by the dotted line after molding is formed while the material flows smoothly, so the guide groove 43' from the first end surface 45 to the inflection surface 47 is formed. The guide groove from the curved surface 47 to the second end surface 46' continues smoothly, forming a practical ball transfer surface that does not require post-processing.

第13図には、第1の鍛造工程及び第2の鍛造工程を通
して第1図の内輪5の軸穴を形成するための過程の一例
が示されている。第13図(a)に示されるような丸棒
素材42aに基づき第1の鍛造工程において第13図(
b)に示されるように第1の端面45及び第2の端面4
6の両端面部にそれぞれ凹陥部60,61を鍛圧形成し
て中間成形品42bを得る。続いて第13図(C)に示
されるように各凹陥部60,61間の内部を打抜いて貫
通孔62を形成することにより中間成形品42b′を得
てから、この中間成形品42b′に対して焼鈍、ショツ
トブラスト、潤滑処理等の中間処理を施した後、第2の
鍛造工程において第13図(d)に示されるように、貫
通孔62の内周面を拘束して回転軸挿入孔63を形成し
、第1の端面45及び第2の端面46′を有する完成品
42cを得る。
FIG. 13 shows an example of a process for forming the shaft hole of the inner ring 5 of FIG. 1 through a first forging process and a second forging process. In the first forging step based on the round bar material 42a as shown in FIG. 13(a),
b) a first end face 45 and a second end face 4;
Recesses 60 and 61 are formed by forging on both end surfaces of 6, respectively, to obtain an intermediate molded product 42b. Subsequently, as shown in FIG. 13(C), an intermediate molded product 42b' is obtained by punching out the inside between each recessed part 60 and 61 to form a through hole 62, and then this intermediate molded product 42b' After performing intermediate treatments such as annealing, shot blasting, and lubrication, the inner circumferential surface of the through hole 62 is restrained in the second forging step, as shown in FIG. 13(d). An insertion hole 63 is formed to obtain a finished product 42c having a first end surface 45 and a second end surface 46'.

C9発明の効果 以上のように本発明によれば、第1の鍛造工程において
中間成形品を成形し、第2の鍛造工程において完成品を
成形するようにしたので、各工程における鍛圧荷重は単
一の工程により完成品を得ようとする場合に比較して小
さな鍛圧荷重で済むと共に、第2の鍛造工程において無
理なく精度の高い完成品を得ることができる。そして、
第1の鍛造工程においては、第1の端面から変曲面の位
置までは完成品の第1の端面から変曲面までの軸方向の
長さより長く、変曲面から第2の端面までは完成品の変
曲面から第2の端面までの軸方向の長さよりも短くなる
ように中間成形品を成形するので、第2の鍛造工程にお
ける変曲面から上の部分と、変曲面から下の部分との成
形度合をバランスさせることができ、精度と面粗度の向
−トはもちろん、変曲面における上・下の寸法差のない
、つなぎの滑らかな案内溝が得られる。
C9 Effects of the Invention As described above, according to the present invention, the intermediate product is formed in the first forging process, and the finished product is formed in the second forging process, so that the forging load in each process is simple. A smaller forging load is required compared to the case where a finished product is obtained in one step, and a finished product with high precision can be easily obtained in the second forging step. and,
In the first forging process, the distance from the first end surface to the position of the inflection surface is longer than the axial length from the first end surface to the inflection surface of the finished product, and the length from the inflection surface to the second end surface of the finished product is Since the intermediate molded product is formed so that the length in the axial direction from the inflection surface to the second end surface is shorter, the forming of the part above the inflection surface and the part below the inflection surface in the second forging process is It is possible to balance the degree, and it is possible to obtain a smooth guide groove with no difference in dimension between the top and bottom of the curved surface, as well as the direction of accuracy and surface roughness.

文箱2の工程のためのしごき代について、中間成形品の
各案内溝部の底部において最も厚く、各案内溝部の底部
から最外周部に向かうに従って漸次薄くなるようにした
ので、第2の鍛圧工程における材料の流動性向を有効に
利用し、かつ材料の巾に応じてバランス良く各案内溝部
をしごき、無理なく精度の高い案内溝を形成することが
できる。
The ironing allowance for the process of text box 2 is thickest at the bottom of each guide groove of the intermediate molded product, and gradually becomes thinner from the bottom of each guide groove toward the outermost periphery. By effectively utilizing the fluidity of the material in the material and squeezing each guide groove portion in a well-balanced manner according to the width of the material, it is possible to form a guide groove with high precision without difficulty.

更に第2の鍛造工程において、各最外周部及び第2の端
面部に材料の変形に伴う材料の逃げ空隙を設けるように
したので、変形して押し出されようとする材料を封じ込
め自由な流れを阻害させることなく無理のない鍛造を行
うことができる。そして、鍛圧荷重は比較的小さくて済
むと共に、完成品の弾性戻りが少なく、滑らかに連続し
た精度の高い案内溝を形成することができ、金型の摩耗
を少なくすることができる。
Furthermore, in the second forging process, a material escape gap is provided at each outermost peripheral part and second end face part as the material deforms, so that the material that is deformed and is about to be extruded is contained and free flow is prevented. It is possible to carry out forging without any hindrance. In addition, the forging load can be relatively small, the elastic return of the finished product is small, a smoothly continuous and highly accurate guide groove can be formed, and wear of the mold can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は等速ジヨイントの一例を示す縦断面図、第2図
は第1図の等速ジヨイントの内輪の鍛造素材の横断面図
、第3図は第2図の内輪の要部縦断面図、第4図は従来
の内輪の鍛造工程を示し、第4図(a)は鍛圧直前の状
態を示す金型及び素材の縦断面図、第4図(b)は鍛圧
終了時の金型及び成形品の縦断面図、第4図(C)は金
型から取り出した成形品の縦断面図、第5図は均等しご
き代を与えた場合の中間成形品の要部横断面図、第6図
は第5図の中間成形品から完成品を得るための鍛造工程
を示し、第6図(a)は鍛圧直前の状態を示す金型及び
中間成形品の要部縦断面図、第6図(b)は鍛圧工程中
の状態を示す金型及び中間成形品の要部縦断面図、第6
図(C)は鍛圧終了時の金型及び完成品の要部縦断面図
、第6図(d)は金型から取り出した完成品の縦断面図
、第7図は第6図の工程により得られた完成品の案内溝
部の不連続性を説明するための側面図、第8図は本発明
の一実施例に基づく等速ジヨイントの内輪の外形の成形
過程を示し、第8図(a)は素材の縦断面図、第8図(
b)は中間成形品の縦断面図、第8図(C)は完成品の
縦断面図、第9図は中間成形品のしごき代を説明するた
めの要部横断面図、第1θ図は中間成形品の要部縦断面
図、第11図は本発明の一実施例に基づく第2の鍛造工
程を示し、第11図(a)は鍛圧直前の状態を示す金型
及び中間成形品の要部縦断面図、第11図(b)は鍛圧
終了時の状態を示す金型及び完成品の要部縦断面図、第
12図は鍛圧工程中の金型及び中間成形品の要部横断面
図、第13図は本発明の一実施例に基づく鍛圧工程を通
して内輪の軸孔を形成する場合の一例を示し、第13図
(a)は素材の縦断面図、第13図(b)は第1の鍛造
工程において中間成形品の軸方向の両端面部に凹陥部を
形成したときの要部縦断面図、第13図(C)は両凹陥
部間の内部を打ち抜いた状態を示す要部縦断面図、第1
3図(d)は第2の鍛造工程により得られた完成品の要
部縦断面図、第14図は実験結果によるグラフである。 7・・・トルク伝達用ボール、43・・・案内溝部、4
3′・・・案内溝、44・・・最外周部、45・・・第
1の端面、46.46’・・・第2の端面、47・・・
変曲面、54.57・・・逃げ空隙、 C′・・・中心線、t′・・・しごき代第8図 (a)       /υ 第10図 (C) 第9図
Fig. 1 is a longitudinal cross-sectional view showing an example of a constant velocity joint, Fig. 2 is a cross-sectional view of the forged material of the inner ring of the constant velocity joint shown in Fig. 1, and Fig. 3 is a longitudinal cross-section of the main part of the inner ring of Fig. 2. Figure 4 shows the conventional forging process of the inner ring, Figure 4 (a) is a longitudinal cross-sectional view of the mold and material showing the state immediately before forging, and Figure 4 (b) shows the mold at the end of forging. 4(C) is a vertical sectional view of the molded product taken out from the mold, FIG. FIG. 6 shows the forging process for obtaining a finished product from the intermediate molded product shown in FIG. 5, and FIG. Figure (b) is a vertical sectional view of the main parts of the mold and intermediate molded product showing the state during the forging process, No. 6
Figure (C) is a vertical cross-sectional view of the main parts of the mold and finished product after forging is completed, Figure 6 (d) is a vertical cross-sectional view of the finished product taken out from the mold, and Figure 7 is a vertical cross-sectional view of the finished product taken out of the mold. FIG. 8 is a side view for explaining the discontinuity of the guide groove portion of the obtained finished product, and FIG. ) is a vertical cross-sectional view of the material, Figure 8 (
b) is a vertical cross-sectional view of the intermediate molded product, Figure 8 (C) is a vertical cross-sectional view of the finished product, Figure 9 is a cross-sectional view of the main part for explaining the ironing allowance of the intermediate molded product, and Figure 1θ is a vertical cross-sectional view of the intermediate molded product. FIG. 11 is a longitudinal sectional view of the main part of the intermediate molded product, showing the second forging process based on an embodiment of the present invention, and FIG. Fig. 11(b) is a longitudinal cross-sectional view of the main parts of the mold and the finished product showing the state at the end of forging, and Fig. 12 is a cross-sectional view of the main parts of the mold and intermediate molded product during the forging process. A plan view, FIG. 13 shows an example of forming the shaft hole of the inner ring through a forging process based on an embodiment of the present invention, FIG. 13(a) is a longitudinal cross-sectional view of the material, and FIG. 13(b) 13(C) is a longitudinal sectional view of the main part when recesses are formed on both axial end surfaces of the intermediate molded product in the first forging process, and FIG. Sectional longitudinal sectional view, 1st
FIG. 3(d) is a vertical cross-sectional view of the main part of the finished product obtained by the second forging process, and FIG. 14 is a graph based on the experimental results. 7... Torque transmission ball, 43... Guide groove portion, 4
3'...Guide groove, 44...Outermost periphery, 45...First end surface, 46.46'...Second end surface, 47...
Inflection surface, 54.57... Evacuation gap, C'... Center line, t'... Straightening width Fig. 8 (a) /υ Fig. 10 (C) Fig. 9

Claims (1)

【特許請求の範囲】[Claims] 中心線(C′)に対して垂直な第1の端面(45)と第
2の端面(46′)とを有し、前記第1の端面(45)
と第2の端面(46′)との間の側周面上には、周方向
に等間隔を置いて前記中心線(C′)を通る縦断平面に
沿う複数条のトルク伝達用ボール(7)の案内溝(43
′)が形成され、前記各案内溝(43′)に沿って転動
する前記ボール(7)の中心の軌跡線は、前記中心線(
C′)に垂直な任意の横断面上において前記中心線(C
′)から互いに等距離にあり、前記第1の端面(45)
から前記中心線(C′)に垂直な仮想の変曲面(47)
までは前記中心線(C′)と平行な直線で、前記変曲面
(47)から前記第2の端面(46′)までは前記直線
部と滑らかに接続し、前記第2の端面(46′)に向か
うに従って漸次前記中心線(C′)に接近する円弧形状
となるような等速ジョイントの内輪を成形するための方
法であって、第1の鍛造工程と第2の鍛造工程とよりな
り、前記第1の鍛造工程においては、第1の端面(45
)から変曲面(47)の位置までは完成品の前記第1の
端面(45)から変曲面(47)までの軸方向の長さよ
り長く前記変曲面(47)から第2の端面(46)まで
は完成品の前記変曲面(47)から前記第2の端面(4
6′)までの軸方向の長さよりも短くなるように形成す
ると共に、第2の工程のためのしごき代(t′)につい
ては、各案内溝部(43)の底部において最も厚く、各
案内溝部(43)の底部から最外周部(44)に向かう
に従って漸次薄くなるように形成し、前記第2の鍛造工
程においては、前記各最外周部(44)及び前記第2の
端面(46)部に材料の変形に伴う材料の逃げ空隙(5
4、57)を与えた状態で型押し込み鍛造により型成形
を行うことを特徴とする等速ジョイントの内輪の成形方
法。
The first end surface (45) has a first end surface (45) and a second end surface (46') perpendicular to the center line (C');
and the second end surface (46'), a plurality of torque transmission balls (7 ) guide groove (43
′) is formed, and the locus line of the center of the ball (7) rolling along each guide groove (43′) is the center line (
The center line (C') on any cross section perpendicular to the center line (C')
') and are equidistant from each other from the first end surface (45);
A virtual inflection surface (47) perpendicular to the center line (C') from
The section from the curved surface (47) to the second end surface (46') is a straight line parallel to the center line (C'), and the section from the curved surface (47) to the second end surface (46') smoothly connects with the straight section, and the section from the curved surface (47) to the second end surface (46') ) A method for forming an inner ring of a constant velocity joint into an arc shape that gradually approaches the center line (C'), the method comprising a first forging process and a second forging process. , in the first forging step, the first end surface (45
) to the position of the inflection surface (47) is longer than the axial length from the first end surface (45) to the inflection surface (47) of the finished product. From the curved surface (47) to the second end surface (4) of the finished product
6'), and the ironing allowance (t') for the second step is thickest at the bottom of each guide groove part (43), and is thickest at the bottom of each guide groove part (43). (43) so that it becomes gradually thinner as it goes from the bottom to the outermost peripheral part (44), and in the second forging process, each of the outermost peripheral parts (44) and the second end face (46) The material escape gap (5
4, 57) A method for forming an inner ring of a constant velocity joint, characterized in that die forming is performed by die forging in a state where the inner ring of a constant velocity joint is formed.
JP25001885A 1985-11-08 1985-11-08 Forming method for inner wheel of uniform joint Granted JPS62110831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25001885A JPS62110831A (en) 1985-11-08 1985-11-08 Forming method for inner wheel of uniform joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25001885A JPS62110831A (en) 1985-11-08 1985-11-08 Forming method for inner wheel of uniform joint

Publications (2)

Publication Number Publication Date
JPS62110831A true JPS62110831A (en) 1987-05-21
JPH0257458B2 JPH0257458B2 (en) 1990-12-05

Family

ID=17201620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25001885A Granted JPS62110831A (en) 1985-11-08 1985-11-08 Forming method for inner wheel of uniform joint

Country Status (1)

Country Link
JP (1) JPS62110831A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155428A (en) * 1989-11-13 1991-07-03 Honda Motor Co Ltd Manufacture of inner race for constant speed joint
JP2001334342A (en) * 2000-05-26 2001-12-04 Honda Motor Co Ltd Inner ring of constant velocity joint, and forging die device thereof
JP2002089583A (en) * 2000-09-13 2002-03-27 Ntn Corp Constant-velocity universal joint and method of manufacturing inner ring thereof
JP2002130315A (en) * 2000-10-20 2002-05-09 Ntn Corp Manufacturing method for isochronous joint
CN105817492A (en) * 2016-05-27 2016-08-03 台州钻煌汽车零部件有限公司 Cold extrusion no-joint-line starlike sleeve production die and machining method
WO2017010204A1 (en) * 2015-07-10 2017-01-19 Ntn株式会社 Forging method for inner joint member of constant-velocity universal joint
CN117444137A (en) * 2023-12-25 2024-01-26 宁波凯敏盛机械有限公司 Machining method of finish forging assembly line for front and back groove star-shaped sleeves

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155428A (en) * 1989-11-13 1991-07-03 Honda Motor Co Ltd Manufacture of inner race for constant speed joint
JP2001334342A (en) * 2000-05-26 2001-12-04 Honda Motor Co Ltd Inner ring of constant velocity joint, and forging die device thereof
JP2002089583A (en) * 2000-09-13 2002-03-27 Ntn Corp Constant-velocity universal joint and method of manufacturing inner ring thereof
JP2002130315A (en) * 2000-10-20 2002-05-09 Ntn Corp Manufacturing method for isochronous joint
WO2017010204A1 (en) * 2015-07-10 2017-01-19 Ntn株式会社 Forging method for inner joint member of constant-velocity universal joint
CN105817492A (en) * 2016-05-27 2016-08-03 台州钻煌汽车零部件有限公司 Cold extrusion no-joint-line starlike sleeve production die and machining method
CN105817492B (en) * 2016-05-27 2018-12-21 台州钻煌汽车零部件有限公司 A kind of mold and its processing method of the cold extrusion production without spue line inner race
CN117444137A (en) * 2023-12-25 2024-01-26 宁波凯敏盛机械有限公司 Machining method of finish forging assembly line for front and back groove star-shaped sleeves

Also Published As

Publication number Publication date
JPH0257458B2 (en) 1990-12-05

Similar Documents

Publication Publication Date Title
JPH02290637A (en) Manufacture of clutch with sintered friction lining or friction ring for brake
KR100393830B1 (en) Constant velocity joint and method of forming outer ring of this joint
JPS62110831A (en) Forming method for inner wheel of uniform joint
JP3836331B2 (en) Method for manufacturing constant velocity universal joint outer ring
JPH1110276A (en) Production of inclining plate type compressor shoe and shoe
KR20040029079A (en) One-piece joint body consisting of sintered metal
JPH0966330A (en) Method for thickening outer part of disk and method for forming disk member with drive part on outer periphery
JP3719481B2 (en) Manufacturing method of outer ring part in constant velocity universal shaft joint
US5186082A (en) Ironing punch for making socket of ball-and-socket joint and method of manufacturing such ironing punch
JP6953275B2 (en) Forging die
US6422946B1 (en) Universal joint outer race and method for manufacturing the same
US4319478A (en) Method for manufacturing an inner joint member of constant velocity joint
EP0010916B1 (en) Method of making a universal joint outer member
JPH0579420B2 (en)
JP7356027B2 (en) forging equipment
JPH0639477A (en) Device for forging inner ring for constant velocity ball joint
JP2607960B2 (en) Manufacturing method of inner ring for constant velocity joint
JPS605951Y2 (en) Hot forging mold
JP2913523B2 (en) Spur gear forging method
JP2002143978A (en) Method of manufacturing tooth form forged member
JPH0227056B2 (en)
JP3724551B2 (en) Cup-shaped member molding method, molding apparatus, and preformed coarse material
JPS6064738A (en) Production of outer ring for universal joint
JPH11197784A (en) Manufacture of input/output disk of troidal continuously variable transmission
JPH03155428A (en) Manufacture of inner race for constant speed joint

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees