JPS62110448A - Synchronized speed controller - Google Patents

Synchronized speed controller

Info

Publication number
JPS62110448A
JPS62110448A JP60247956A JP24795685A JPS62110448A JP S62110448 A JPS62110448 A JP S62110448A JP 60247956 A JP60247956 A JP 60247956A JP 24795685 A JP24795685 A JP 24795685A JP S62110448 A JPS62110448 A JP S62110448A
Authority
JP
Japan
Prior art keywords
control
command
frequency
speed
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60247956A
Other languages
Japanese (ja)
Other versions
JPH082157B2 (en
Inventor
吉田 辰郎
橋本 英利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60247956A priority Critical patent/JPH082157B2/en
Publication of JPS62110448A publication Critical patent/JPS62110448A/en
Publication of JPH082157B2 publication Critical patent/JPH082157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、遠方制御により単独運転している水車発電機
の系統と健全な運用回線の並列を実施する際の同期制御
のうち周波数制御に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to frequency control among synchronous control when paralleling a system of independently operating water turbine generators and a healthy operating line by remote control. It is.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年新しく建設される水力発電所は、はとんど無人発電
所でちゃ、制御及び監視は遠方に設置された制御所より
実施されている。
Newly constructed hydroelectric power plants in recent years are mostly unmanned power plants, and control and monitoring are carried out from control centers located far away.

又、系統事故等が発生し、系統全体が停電した時には、
復旧時間をより早くするため、起動時間が短く又試送電
容量が有る等の理由から水力発電所を遠方から立上げ、
系統試送電を実施する要求が多く出てきている。
In addition, when a power outage occurs in the entire system due to a system accident,
In order to speed up the recovery time, we started up a hydroelectric power plant from a distance due to the short start-up time and trial power transmission capacity.
There are many requests to conduct grid trial transmissions.

特に、大系統の復旧では複数の水力発電所により、個々
に各々の区域の系統を試送′工し、その試送電が完了し
た後、他の試送電後等の健全系統と適切な変電所で同期
並列し、健全系統の拡大を図った上で、負荷・\電力を
送電している。
In particular, when restoring a large system, multiple hydroelectric power plants are used to perform trial transmission of the system in each area, and after the trial transmission is completed, other healthy systems and appropriate substations are installed after the trial transmission. The load/power is transmitted in parallel and synchronously to expand a healthy system.

第5図は、従来の同期制御を実施する際の構成図である
。1は無人発電所・、2は水車、3は発成機、4は主要
変圧器、5は並列用しゃ断器、6は調速制御装置、7は
速度調整設定器、8は遠方監視制御装置の子局、9は発
電所1より電力を送電するための送電線である。
FIG. 5 is a configuration diagram when implementing conventional synchronous control. 1 is an unmanned power plant, 2 is a water turbine, 3 is a generator, 4 is a main transformer, 5 is a parallel breaker, 6 is a speed governor control device, 7 is a speed adjustment setting device, 8 is a remote monitoring control device A slave station 9 is a power transmission line for transmitting power from the power plant 1.

10は無人発電所1を制御・監視するため、遠方に設置
されている制御所、11は遠方監視制御装置の親局、1
2は無人発電所1と制御所10の信号の受は渡しをする
ための伝送路である。
Reference numeral 10 indicates a control station installed at a remote location to control and monitor the unmanned power plant 1; 11 indicates a master station of a remote monitoring and control device;
Reference numeral 2 denotes a transmission line for receiving and passing signals between the unmanned power plant 1 and the control center 10.

13は無人発電所1のつながった系Vc9と他の別の系
統14との並列の操作が行なえる変電所、14は無人発
電所1と別の発電所からの電力供給が可能な送電線、1
5は系統9と系統14をつなぐためのしゃ断器、16は
系統9又は系#1lC14の周波数情報を得るだめの計
器用変成器、17は並列用しゃ断器15を投入するため
の自動同期装置である。
13 is a substation that can operate the system Vc9 connected to the unmanned power plant 1 in parallel with another system 14; 14 is a transmission line that can supply power from the unmanned power plant 1 and another power plant; 1
5 is a breaker for connecting system 9 and system 14, 16 is an instrument transformer for obtaining frequency information of system 9 or system #1lC14, and 17 is an automatic synchronizer for turning on the parallel circuit breaker 15. be.

従来実施していた系統復旧操作方法を第1図において説
明する。無人発電所10つながっている送電線9に系統
事故が発生し系統が全停となった時、事故復旧した後に
系統復旧操作を実施する。
A conventional system restoration operation method will be explained with reference to FIG. When a system accident occurs in a power transmission line 9 connected to an unmanned power plant 10 and the system is completely stopped, a system restoration operation is carried out after the accident is restored.

先ず制御所10にて試送電運転可能な無人発電所1の発
電機3に対し試送電モードにて運転指令を遠方監視制御
装置の親局11を経由して与える。
First, the control center 10 gives an operation command in the trial power transmission mode to the generator 3 of the unmanned power plant 1 which is capable of trial power transmission operation via the master station 11 of the remote monitoring and control device.

制御所10より与えられた運転指令は伝送路12を経由
して発電所1の子局8で受信され、水車2に起動指令が
与えられる。水車2が回転し定格回転速度付近になった
時、発電機3に図示しない励磁が与えられ電圧を発生す
る。次に並列用し−P@器5が投入され送電線9と発電
機が主要変圧器4を介してつながる。更に、系統の安全
を確認しながら発電機3の発生電圧を徐々に上昇し、系
統9の末端において定格電圧となる段階まで実施する。
The operation command given from the control station 10 is received by the slave station 8 of the power plant 1 via the transmission line 12, and a start command is given to the water turbine 2. When the water turbine 2 rotates and reaches a speed near the rated speed, an excitation (not shown) is applied to the generator 3 to generate a voltage. Next, the parallel power supply 5 is turned on, and the power transmission line 9 and the generator are connected via the main transformer 4. Furthermore, while confirming the safety of the system, the voltage generated by the generator 3 is gradually increased until it reaches the rated voltage at the end of the system 9.

系統の安全が確認された段階で、系i事故の前に送電線
9につながっていた負荷への電力供給のため、一般に無
人発電所1又は制御所10から遠く離れている変電所1
3にて他の健全系統とつなぐ系統並列用じゃ1m器15
を投入するため同期装置16を活かす。この時両系統の
周波数を一致させるための周波数調整を無人発電所1の
試送電を実施していた水車2に対して実施する。制御所
10において運転員は健全系統140周波数情報を電話
等で入手し、事故復旧を実施していた系統9の周波数と
を比較し、系FIE9が高い時は下げ指令を、低い時は
上げ指令を親局11を介して無人発電所1伝送する。
Once the safety of the system has been confirmed, the substation 1, which is generally far away from the unmanned power plant 1 or the control center 10, is installed to supply power to the loads that were connected to the transmission line 9 before the system i accident.
For system parallel connection with other healthy systems at 3, 1m vessel 15
The synchronizer 16 is used to input the . At this time, frequency adjustment is performed on the water turbine 2 that was performing the trial power transmission of the unmanned power plant 1 in order to match the frequencies of both systems. At the control station 10, the operator obtains the frequency information of the healthy system 140 by telephone, etc., compares it with the frequency of the system 9, which was undergoing accident recovery, and issues a lower command when the system FIE9 is high, and a raise command when it is low. is transmitted to the unmanned power plant 1 via the master station 11.

伝送路12を通じて子局8に入手した指令は、速度設定
器7へ与えられ調速制御装置6により水車2の速度を変
化させる。水車2の速度を変化させる事により、系fc
9の周波数を変え、自動同期装置17が同期点をつかま
える様に行なう。
The command obtained by the slave station 8 through the transmission line 12 is given to the speed setter 7, and the speed governor control device 6 changes the speed of the water turbine 2. By changing the speed of water turbine 2, the system fc
9 is changed so that the automatic synchronizer 17 finds the synchronization point.

しかしながら、この周波数調整の指令は、選択制御のポ
ジションを使用して手動で実施するため、運転員は両系
統の周波数差の大小により、指令の動作時間の長短を判
断する必要がある。しかしながら無人発電所1にて受信
する周波数調整指令の動作時間は伝送路12を介してサ
イクリック伝送されてくるため、サイクリック伝送のデ
ータ更新及び伝送時間が運転員の指令した時間に加えら
れる事となシ周波数調整制御指令に誤差が生じてくる。
However, since this frequency adjustment command is manually executed using the selection control position, the operator needs to judge the length of the command operation time based on the magnitude of the frequency difference between the two systems. However, since the operating time of the frequency adjustment command received at the unmanned power plant 1 is cyclically transmitted via the transmission line 12, the data update and transmission time of cyclic transmission may be added to the time commanded by the operator. An error occurs in the frequency adjustment control command.

又水車2の速度を変化させるための速度設定器7は、前
述の無人発電所lにて受信した周波数調整指令に比例し
て駆動されるため、最終的に系統9の周波数調整が正確
に実施できなくなってしまう。
Furthermore, since the speed setting device 7 for changing the speed of the water turbine 2 is driven in proportion to the frequency adjustment command received at the unmanned power plant 1 described above, the frequency adjustment of the system 9 is finally carried out accurately. I won't be able to do it.

このため両系統の周波数を一致させるための周波数制御
は非常に長時間を要する事になυ、かつ運転員に要求さ
れる制御の技術も非常な熟練を要する事になる。
For this reason, frequency control to match the frequencies of both systems requires a very long time, and the control technology required of the operator also requires great skill.

父系統復旧の時間を短縮するために無人発電所1を使用
して、遠方よυ自動運転にて試送電を実施したにも関わ
らず、負荷をもつための電力を供給してもらう時点で長
時間を要するため、最終の段階が完了する迄のトータル
時間が長くなってしまう。
In order to shorten the time it takes to restore the main grid, unmanned power plant 1 was used to conduct trial power transmission to distant places in automatic operation, but it took a long time to receive power to carry the load. Since it takes time, the total time until the final stage is completed becomes long.

〔発明の目的〕[Purpose of the invention]

従って本発明の目的は、試送電にて系統の安全を確認し
た後の、他の健全系統との系統並列を実施する時、単独
運転を行っている水車発電機の周波数調整をより確実に
、かつ簡単に実施する事により系統の並列を短時間で完
了し、系統復旧時間を短くすることのできる揃速制御方
法を得ることを目的とする。
Therefore, an object of the present invention is to more reliably adjust the frequency of a water turbine generator operating independently when parallelizing the system with another healthy system after confirming the safety of the system through trial power transmission. It is an object of the present invention to provide a uniform speed control method that can be easily implemented, complete parallelization of systems in a short time, and shorten system restoration time.

〔発明の概要〕[Summary of the invention]

本発明は系統事故復旧時の試送電後健全系統との系統並
列を遠く離れた変電所等で実施するとき従来、遠方の制
御所からの周波数調整が指令の動作時間すなわち指令パ
ルスの幅に比例して水車発電機の回転速度を制御する方
法をとっていたことによる前述のような不具合を改善す
るため、本発明では遠方の制御所からの周波数調整指令
のパルス数に比例した一定の量と加速レートで水車発電
機の回転速度を制御することを特徴とする。
In the present invention, when system parallelization with a healthy system is performed at a far away substation after a trial power transmission at the time of restoration of a system fault, frequency adjustment from a distant control center is proportional to the command operating time, that is, the width of the command pulse. In order to improve the above-mentioned problems caused by the method of controlling the rotational speed of the water turbine generator by The feature is that the rotation speed of the water turbine generator is controlled by the acceleration rate.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1堺、第2図、第3図、第
4図を用いて説明する。第1図は本発明の同期制御を実
施する際の水力発電所の構成図である。ここで、18は
遠方監視制御装置の子局8からの周波数調整指令のパル
ス数に比例した童の加速信号を調速制御装置6に出力し
同期揃速を実施する速度制御補助装置である。この速度
制御補助装置18は試送電運転時の周波数調整にのみ使
用し通常の運転では電気的に調速制御装置6から除外さ
れている。
Hereinafter, one embodiment of the present invention will be described using Sakai 1, FIG. 2, FIG. 3, and FIG. 4. FIG. 1 is a configuration diagram of a hydroelectric power plant when implementing the synchronous control of the present invention. Here, reference numeral 18 denotes a speed control auxiliary device that outputs an acceleration signal proportional to the number of pulses of the frequency adjustment command from the slave station 8 of the remote monitoring and control device to the speed governor control device 6 to perform synchronous speed adjustment. This speed control auxiliary device 18 is used only for frequency adjustment during trial power transmission operation, and is electrically excluded from the speed governor control device 6 during normal operation.

第2図は速度制御補助装置18の回路構成を示す。FIG. 2 shows the circuit configuration of the speed control auxiliary device 18.

25A (25B)は遠方監視制御装置の子局8よりの
周波数調整指令の上げ(下げ)の信号を受信する部分、
22A (22B)は前記25A (25B)から受信
する任意の巾のパルス数を数える計数回路、23A (
23B)は前記計数回路22A (22B)で計数した
値を記憶する記憶回路、24A (24B)は前記計数
回路22A(22B)及び前記記憶回路23A (23
B)の制御により、記憶している回数だけ、上げ(下げ
)レート指令を順次発生する回路、26A (26B)
は前記24A (24B)よりのレート指令を調速制御
装置6へ与える部分である。
25A (25B) is a part that receives the frequency adjustment command increase (lower) signal from slave station 8 of the remote monitoring and control device;
22A (22B) is a counting circuit that counts the number of pulses of an arbitrary width received from 25A (25B), and 23A (
23B) is a memory circuit that stores the value counted by the counting circuit 22A (22B), and 24A (24B) is the counting circuit 22A (22B) and the memory circuit 23A (23B).
26A (26B) A circuit that sequentially generates the raising (lowering) rate command for the memorized number of times under the control of B).
is a part that gives the rate command from 24A (24B) to the speed governor control device 6.

第3図は、前記速度制御補助装置18の機能を表わすタ
イムチャートである。ここでUCP (DCP)は前記
第2図の25A (25B)にて受信する周波数調整制
御の上げ指令(下げ指令)パルス、foは発電機3の持
つ基準周波数、Aは前記上げ指令(下げ指令)パルスU
CP (DCP)の1回当シに調整する周波数変化量、
t、は前記第2図の上げ(下げ)レート指令発生回路2
4A (24B)にて決められている、上げ指令(下げ
指令)パルスUCP (DCP)の1回当りに制御を実
施する期間である。
FIG. 3 is a time chart showing the functions of the speed control auxiliary device 18. Here, UCP (DCP) is the frequency adjustment control raising command (lowering command) pulse received at 25A (25B) in FIG. 2, fo is the reference frequency of the generator 3, A is the raising command (lowering command) ) Pulse U
Frequency change amount to be adjusted per CP (DCP),
t is the raising (lowering) rate command generation circuit 2 shown in FIG.
4A (24B), this is the period during which control is performed for each raising command (lowering command) pulse UCP (DCP).

第4図は本発明の同期揃速制御のタイムチャートである
。19は水車発電機3が充電している系統9の周波数、
20は健全系統140周波数、21は系統9と系統14
の同期点を示す。
FIG. 4 is a time chart of synchronous uniform speed control according to the present invention. 19 is the frequency of the system 9 where the water turbine generator 3 is charging;
20 is healthy system 140 frequency, 21 is system 9 and system 14
indicates the synchronization point.

第1図、第2図、第3図、第4図において、系統事故で
全停となった系統9の系統を復旧するために無人発電所
1の発電機3により系統の正常を確認しながら、発電機
3の端子電圧を徐々に上昇し、系統9の末端で定格電圧
になるまで電圧を上昇し試送電を終了する。この後健全
系統14と試送電により系統の正常を確認した系統9を
系統並列する。
In Figures 1, 2, 3, and 4, in order to restore system 9, which was completely shut down due to a system accident, the generator 3 of unmanned power plant 1 is used to confirm the normality of the system. , the terminal voltage of the generator 3 is gradually increased until it reaches the rated voltage at the end of the system 9, and the trial power transmission is completed. Thereafter, the healthy system 14 and the system 9 whose normality has been confirmed through test power transmission are connected in parallel.

先ず、制御所10に於いて健全系統14の周波数情報を
入手し、試送電を終了した系統9の現在の周波数値を比
較判断し、伝送路12を介して周波数制御指令の上げ、
又は下げ制御を適当の回数実施する。本発明においては
試送電後の系Wc9の周波数が低い時を例において以下
説明する。
First, the control center 10 obtains the frequency information of the healthy system 14, compares and judges the current frequency value of the system 9 that has completed the trial power transmission, and raises the frequency control command via the transmission line 12.
Or perform lowering control an appropriate number of times. In the present invention, the case where the frequency of the system Wc9 after trial power transmission is low will be described below as an example.

制御所10からの上げの周波数調整指令のパルスUCP
は、遠方監視制御装置の子局8ft介して、任意な間隔
をもってn回速度制御補助装置18の下げ指令入力部2
5Aに入力されてくる。
Pulse UCP of increasing frequency adjustment command from control center 10
The lowering command input unit 2 of the speed control auxiliary device 18 is transmitted n times at arbitrary intervals via the 8ft slave station of the remote monitoring and control device.
It is input to 5A.

速度制御補助装置18の下げ指令入力部25Aにて受け
つけた任意の間隔と巾のパルス数は計数回路22Aで回
数をカウントすると同時に記憶回路23Aへ記憶する。
The number of pulses of any interval and width received by the lowering command input section 25A of the speed control auxiliary device 18 is counted by the counting circuit 22A and simultaneously stored in the storage circuit 23A.

それとともに周波数の上げレート(A/11)指令を発
生する回路24Aへ指令の出力開始を出力する。周波数
上げレート指令を発生する回路24Aは一回の制御が終
了すると前記計数回路22Aへ終了を出力する。ここで
計数回路24Aは前記記憶回路23Aの記憶されている
n回の数値から1回を減じ、未だ残り0回となっていな
い時は順次前記制御を繰り返す。もちろんレート制御中
に遠方監視制御装置の子局8からパルス指令の入力があ
れば随時計数回路22Aで計数し記憶回路23Aへ記憶
している。
At the same time, a command output start signal is output to the circuit 24A that generates a frequency increase rate (A/11) command. The circuit 24A that generates the frequency increase rate command outputs a completion signal to the counting circuit 22A when one control is completed. Here, the counting circuit 24A subtracts 1 from the value of n times stored in the memory circuit 23A, and if the remaining number is not yet 0, the control is repeated sequentially. Of course, if a pulse command is input from the slave station 8 of the remote monitoring control device during rate control, it is counted by the random counting circuit 22A and stored in the storage circuit 23A.

上げの周波数の加速レート(A/ll)指令は調速制御
装置6に前記26Aより出力する事により水単発電機3
は昇速され、系fc9の周波数は一定のレート(A/l
l )で上昇していく。
The acceleration rate (A/ll) command for increasing the frequency is outputted from the 26A to the speed governor control device 6, so that the water single generator 3
is increased, and the frequency of system fc9 is increased at a constant rate (A/l
l).

これにより発電機3の周波数19と健全系M、200周
波数20との同期点21を通過させる。この時変電所1
3では計器用変成器16を介して収り入れた健全回線1
4と事故復旧した系統9の同期点21を自動同期装置1
7により見つけ系統並列しゃ断器15へ自動投入指令を
与える。投入が完了した時、系統並列しゃ断器15の情
報は制御所10にて入手し、投入の情報を記憶する。記
憶した情報は親局11に選択指令として与える。伝送路
12を通じて子局8に取シ入れた、系統並列しゃ断器1
5の情報は子局8より速度制御補助装置18に与えられ
る。速度制御補助装置18は系統並列しゃ断器15が投
入された事を確認する事によりこれまで実施してきた揃
速制御を除外する。
As a result, the synchronization point 21 between the frequency 19 of the generator 3 and the healthy system M, 200 frequency 20 is passed. At this time, substation 1
In 3, the sound line 1 is input through the instrument transformer 16.
4 and synchronization point 21 of system 9, which has been restored from the accident, by automatic synchronization device 1.
7 and gives an automatic closing command to the system parallel breaker 15. When the power-on is completed, information on the system parallel breaker 15 is obtained at the control center 10, and the power-on information is stored. The stored information is given to the master station 11 as a selection command. Grid parallel breaker 1 installed in slave station 8 through transmission line 12
The information No. 5 is given from the slave station 8 to the speed control auxiliary device 18. The speed control auxiliary device 18 eliminates the uniform speed control that has been performed so far by confirming that the system parallel breaker 15 has been turned on.

又試送電後の系統9の周波数が高い時は上記と同様の制
御が下げ側の回路を使用して実施される。
Further, when the frequency of the grid 9 after the trial power transmission is high, the same control as above is performed using the lower side circuit.

〔発明の紛果〕[Results of invention]

以上の様に系統並列操作を実施する場合、無人の発電所
に対する周波数制御は運転員の判断Kまかしていたもの
を、任意の周波数制御指令を任意の回数与えるだけで実
施できる。
When implementing system parallel operation as described above, frequency control for an unmanned power plant, which used to be left to the operator's judgment, can be performed by simply giving an arbitrary frequency control command an arbitrary number of times.

即ち従来選択制御により指令の大小を動作時間により変
化させ、かつ伝送路を介しているための伝送時間の遅れ
により系統並列に長い時間要していた制御を、本発明の
速度制御装置により、制御指令1回当シの周波数の制御
量を一定のレートで上げ、又は下げ制御する事により正
確に短時間で系統並列が完了する事になる。又これによ
り運転員の実施する操作も簡単となシ、運転員・\の負
担も軽減される。
In other words, with the speed control device of the present invention, the speed control device of the present invention can perform control that required a long time in parallel to the system due to the conventional selection control in which the magnitude of the command was changed depending on the operating time and the transmission time delay due to the transmission line. By increasing or decreasing the frequency control amount per command at a constant rate, system parallelization can be accurately completed in a short time. This also simplifies the operations performed by the operator and reduces the burden on the operator.

試送電を複数台で実施する時も、本発明の同期揃速制御
装置により対応が可能である。
Even when trial power transmission is carried out using a plurality of devices, it is possible to handle the situation by using the synchronous speed equalization control device of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための水力発電所
の構成図、第2図は速度制御補助装置】8の回路構成図
、第3図は速度制御補助装置の動作を示すタイムチャー
ト、第4図はその特性を示すタイムチャート、第5図は
従来例を説明するための水力発電所の構成図である。 1・・・発電所      2・・・水車3・・・水車
発電機    4・・主要変圧器5・・・並列用しゃ断
器  6・・・調速制御装置7・・・速度調整設定器 
 8 ・遠方監視制御装置9・・・送電線      
10・・制御所12・・伝送路      13・・・
変電所14・・系統       15・・・しゃ断器
16・・・計器用変成器   17・・・自動同期装置
18・・・速度制御補助装置 代理人 弁理士  則 近 憲 佑 同      三  俣  弘  文 第1図 第5図
Fig. 1 is a block diagram of a hydroelectric power plant to explain an embodiment of the present invention, Fig. 2 is a circuit block diagram of the speed control auxiliary device [8], and Fig. 3 is a timing diagram showing the operation of the speed control auxiliary device. FIG. 4 is a time chart showing its characteristics, and FIG. 5 is a block diagram of a hydroelectric power plant to explain a conventional example. 1... Power plant 2... Water turbine 3... Water turbine generator 4... Main transformer 5... Parallel breaker 6... Speed governor control device 7... Speed adjustment setting device
8 ・Remote monitoring control device 9...Power transmission line
10...Control center 12...Transmission line 13...
Substation 14... System 15... Breaker 16... Instrument transformer 17... Automatic synchronizer 18... Speed control auxiliary device Agent Patent attorney Noriyuki Chika Yudo Hiroshi Mimata 1st Figure 5

Claims (1)

【特許請求の範囲】[Claims] 遠方の制御所より制御され試送電を実施する水力発電所
において、系統事故復旧時の試送電後健全系統との系統
並列を遠く離れた変電所等で実施するとき遠方の制御所
からの任意の幅のパルスによる周波数制御指令を計数す
る手段と、前記により計数した数値にもとづき一定の量
及び一定の加速度にて水車発電機を制御する信号を発生
する手段を具備したことを特徴とする同期揃速制御装置
At a hydroelectric power station that is controlled from a remote control center and conducts test transmission, when parallelizing the system with a healthy system at a far away substation after the test transmission at the time of system failure recovery, arbitrary Synchronous alignment characterized by comprising means for counting frequency control commands by pulses of width, and means for generating a signal for controlling a water turbine generator by a constant amount and constant acceleration based on the counted value. speed control device.
JP60247956A 1985-11-07 1985-11-07 Synchronous speed controller Expired - Lifetime JPH082157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60247956A JPH082157B2 (en) 1985-11-07 1985-11-07 Synchronous speed controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60247956A JPH082157B2 (en) 1985-11-07 1985-11-07 Synchronous speed controller

Publications (2)

Publication Number Publication Date
JPS62110448A true JPS62110448A (en) 1987-05-21
JPH082157B2 JPH082157B2 (en) 1996-01-10

Family

ID=17171052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60247956A Expired - Lifetime JPH082157B2 (en) 1985-11-07 1985-11-07 Synchronous speed controller

Country Status (1)

Country Link
JP (1) JPH082157B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945319A (en) * 1972-09-08 1974-04-30
JPS5251946A (en) * 1975-10-23 1977-04-26 Matsushita Electric Ind Co Ltd Developing method for light sensitive body with slide frame
JPS5319778A (en) * 1976-08-06 1978-02-23 Nec Corp Singlemode semiconductor laser and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945319A (en) * 1972-09-08 1974-04-30
JPS5251946A (en) * 1975-10-23 1977-04-26 Matsushita Electric Ind Co Ltd Developing method for light sensitive body with slide frame
JPS5319778A (en) * 1976-08-06 1978-02-23 Nec Corp Singlemode semiconductor laser and its production

Also Published As

Publication number Publication date
JPH082157B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
KR20170107558A (en) Independent operation of multiple grid-connected power converters
CN107255940B (en) Remote real-time simulation system of safety and stability control device
Martinenas et al. Implementation and demonstration of grid frequency support by V2G enabled electric vehicle
US11515706B2 (en) Battery energy storage system and microgrid controller
CN111799836B (en) Modular energy storage converter parallel operation and hot plug control method
Ma et al. Real-time control and operation for a flexible microgrid with dynamic boundary
CN106451563B (en) Simultaneous interconnecting operating method and device under generator of nuclear power station decoupled mode
Papangelis et al. Frequency support among asynchronous AC systems through VSCs emulating power plants
CA3055462C (en) Test method for testing the behavior of a wind farm in response to an underfrequency event
CN116404680A (en) Rapid coordination control method and system for large-scale energy storage transformer substation
Li et al. A converter-based battery energy storage system emulator for the controller testing of a microgrid with dynamic boundaries and multiple source locations
EP3387725B1 (en) Control of a microgrid
JPS62110448A (en) Synchronized speed controller
CN111948478A (en) Power distribution terminal detection system and method under real working condition
CN116454953A (en) Secondary fusion distributed network-structured energy storage method and device
CN208174351U (en) The PLC program-controlled same period switches emergency power supply system
Wang et al. Design of a microgrid transition controller I: For smooth transition operation under normal conditions
JPS6243416B2 (en)
Sakamuri et al. Coordinated fast primary frequency control from offshore wind power plants in MTDC system
Le et al. Smart Agents for Academic Studies on Scale Model Grid
CN113346531B (en) Active parallel-to-off-grid switching method for cascade energy storage system
WO2020170513A1 (en) Power conversion system
CN113014147B (en) Converter control method and device
CN110945735B (en) Control of multiple energy stores in a microgrid
JPS6055827A (en) Synchronous speed aligning controlling method