WO2020170513A1 - Power conversion system - Google Patents

Power conversion system Download PDF

Info

Publication number
WO2020170513A1
WO2020170513A1 PCT/JP2019/044071 JP2019044071W WO2020170513A1 WO 2020170513 A1 WO2020170513 A1 WO 2020170513A1 JP 2019044071 W JP2019044071 W JP 2019044071W WO 2020170513 A1 WO2020170513 A1 WO 2020170513A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power conversion
control unit
conversion system
conversion device
Prior art date
Application number
PCT/JP2019/044071
Other languages
French (fr)
Japanese (ja)
Inventor
佳澤 李
景山 寛
一瀬 雅哉
佑亮 阿部
Original Assignee
株式会社日立インダストリアルプロダクツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立インダストリアルプロダクツ filed Critical 株式会社日立インダストリアルプロダクツ
Publication of WO2020170513A1 publication Critical patent/WO2020170513A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a power conversion system that links a renewable energy power generation device and a power system.
  • renewable energy power generation equipment that uses wind power or sunlight as its energy source is becoming widespread.
  • Renewable energy power generation equipment is connected to an electric power system through an electric power conversion system, and includes a single or a plurality of power generation devices according to the amount of electric power that can be supplied to the electric power system.
  • Patent Document 1 The technology described in Patent Document 1 is known as a conventional technology related to a renewable energy power generation facility including a plurality of power generation devices.
  • the central controller controls each of the plurality of wind power generators based on the total output power.
  • the control operation may be delayed with respect to the actual power fluctuation, so that the power fluctuation may not be sufficiently suppressed.
  • the present invention provides a power conversion system capable of reliably compensating for power fluctuations of a renewable energy power generation device.
  • a power conversion system includes a first power conversion device that converts power from a renewable energy power generation device and a second power conversion device that converts power from a power storage device.
  • a central control unit that controls the first power conversion device and the second power conversion device; a first communication unit that performs information transmission between the first power conversion device and the second power conversion device; and the central control unit.
  • the central control unit controls the first power conversion device based on the information obtained through the first communication means, and the second control unit compensates the fluctuation of the generated power of the renewable energy power generation device.
  • An autonomous control unit that controls the power conversion device and outputs the output power of the first power conversion device and the second power conversion device to an external system, and an autonomous control unit that individually controls the second power conversion device, and a first communication.
  • Second communication means for transmitting information between the power conversion system and the autonomous control section, the communication delay being smaller than that of the means, and the autonomous control section based on the information obtained via the second communication means. , Controlling the second power converter so as to compensate for fluctuations in the power generated by the renewable energy power generator.
  • FIG. 1 shows a configuration of a power conversion system that is connected to a power system.
  • 3 shows data transmission in the first communication means.
  • the control system in the power conversion system of FIG. 1 is shown.
  • movement of the power conversion system of FIG. 1 is shown.
  • the structure of the power conversion system which is Example 1 is shown.
  • 3 is a functional block diagram showing a configuration of a control system in Embodiment 1.
  • movement of the power conversion system of Example 1 is shown.
  • the structure of the power conversion system which is Example 2 is shown.
  • 5 is a functional block diagram showing the configuration of a control system in Example 2.
  • movement of the power conversion system of Example 2 is shown.
  • Fig. 1 shows the configuration of a power conversion system that is connected to the power system.
  • the power conversion system 100 includes a plurality (two in FIG. 1) of first power conversion devices 101 and a plurality (two in FIG. 1) of second power conversion devices 102.
  • the plurality of first power conversion devices 101 are connected in parallel on the output side.
  • the outputs of the plurality of first power conversion devices 101 connected in parallel and multiple in this way are connected to the external power system 103.
  • the plurality of second power conversion devices 102 are connected in parallel on the output side. In this way, the outputs of the plurality of second power conversion devices 102 connected in parallel and multiplex are connected to the power system 103.
  • the electric power system 103 is composed of a power generation facility including an ordinary generator composed of a rotating electric machine, a facility that consumes power, and a power transmission and distribution network to which these facilities are connected.
  • the first power conversion device 101 includes a main circuit that converts DC power input from the renewable energy power generation device 104 (RE) into AC power (P RE1 , P RE2 ).
  • This main circuit is a DC/AC converter circuit (inverter circuit) that converts DC power into AC power by turning on/off the semiconductor switching element.
  • the main circuit of the first power conversion apparatus 101 is controlled by the control unit 108. That is, the control unit 108 controls ON/OFF of the semiconductor switching element of the main circuit according to the output power command value. As a result, the AC power output by the first power converter 101 is controlled to the output power command value.
  • the renewable energy power generation device 104 is, for example, a solar power generation device or a wind power generation device.
  • the renewable energy power generator When the renewable energy power generator outputs AC power, the output power is converted to DC power by the AC/DC converter and then input to the first power converter 101.
  • the second power conversion device 102 includes a main circuit that converts the DC power input from the power storage device 105 into AC power (P BAT1 , P BAT2 ).
  • This main circuit is a DC/AC converter circuit (inverter circuit) like the first power converter 101.
  • the main circuit of the second power conversion device 102 is controlled by the control unit 108. That is, the control unit 108 controls ON/OFF (switching) of the semiconductor switching element of the main circuit according to the output power command value. As a result, the AC power output by the second power converter 102 is controlled to be the output power command value.
  • the power storage device 105 is, for example, a secondary battery or a capacitor.
  • the plurality of first power conversion devices 101 output AC power 109 (P RE ), which is a combination of the AC power P RE1 and P RE2 output by each first power conversion device 101, to the power grid 103.
  • the plurality of second power conversion devices 102 output AC power 110 (P BAT ) that is a combination of the AC power P BAT1 and P BAT2 output by each second power conversion device 102 to the power system 103.
  • a central control unit 106 is provided to control the plurality of first power conversion devices 101 and the plurality of second power conversion devices 102.
  • the central control unit 106 collects information (for example, output power) regarding the operating state from the plurality of first power conversion devices 101 and the plurality of second power conversion devices 102 via the first communication unit 107. Note that this information may be acquired from the control unit 108 included in each power conversion device.
  • the sensor 700 detects the output power 109 (P RE ) of the plurality of first power conversion devices 101.
  • the central control unit 106 collects information regarding the output power P RE from the sensor 700 via the first communication unit 107.
  • the central control unit 106 creates and creates an output power command value for each power converter based on the information collected from the plurality of first power converters 101, the plurality of second power converters 102, and the sensor 700.
  • the output power command value is sent to the control unit 108 of each power conversion device via the first communication unit 107.
  • the first communication means 107 may be wired or wireless.
  • the output power P RE of the plurality of first power conversion devices 101 has a large amount of power fluctuation according to natural conditions such as weather due to the intermittent power generation characteristics of the renewable energy power generation device 104 (RE). Such a large power fluctuation may make the operation of the generator in the power system 103 unstable. For this reason, the power conversion system 100 is required to have the power fluctuation rate of the total output power 111 (P SYS ) of the power conversion system 100, that is, the power fluctuation speed, within a specified value.
  • FIG. 2 shows data transmission in the first communication means 107.
  • Each control unit (M control units #1 to #N (“108” in FIG. 1) and central control unit (“106” in FIG. 1)) connected to the first communication unit 107 has a predetermined During the time, all other control units are authorized to update their own control information.
  • the authority to update information is handed over to another control unit at a predetermined time interval and in a predetermined order. In FIG. 2, during one update cycle of the first communication means, the authority to update information is handed over in the order of the controller #1, the controller #2,..., The controller #N, and the central controller.
  • FIG. 3 shows a control system including the control unit 108 and the central control unit 106 in the power conversion system 100 of FIG.
  • the central control unit 106 includes a power smoothing control unit 302 that smoothes fluctuations in the generated power of the renewable energy power generation device 104.
  • the central control unit 106 collects output power information P RE1 and P RE2 of the plurality of first power conversion devices 101 via the first communication unit 107.
  • the central control unit 106 adds the output power information P RE1D and P RE2D that have undergone the communication delay by the first communication means 107, and inputs the added total output power information 301 (P RED ) to the power smoothing control unit 302. To do.
  • the total output power information 301 (P RED ) includes large power fluctuations due to intermittent generation of renewable energy.
  • the power smoothing control unit 302 processes the total output power information 301 (P RED ) by a rate of change limiter or other filter means to create a smoothed output power command value 303 (P * SYS ).
  • the output power command value 303 (P * SYS ) represents a suitable output power of the power conversion system 100. Therefore, the total compensation power command value according to the plurality of power storage devices 105 304 (P * BAT) is calculated by subtracting the total output power information 301 (P RED) from the output power command value 303 (P * SYS).
  • the central control unit 106 divides the total compensation power command value 304 (P * BAT ) by the number of the power storage devices 105, that is, the number of the second power conversion devices 102 (two in FIG. 1), so that each second power conversion is performed.
  • the compensation power command values P * BAT1 , P * BAT2 are sent to the control unit 108 of each second power converter 102 via the first communication means.
  • Each control unit 108 receives the compensation power command value (P * BAT1D , P * BAT2D ) delayed by the first communication means, and outputs the second power conversion device whose output power ( PBAT1 , PBAT2 ) is the compensation power. The control is performed so that the command value (P * BAT1D , P * BAT2D ) is reached .
  • the power conversion system includes a plurality of first power conversion devices and a plurality of second power conversion devices, and in some cases, may include tens or hundreds of first and second power conversion devices.
  • communication delay occurs. For example, a maximum of 50 ms is required to guarantee one data update between 32 power conversion devices.
  • the output power of the second power conversion device ( PBAT1 , P BAT2 ) has a control delay until it becomes equal to the compensation power command value.
  • FIG. 4 shows the operation of the power conversion system of FIG.
  • the control error of the power smoothing control caused by the above-described communication delay time and control delay time when the power smoothing control is executed in the central control unit 106 will be described with reference to this figure.
  • the broken line shows the waveform when the power smoothing control is ideal
  • the solid line shows the waveform when the error due to the delay time occurs in the power smoothing control.
  • the waveform 109 shows the power due to the renewable energy, but there is a sharp power fluctuation in the waveform.
  • the waveform 301 shows the ideal output of the storage battery for smoothing large power fluctuations in the waveform 109
  • the waveform 302 shows the control result (when the power smoothing control is ideal).
  • Output power PSYS is shown.
  • these delays are controlled such that the output of the storage battery is delayed from the ideal waveform 301, as shown by the waveform 110.
  • FIG. 5 shows the configuration of a power conversion system 500 that is Embodiment 1 of the present invention.
  • the power detection unit 501 (sensor) that detects the total output power 511 of the power conversion system is provided, and a plurality of pieces of detected information are output via the second communication unit 502 (2 in FIG. 5). Part of the second power conversion devices 102 (one unit in FIG. 5) is transmitted to the autonomous control unit 503 that individually and independently of the control by the central control unit 106.
  • the second communication means 502 transmits information by one-to-one communication. Therefore, the communication time delay is smaller than the communication time delay of the first communication means 107.
  • the second communication unit 502 may be wired or wireless.
  • FIG. 6 is a functional block diagram showing the configuration of the control system in the first embodiment.
  • This control system includes a central control unit 106 and an autonomous control unit 503.
  • the configuration of the central control unit 106 is similar to that shown in FIG.
  • the autonomous control unit 503 sends the second power command 504 (P * BAT2C ) to some of the second power conversion devices 102 based on the total output power 511 (of the power conversion system 500 from the power detection unit 501 and the second communication unit 502 ( It is set based on the information indicating P SYS ).
  • a change rate limiter 505 (rate limiter) is applied as a control calculation unit in the autonomous control unit 503. Since the communication delay of the second communication unit 502 is smaller than that of the first communication unit 107, the second power command 504 precedes the setting of the first power command (P * BAT2D ) by the power smoothing control in the central control unit 106. Is set.
  • the control system shown in FIG. 5 and the control system shown in FIG. 6 compensate the control error caused by the time delay. Thereby, the fluctuation rate of the output power of the power conversion system 500 can be favorably managed.
  • FIG. 7 shows the operation of the power conversion system according to the first embodiment.
  • the broken line in FIG. 7 shows an operation waveform when only the central control unit including the power smoothing control unit is applied, as described for the power conversion system 100 in FIG. 1.
  • the solid line in FIG. 7 shows an operation waveform when the power conversion system of the first embodiment shown in FIG. 5 is applied.
  • the waveform P RE (109) represents the power generated by the renewable energy power generation device output from the first power conversion device. Show. There is a sharp power fluctuation in this waveform.
  • the time delay communication delay and control delay
  • the central control unit causes power compensation of the power storage device output and the power conversion system output. It causes a delay (that is, power fluctuation).
  • the fluctuation of the total output power P SYS of the power conversion system 500 is monitored.
  • the autonomous control unit 503 creates the second power command (P * BAT2C ) in order to compensate for the error caused by the time delay, as indicated by the waveform 504.
  • the output power of the power conversion system 500 is controlled so that the power fluctuation is suppressed as shown by the waveform 511.
  • FIG. 8 shows the configuration of a power conversion system 800 that is Embodiment 2 of the present invention.
  • the sensor 700 detects the total output power 109 (P RE ) of the plurality of first power conversion devices 101.
  • the information on the detected total output power 109 (P RE ) is transmitted to the autonomous control unit 803 of the second power conversion device 102 via the second communication unit 802.
  • the autonomous control unit 803, via the first communication unit 107 other information regarding the operating state of the power conversion device, for example, output power P RE1 , P RE2 of each first power conversion device as described later.
  • output power P RE1 , P RE2 of each first power conversion device as described later.
  • the second communication unit 802 is a one-to-one communication method, and therefore the communication delay of the second communication unit is smaller than the communication delay of the first communication unit.
  • FIG. 9 is a functional block diagram showing the configuration of the control system in the second embodiment.
  • This control system includes a central control unit 106 and an autonomous control unit 803.
  • the configuration of the central control unit is similar to that shown in FIGS. 3 and 6.
  • the autonomous control unit 803 sets the second power command 805 (P * BAT2C ) to the second power converter 102 based on the error 804 between the detected values of the power by the renewable energy power generator 104.
  • This detection value error 804 is the total output power detection value (P RE ) obtained from the sensor 700 via the second communication unit 802, and each first power conversion device 101 obtained via the first communication unit 107. It is obtained by calculating the difference from the total output power detection value (P RE1 +P RE2 ) obtained by adding the output power detection values P RE1 and P RE2 of.
  • P RE1 and P RE2 are delivered to the autonomous control unit 803 from the central control unit 106 after being acquired by the central control unit 106 based on the operation information from the control unit 108 of the first power conversion apparatus 101. Note that P RE1 and P RE2 may be distributed from the control unit 108 of the first power conversion device 101 to the autonomous control unit 803.
  • the delay unit 806 represents a delay that occurs when the central control unit 106 delivers the power command value of the power storage device 105 to the second power conversion device 102. Since the delay time of the second communication unit 802 is short, the power value detected by the sensor 700 is almost the same as the actual power of the plurality of first power conversion devices 101.
  • the power smoothing control unit 807 which is the same power fluctuation compensating unit as the power smoothing control unit 302 in the central control unit 106, is applied to the autonomous control unit 803 that compensates the control delay including the communication delay. To be done.
  • the power smoothing control unit 807 smoothes the error between detection values 804 (PRE (detection value of the sensor 700)-(P RE1 +P RE2 )).
  • the autonomous control unit 803 creates the second compensation power command value 805 (P * BAT2C ) by calculating the difference between the smoothed detection value error and the unsmoothed detection value error 804.
  • the control unit 108 of a part (one unit in FIG. 8) of the plurality (two units in FIG. 8) of the second power conversion device includes the compensation power command P * BAT2 transmitted from the central control unit 106 and the autonomous control unit.
  • the output power P BAT2 of some of the second power conversion devices is controlled according to the power command added with the second compensation power command created by 803.
  • the fluctuation speed of the output power of the power conversion system 800 can be surely reduced.
  • FIG. 10 shows the operation of the power conversion system of the second embodiment. It should be noted that the broken line in FIG. 10 indicates an operation waveform in the case where only the central control unit including the power smoothing control unit is applied, as described in the power conversion system 100 in FIG. 1. Moreover, the solid line in FIG. 10 shows an operation waveform when the power conversion system of the second embodiment shown in FIG. 8 is applied.
  • the waveform P RE (109) represents the power generated by the renewable energy power generation device output from the first power conversion device. Show. There is a sharp power fluctuation in this waveform.
  • the time delay (communication delay and control delay) that occurs in the central control unit causes a delay in the detected waveform of the electric power of the renewable energy power generation device. Therefore, as shown by the waveform P BAT (110) and the waveform P SYS (111), erroneous control of smoothing control occurs in the output of the power storage device and the output of the power conversion system.
  • the error between the detected values of the generated power of the renewable energy power generation device is monitored.
  • the second power command 805 (“P * BAT2C ” in FIG. 9) for the erroneous control compensation function in the autonomous control unit 803 is set.
  • the output power of the power conversion system 800 is controlled so that the power fluctuation is suppressed as indicated by the waveform 811 (P SYS ).
  • the number of the first power conversion devices, the number of the second power conversion devices, and the number of the second power conversion devices including the autonomous control unit may all be arbitrary according to the power capacity of the power conversion system.
  • the power storage device may be used to store surplus power of the power conversion system, level the output of the power conversion system, or the like.
  • 100 power conversion system 101 first power conversion device, 102 second power conversion device, 103 power system, 104 renewable energy power generation device, 105 power storage device, 106 central control unit, 107 first communication means, 108 first control unit, 108 control unit, 700 Sensor, 500 power conversion system, 501 power detection unit, 502 second communication unit, 503 autonomous control unit, 800 power conversion system, 802 second communication unit, 803 autonomous control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Disclosed is a power conversion system that can reliably compensate for power fluctuations in a renewable-energy power generation device. This power conversion system (500) includes: a first power conversion device (101) that converts power from a renewable-energy power generation device (104); and a second power conversion device (102) that converts power from a power storage device (105). The first power conversion device is controlled on the basis of information obtained via a first communication means (107), the second power conversion device is controlled so as to compensate for fluctuations in the power generated by the renewable-energy power generation device, and the output power from the first and second power conversion devices is output to an external grid (103). An autonomous control unit (503), which separately controls the second power conversion device, controls the second power conversion device so as to compensate for fluctuations in the power generated by the renewable-energy power generation device on the basis of information obtained via a second communication means (502) that has a shorter communication delay than the first communication means.

Description

電力変換システムPower conversion system
 本発明は、再生可能エネルギー発電装置と電力系統とを連携する電力変換システムに関する。 The present invention relates to a power conversion system that links a renewable energy power generation device and a power system.
 近年、風力や太陽光をエネルギー源とする再生可能エネルギー発電設備が普及しつつある。再生可能エネルギー発電設備は、電力変換システムを介して、電力系統に連系するが、電力系統へ供給可能な電力量に応じて、単数または複数の発電装置を備える。 In recent years, renewable energy power generation equipment that uses wind power or sunlight as its energy source is becoming widespread. Renewable energy power generation equipment is connected to an electric power system through an electric power conversion system, and includes a single or a plurality of power generation devices according to the amount of electric power that can be supplied to the electric power system.
 複数の発電装置を備える再生可能エネルギー発電設備に関する従来技術として、特許文献1に記載の技術が知られている。 The technology described in Patent Document 1 is known as a conventional technology related to a renewable energy power generation facility including a plurality of power generation devices.
 特許文献1に記載の技術では、複数台の風力発電装置の総出力電力を検出し、中央制御装置が、総出力電力に基づいて、複数台の風力発電装置の各々を制御する。 In the technique described in Patent Document 1, the total output power of a plurality of wind power generators is detected, and the central controller controls each of the plurality of wind power generators based on the total output power.
 さらに、再生可能エネルギー発電装置は、自然エネルギーを利用するため、発電量が変動する。これにより、系統連系用の電力変換システムの出力電力の変動速度が大きくなると、電力系統が不安定になる恐れがある。これに対し、特許文献2に記載の従来技術が知られている。 Furthermore, since the renewable energy power generator uses natural energy, the amount of power generation fluctuates. As a result, when the fluctuation speed of the output power of the power conversion system for grid interconnection increases, the power grid may become unstable. On the other hand, the conventional technique described in Patent Document 2 is known.
 特許文献2に記載の技術では、自然エネルギー電源の出力電力の変動速度を、電力貯蔵装置からの補償電力によって抑制する。 In the technology described in Patent Document 2, the fluctuation speed of the output power of the natural energy power supply is suppressed by the compensation power from the power storage device.
米国特許第8823193号明細書U.S. Pat. No. 8,823,193 特開2010-22122号公報JP, 2010-22122, A
 上記従来技術により、再生可能エネルギー発電設備および蓄電装置を中央制御装置によって制御すると、実際の電力変動に対して制御動作が遅れるため、電力変動が十分抑制されない恐れがある。 If the central control device controls the renewable energy power generation equipment and the power storage device by the above-mentioned conventional technology, the control operation may be delayed with respect to the actual power fluctuation, so that the power fluctuation may not be sufficiently suppressed.
 そこで、本発明は、再生可能エネルギー発電装置の電力変動を確実に補償できる電力変換システムを提供する。 Therefore, the present invention provides a power conversion system capable of reliably compensating for power fluctuations of a renewable energy power generation device.
 上記課題を解決するために、本発明による電力変換システムは、再生可能エネルギー発電装置からの電力を電力変換する第1電力変換装置と、蓄電装置からの電力を電力変換する第2電力変換装置と、第1電力変換装置および第2電力変換装置を制御する中央制御部と、第1電力変換装置および第2電力変換装置と、中央制御部との間で、情報伝送を行う第1通信手段と、を備え、中央制御部は、第1通信手段を介して得られる情報に基づいて、第1電力変換装置を制御し、かつ再生可能エネルギー発電装置の発電電力の変動を補償するように第2電力変換装置を制御し、第1電力変換装置および第2電力変換装置の出力電力を外部系統へ出力するものであって、第2電力変換装置を個別に制御する自律制御部と、第1通信手段よりも通信遅延が小さく、電力変換システムと自律制御部との間で情報伝送を行う第2通信手段と、を備え、自律制御部は、第2通信手段を介して得られる情報に基づいて、再生可能エネルギー発電装置の発電電力の変動を補償するように第2電力変換装置を制御する。 In order to solve the above problems, a power conversion system according to the present invention includes a first power conversion device that converts power from a renewable energy power generation device and a second power conversion device that converts power from a power storage device. A central control unit that controls the first power conversion device and the second power conversion device; a first communication unit that performs information transmission between the first power conversion device and the second power conversion device; and the central control unit. And the central control unit controls the first power conversion device based on the information obtained through the first communication means, and the second control unit compensates the fluctuation of the generated power of the renewable energy power generation device. An autonomous control unit that controls the power conversion device and outputs the output power of the first power conversion device and the second power conversion device to an external system, and an autonomous control unit that individually controls the second power conversion device, and a first communication. Second communication means for transmitting information between the power conversion system and the autonomous control section, the communication delay being smaller than that of the means, and the autonomous control section based on the information obtained via the second communication means. , Controlling the second power converter so as to compensate for fluctuations in the power generated by the renewable energy power generator.
 本発明によれば、再生可能エネルギー発電装置の電力変動を確実に補償できる。 According to the present invention, it is possible to reliably compensate for power fluctuations in a renewable energy power generation device.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
電力系統に連系する電力変換システムの構成を示す。1 shows a configuration of a power conversion system that is connected to a power system. 第1通信手段におけるデータ伝送を示す。3 shows data transmission in the first communication means. 図1の電力変換システムにおける制御系を示す。The control system in the power conversion system of FIG. 1 is shown. 図1の電力変換システムの動作を示す。The operation|movement of the power conversion system of FIG. 1 is shown. 実施例1である電力変換システムの構成を示す。The structure of the power conversion system which is Example 1 is shown. 実施例1における制御系の構成を示す機能ブロック図である。3 is a functional block diagram showing a configuration of a control system in Embodiment 1. FIG. 実施例1の電力変換システムの動作を示す。The operation|movement of the power conversion system of Example 1 is shown. 実施例2である電力変換システムの構成を示す。The structure of the power conversion system which is Example 2 is shown. 実施例2における制御系の構成を示す機能ブロック図である。5 is a functional block diagram showing the configuration of a control system in Example 2. FIG. 実施例2の電力変換システムの動作を示す。The operation|movement of the power conversion system of Example 2 is shown.
 本発明の実施形態について説明する前に、まず、従来技術による電力変換システムについて説明する。なお、以下に説明する電力変換システムおよびその制御系の構成(図1~3)は、後述する本発明の実施例においても適用される。 Before describing the embodiments of the present invention, first, a conventional power conversion system will be described. The configurations of the power conversion system and its control system (FIGS. 1 to 3) described below are also applied to the embodiments of the present invention described later.
 図1は、電力系統に連系する電力変換システムの構成を示す。 Fig. 1 shows the configuration of a power conversion system that is connected to the power system.
 図1に示すように、電力変換システム100は、複数(図1では2台)の第1電力変換装置101と複数(図1では2台)の第2電力変換装置102を備える。複数の第1電力変換装置101は、出力側において並列に接続される。このように並列多重接続された複数の第1電力変換装置101の出力が外部の電力系統103に接続される。また、複数の第2電力変換装置102は、出力側において並列に接続される。このように並列多重接続された複数の第2電力変換装置102の出力が電力系統103に接続される。 As shown in FIG. 1, the power conversion system 100 includes a plurality (two in FIG. 1) of first power conversion devices 101 and a plurality (two in FIG. 1) of second power conversion devices 102. The plurality of first power conversion devices 101 are connected in parallel on the output side. The outputs of the plurality of first power conversion devices 101 connected in parallel and multiple in this way are connected to the external power system 103. Further, the plurality of second power conversion devices 102 are connected in parallel on the output side. In this way, the outputs of the plurality of second power conversion devices 102 connected in parallel and multiplex are connected to the power system 103.
 なお、電力系統103は、回転電機からなる通常の発電機を備える発電設備、電力を消費する設備、および、これらの設備が接続される送配電網から構成される。 The electric power system 103 is composed of a power generation facility including an ordinary generator composed of a rotating electric machine, a facility that consumes power, and a power transmission and distribution network to which these facilities are connected.
 第1電力変換装置101は、再生可能エネルギー発電装置104(RE)から入力する直流電力を交流電力(PRE1,PRE2)に変換する主回路を備える。この主回路は、半導体スイッチング素子のオン・オフにより直流電力を交流電力に変換するDC/ACコンバータ回路(インバータ回路)である。第1電力変換装置101の主回路は、制御部108によって制御される。すなわち、制御部108は、出力電力指令値に応じて、主回路の半導体スイッチング素子のオン・オフを制御する。これにより、第1電力変換装置101が出力する交流電力が、出力電力指令値になるように制御される。 The first power conversion device 101 includes a main circuit that converts DC power input from the renewable energy power generation device 104 (RE) into AC power (P RE1 , P RE2 ). This main circuit is a DC/AC converter circuit (inverter circuit) that converts DC power into AC power by turning on/off the semiconductor switching element. The main circuit of the first power conversion apparatus 101 is controlled by the control unit 108. That is, the control unit 108 controls ON/OFF of the semiconductor switching element of the main circuit according to the output power command value. As a result, the AC power output by the first power converter 101 is controlled to the output power command value.
 なお、再生可能エネルギー発電装置104(RE)は、例えば、太陽光発電装置や風力発電装置である。また、再生可能エネルギー発電装置が交流電力を出力する場合、出力電力をAC/DCコンバータにより直流電力に変換してから第1電力変換装置101へ入力する。 Note that the renewable energy power generation device 104 (RE) is, for example, a solar power generation device or a wind power generation device. When the renewable energy power generator outputs AC power, the output power is converted to DC power by the AC/DC converter and then input to the first power converter 101.
 第2電力変換装置102は、蓄電装置105から入力する直流電力を交流電力(PBAT1,PBAT2)に変換する主回路を備える。この主回路は、第1電力変換装置101と同様に、DC/ACコンバータ回路(インバータ回路)である。第2電力変換装置102の主回路は、制御部108によって制御される。すなわち、制御部108は、出力電力指令値に応じて、主回路の半導体スイッチング素子のオン・オフ(スイッチング)を制御する。これにより、第2電力変換装置102が出力する交流電力が、出力電力指令値になるように制御される。 The second power conversion device 102 includes a main circuit that converts the DC power input from the power storage device 105 into AC power (P BAT1 , P BAT2 ). This main circuit is a DC/AC converter circuit (inverter circuit) like the first power converter 101. The main circuit of the second power conversion device 102 is controlled by the control unit 108. That is, the control unit 108 controls ON/OFF (switching) of the semiconductor switching element of the main circuit according to the output power command value. As a result, the AC power output by the second power converter 102 is controlled to be the output power command value.
 なお、蓄電装置105は、例えば、二次電池やキャパシタである。 The power storage device 105 is, for example, a secondary battery or a capacitor.
 複数の第1電力変換装置101は、各第1電力変換装置101が出力する交流電力PRE1,PRE2を合わせた交流電力109(PRE)を電力系統103へ出力する。また、複数の第2電力変換装置102は、各第2電力変換装置102が出力する交流電力PBAT1,PBAT2を合わせた交流電力110(PBAT)を電力系統103へ出力する。 The plurality of first power conversion devices 101 output AC power 109 (P RE ), which is a combination of the AC power P RE1 and P RE2 output by each first power conversion device 101, to the power grid 103. In addition, the plurality of second power conversion devices 102 output AC power 110 (P BAT ) that is a combination of the AC power P BAT1 and P BAT2 output by each second power conversion device 102 to the power system 103.
 複数の第1電力変換装置101と複数の第2電力変換装置102を制御するために、中央制御部106が設けられる。中央制御部106は、第1通信手段107を介して、複数の第1電力変換装置101と複数の第2電力変換装置102から、動作状態に関する情報(例えば、出力電力)を収集する。なお、この情報は、各電力変換装置が備える制御部108から取得されてもよい。 A central control unit 106 is provided to control the plurality of first power conversion devices 101 and the plurality of second power conversion devices 102. The central control unit 106 collects information (for example, output power) regarding the operating state from the plurality of first power conversion devices 101 and the plurality of second power conversion devices 102 via the first communication unit 107. Note that this information may be acquired from the control unit 108 included in each power conversion device.
 センサ700は、複数の第1電力変換装置101の出力電力109(PRE)を検出する。中央制御部106は、センサ700から、第1通信手段107を介して、出力電力PREに関する情報を収集する。 The sensor 700 detects the output power 109 (P RE ) of the plurality of first power conversion devices 101. The central control unit 106 collects information regarding the output power P RE from the sensor 700 via the first communication unit 107.
 中央制御部106は、複数の第1電力変換装置101および複数の第2電力変換装置102ならびにセンサ700から収集した情報に基づいて、各電力変換装置の出力電力指令値を作成して、作成した出力電力指令値を、第1通信手段107を介して各電力変換装置の制御部108へ送る。なお、第1通信手段107は、有線でもよいし、無線でもよい。 The central control unit 106 creates and creates an output power command value for each power converter based on the information collected from the plurality of first power converters 101, the plurality of second power converters 102, and the sensor 700. The output power command value is sent to the control unit 108 of each power conversion device via the first communication unit 107. The first communication means 107 may be wired or wireless.
 複数の第1電力変換装置101の出力電力PREは、再生可能エネルギー発電装置104(RE)の間欠的な発電特性により、天候などの自然条件に応じた大きな電力変動分を有する。このような大きな電力変動は、電力系統103における発電機の動作を不安定にし得る。このため、電力変換システム100に対しては、電力変換システム100の総出力電力111(PSYS)の電力変動率すなわち電力変動速度が規定値内に収まることが要求される。 The output power P RE of the plurality of first power conversion devices 101 has a large amount of power fluctuation according to natural conditions such as weather due to the intermittent power generation characteristics of the renewable energy power generation device 104 (RE). Such a large power fluctuation may make the operation of the generator in the power system 103 unstable. For this reason, the power conversion system 100 is required to have the power fluctuation rate of the total output power 111 (P SYS ) of the power conversion system 100, that is, the power fluctuation speed, within a specified value.
 図2は、第1通信手段107におけるデータ伝送を示す。 FIG. 2 shows data transmission in the first communication means 107.
 第1通信手段107に接続される各制御部(M個の制御部#1~#N(図1中の「108」)および中央制御部(図1中の「106」))には、所定時間の間、自制御部の情報を、他のすべての制御部に対して更新する権限が与えられる。情報更新の権限は、所定時間間隔で、かつ所定の順番で、他の制御部へ引き渡される。図2においては、第1通信手段の1更新周期中で、制御部#1、制御部#2、…、制御部#N、中央制御部の順で、情報更新の権限が引き渡される。 Each control unit (M control units #1 to #N (“108” in FIG. 1) and central control unit (“106” in FIG. 1)) connected to the first communication unit 107 has a predetermined During the time, all other control units are authorized to update their own control information. The authority to update information is handed over to another control unit at a predetermined time interval and in a predetermined order. In FIG. 2, during one update cycle of the first communication means, the authority to update information is handed over in the order of the controller #1, the controller #2,..., The controller #N, and the central controller.
 このような動作は、第1通信手段を介して互いに接続される全制御ユニット(中央制御部および複数の制御部)間で継続する。それゆえ、より多くの制御ユニットが接続されるほど、データ更新の1サイクルが終了するのにより長い時間がかかる。このため、通信遅延(communication delay time)がもたらされる。 Such operation continues between all control units (central control unit and multiple control units) connected to each other via the first communication means. Therefore, the more control units that are connected, the longer it takes to complete one cycle of data update. Therefore, communication delay is introduced.
 図3は、図1の電力変換システム100における制御部108および中央制御部106を含む制御系を示す。 3 shows a control system including the control unit 108 and the central control unit 106 in the power conversion system 100 of FIG.
 中央制御部106は、再生可能エネルギー発電装置104の発電電力の変動を平滑化する電力平滑化制御部302を有する。中央制御部106は、第1通信手段107を介して、複数の第1電力変換装置101の出力電力情報PRE1,PRE2を収集する。中央制御部106は、第1通信手段107による通信遅延を受けた出力電力情報PRE1D,PRE2Dを足し合わせ、足し合わせた総出力電力情報301(PRED)を電力平滑化制御部302に入力する。 The central control unit 106 includes a power smoothing control unit 302 that smoothes fluctuations in the generated power of the renewable energy power generation device 104. The central control unit 106 collects output power information P RE1 and P RE2 of the plurality of first power conversion devices 101 via the first communication unit 107. The central control unit 106 adds the output power information P RE1D and P RE2D that have undergone the communication delay by the first communication means 107, and inputs the added total output power information 301 (P RED ) to the power smoothing control unit 302. To do.
 総出力電力情報301(PRED)は、再生可能エネルギーの間欠的発電量のため、大きな電力変動を含む。電力平滑化制御部302は、変化率リミッタや他のフィルタ手段によって、総出力電力情報301(PRED)を処理して、平滑化された出力電力指令値303(P SYS)を作成する。この出力電力指令値303(P SYS)は、電力変換システム100の好適な出力電力を表している。それゆえ、複数の蓄電装置105による総補償電力指令値304(P BAT)が、出力電力指令値303(P SYS)から総出力電力情報301(PRED)を減じることによって算出される。 The total output power information 301 (P RED ) includes large power fluctuations due to intermittent generation of renewable energy. The power smoothing control unit 302 processes the total output power information 301 (P RED ) by a rate of change limiter or other filter means to create a smoothed output power command value 303 (P * SYS ). The output power command value 303 (P * SYS ) represents a suitable output power of the power conversion system 100. Therefore, the total compensation power command value according to the plurality of power storage devices 105 304 (P * BAT) is calculated by subtracting the total output power information 301 (P RED) from the output power command value 303 (P * SYS).
 中央制御部106は、総補償電力指令値304(P BAT)を蓄電装置105の台数すなわち第2電力変換装置102の台数(図1では2台)で除算することにより、各第2電力変換装置102に対する個別の補償電力指令値(P BAT1,P BAT2)を作成する。すなわち、図1の中央制御部106では、「P BAT1=P BAT2=P BAT/2」である。補償電力指令値P BAT1,P BAT2は、第1通信手段を介して、各第2電力変換装置102の制御部108へ送られる。各制御部108は、第1通信手段によって遅延した補償電力指令値(P BAT1D,P BAT2D)を受信し、第2電力変換装置を、その出力電力(PBAT1,PBAT2)が補償電力指令値(P BAT1D,P BAT2D)になるように制御する。 The central control unit 106 divides the total compensation power command value 304 (P * BAT ) by the number of the power storage devices 105, that is, the number of the second power conversion devices 102 (two in FIG. 1), so that each second power conversion is performed. Individual compensation power command values (P * BAT1 , P * BAT2 ) for the device 102 are created. That is, in the central control unit 106 of FIG. 1, “P * BAT1 =P * BAT2 =P * BAT /2”. The compensation power command values P * BAT1 , P * BAT2 are sent to the control unit 108 of each second power converter 102 via the first communication means. Each control unit 108 receives the compensation power command value (P * BAT1D , P * BAT2D ) delayed by the first communication means, and outputs the second power conversion device whose output power ( PBAT1 , PBAT2 ) is the compensation power. The control is performed so that the command value (P * BAT1D , P * BAT2D ) is reached .
 情報の通信遅延がない理想状態では、複数の第2電力変換装置102の総出力電力110(PBAT(=PBAT1+PBAT2))によって大きな電力変動が平滑化されて、電力変換システム100の出力電力111(PSYS)の変動速度は要求値の範囲内に収まる。しかしながら、実際には、電力変換システムは複数の第1電力変換装置および複数の第2電力変換装置を備え、場合によっては数十もしくは数百の第1および第2電力変換装置を備え得るので、これらの電力変換装置から第1通信手段107を介して情報を収集すると、通信遅延が生じる。例えば、32台の電力変換装置間における1データ更新を保証するには最大50msを要する。さらに、第2電力変換装置の個別の制御部108が第1通信手段107を介して補償電力指令値(P BAT1D,P BAT2D)を受信後、第2電力変換装置の出力電力(PBAT1,PBAT2)を補償電力指令値に一致するまでに制御の遅れがある。 In an ideal state where there is no communication delay of information, a large power fluctuation is smoothed by the total output power 110 (P BAT (=P BAT1 +P BAT2 )) of the plurality of second power conversion devices 102, and the output of the power conversion system 100. The fluctuation speed of the electric power 111 (P SYS ) falls within the required value range. However, in practice, the power conversion system includes a plurality of first power conversion devices and a plurality of second power conversion devices, and in some cases, may include tens or hundreds of first and second power conversion devices. When information is collected from these power conversion devices via the first communication means 107, communication delay occurs. For example, a maximum of 50 ms is required to guarantee one data update between 32 power conversion devices. Furthermore, after the individual control unit 108 of the second power conversion device receives the compensation power command values (P * BAT1D , P * BAT2D ) via the first communication means 107, the output power of the second power conversion device ( PBAT1 , P BAT2 ) has a control delay until it becomes equal to the compensation power command value.
 図4は、図1の電力変換システムの動作を示す。本図により、中央制御部106において電力平滑化制御が実行される場合に、上述の通信遅延時間および制御遅延時間によって起きる電力平滑化制御の制御誤差について説明する。なお、本図において、破線は、電力平滑化制御が理想的な場合における波形を示し、実線は、電力平滑化制御に遅延時間による誤差が生じている場合における波形を示す。 FIG. 4 shows the operation of the power conversion system of FIG. The control error of the power smoothing control caused by the above-described communication delay time and control delay time when the power smoothing control is executed in the central control unit 106 will be described with reference to this figure. In this figure, the broken line shows the waveform when the power smoothing control is ideal, and the solid line shows the waveform when the error due to the delay time occurs in the power smoothing control.
 まず、波形109は、再生可能エネルギーによる電力を示しているが、波形に急峻な電力変動がある。理想的状況において、波形301は、波形109における大きな電力変動を平滑化するための蓄電池の理想的な出力を示し、波形302は、電力平滑化制御が理想的な場合における制御結果(系統への出力電力PSYS)を示す。しかしながら、通信遅延時間および制御遅延時間が起きる場合、これらの遅延は、波形110が示すように、蓄電池の出力が、理想的な波形301よりも遅れて制御される。 First, the waveform 109 shows the power due to the renewable energy, but there is a sharp power fluctuation in the waveform. In an ideal situation, the waveform 301 shows the ideal output of the storage battery for smoothing large power fluctuations in the waveform 109, and the waveform 302 shows the control result (when the power smoothing control is ideal). Output power PSYS ) is shown. However, when the communication delay time and the control delay time occur, these delays are controlled such that the output of the storage battery is delayed from the ideal waveform 301, as shown by the waveform 110.
 以下、本発明の実施形態について、実施例1および実施例2により説明する。なお、いずれの実施例も、図1-3に示した構成に、再生可能エネルギー発電装置の発電量の変動を確実に補償するための手段が付加される。そこで、以下では、主にその手段について説明し、図1-3に示した構成については、図示はするが、説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to Examples 1 and 2. In each of the embodiments, means for surely compensating for the fluctuation of the power generation amount of the renewable energy power generation device is added to the configuration shown in FIGS. Therefore, hereinafter, the means will be mainly described, and the configuration shown in FIGS. 1 to 3 will be illustrated, but the description will be omitted.
 図5は、本発明による実施例1である電力変換システム500の構成を示す。 FIG. 5 shows the configuration of a power conversion system 500 that is Embodiment 1 of the present invention.
 本実施例1においては、電力変換システムの総出力電力511を検出する電力検出部501(センサ)が備えられ、検出される情報が、第2通信手段502を介して、複数(図5では2台)の第2電力変換装置102の内の一部(図5では1台)を、個別にかつ中央制御部106による制御とは独立して制御する自律制御部503に伝送される。 In the first embodiment, the power detection unit 501 (sensor) that detects the total output power 511 of the power conversion system is provided, and a plurality of pieces of detected information are output via the second communication unit 502 (2 in FIG. 5). Part of the second power conversion devices 102 (one unit in FIG. 5) is transmitted to the autonomous control unit 503 that individually and independently of the control by the central control unit 106.
 ここで、第2通信手段502は、一対一通信によって情報を伝送する。このため、通信時間遅延が、第1通信手段107の通信時間遅延に比べて小さい。なお、第2通信手段502は、有線でもよいし、無線でもよい。 Here, the second communication means 502 transmits information by one-to-one communication. Therefore, the communication time delay is smaller than the communication time delay of the first communication means 107. The second communication unit 502 may be wired or wireless.
 図6は、実施例1における制御系の構成を示す機能ブロック図である。 FIG. 6 is a functional block diagram showing the configuration of the control system in the first embodiment.
 本制御系は、中央制御部106と自律制御部503を備えている。中央制御部106の構成は、図3に示した構成と同様である。自律制御部503は、一部の第2電力変換装置102に対する第2電力指令504(P BAT2C)を、電力検出部501および第2通信手段502からの電力変換システム500の総出力電力511(PSYS)を示す情報に基づいて、設定する。 This control system includes a central control unit 106 and an autonomous control unit 503. The configuration of the central control unit 106 is similar to that shown in FIG. The autonomous control unit 503 sends the second power command 504 (P * BAT2C ) to some of the second power conversion devices 102 based on the total output power 511 (of the power conversion system 500 from the power detection unit 501 and the second communication unit 502 ( It is set based on the information indicating P SYS ).
 本実施例1においては、自律制御部503における制御演算手段として変化率リミッタ505(rate limiter)が適用される。第2通信手段502は、通信遅延が第1通信手段107よりも小さいため、第2電力指令504は、中央制御部106における電力平滑化制御による第1電力指令(P BAT2D)の設定に先立って設定される。 In the first embodiment, a change rate limiter 505 (rate limiter) is applied as a control calculation unit in the autonomous control unit 503. Since the communication delay of the second communication unit 502 is smaller than that of the first communication unit 107, the second power command 504 precedes the setting of the first power command (P * BAT2D ) by the power smoothing control in the central control unit 106. Is set.
 図5に示す実施例1および図6に示す制御系によって、時間遅延によって起きる制御誤差が補償される。これにより、電力変換システム500の出力電力の変動率を良好に管理できる。 The control system shown in FIG. 5 and the control system shown in FIG. 6 compensate the control error caused by the time delay. Thereby, the fluctuation rate of the output power of the power conversion system 500 can be favorably managed.
 図7は、実施例1の電力変換システムの動作を示す。なお、図7中の破線は、図1における電力変換システム100について述べたように、電力平滑化制御部を備える中央制御部だけが適用される場合における動作波形を示す。また、図7中の実線は、図5に示した実施例1の電力変換システムが適用される場合における動作波形を示す。 FIG. 7 shows the operation of the power conversion system according to the first embodiment. In addition, the broken line in FIG. 7 shows an operation waveform when only the central control unit including the power smoothing control unit is applied, as described for the power conversion system 100 in FIG. 1. Moreover, the solid line in FIG. 7 shows an operation waveform when the power conversion system of the first embodiment shown in FIG. 5 is applied.
 図7の右図(左図の一部(1725~1735sec)の時間スケールを拡大した図)において、波形PRE(109)は、第1電力変換装置が出力する再生可能エネルギー発電装置による電力を示す。この波形においては、急峻な電力変動がある。波形PBAT(110)および波形PSYS(111)が示すように、中央制御部において発生する時間遅れ(通信遅延および制御の遅れ)が、蓄電装置の出力と電力変換システムの出力に電力補償の遅れ(すなわち電力変動)をもたらす。 In the right diagram of FIG. 7 (a diagram in which the time scale of a part of the left diagram (1725-1735 sec) is enlarged), the waveform P RE (109) represents the power generated by the renewable energy power generation device output from the first power conversion device. Show. There is a sharp power fluctuation in this waveform. As indicated by the waveforms P BAT (110) and the waveform P SYS (111), the time delay (communication delay and control delay) that occurs in the central control unit causes power compensation of the power storage device output and the power conversion system output. It causes a delay (that is, power fluctuation).
 これに対し、実施例1においては、電力変換システム500の総出力電力PSYSの変動が監視される。それにより、自律制御部503は、波形504が示すように、時間遅れに起因する誤差を補償するために第2電力指令(P BAT2C)を作成する。その結果、電力変換システム500の出力電力は、波形511に示すように、電力変動が抑制されるように制御される。 On the other hand, in the first embodiment, the fluctuation of the total output power P SYS of the power conversion system 500 is monitored. Thereby, the autonomous control unit 503 creates the second power command (P * BAT2C ) in order to compensate for the error caused by the time delay, as indicated by the waveform 504. As a result, the output power of the power conversion system 500 is controlled so that the power fluctuation is suppressed as shown by the waveform 511.
 図8は、本発明による実施例2である電力変換システム800の構成を示す。 FIG. 8 shows the configuration of a power conversion system 800 that is Embodiment 2 of the present invention.
 本実施例2においては、センサ700によって、複数の第1電力変換装置101の総出力電力109(PRE)が検出される。検出された総出力電力109(PRE)の情報は、第2通信手段802を介して、第2電力変換装置102の自律制御部803へ送信される。また、自律制御部803は、第1通信手段107を介して、電力変換装置の動作状態に関する他の情報、例えば、後述するように各第1電力変換装置の出力電力PRE1,PRE2の情報を受信する。 In the second embodiment, the sensor 700 detects the total output power 109 (P RE ) of the plurality of first power conversion devices 101. The information on the detected total output power 109 (P RE ) is transmitted to the autonomous control unit 803 of the second power conversion device 102 via the second communication unit 802. In addition, the autonomous control unit 803, via the first communication unit 107, other information regarding the operating state of the power conversion device, for example, output power P RE1 , P RE2 of each first power conversion device as described later. To receive.
 ここで、第2通信手段802は一対一通信方式であり、そのため、第2通信手段の通信遅延は、第1通信手段の通信遅延に比べて小さい。 Here, the second communication unit 802 is a one-to-one communication method, and therefore the communication delay of the second communication unit is smaller than the communication delay of the first communication unit.
 図9は、実施例2における制御系の構成を示す機能ブロック図である。 FIG. 9 is a functional block diagram showing the configuration of the control system in the second embodiment.
 本制御系は、中央制御部106と自律制御部803を備えている。中央制御部の構成は、図3および図6に示した構成と同様である。 This control system includes a central control unit 106 and an autonomous control unit 803. The configuration of the central control unit is similar to that shown in FIGS. 3 and 6.
 自律制御部803は、第2電力変換装置102に対する第2電力指令805(P BAT2C)を、再生可能エネルギー発電装置104による電力の検出値間誤差804に基づいて、設定する。 The autonomous control unit 803 sets the second power command 805 (P * BAT2C ) to the second power converter 102 based on the error 804 between the detected values of the power by the renewable energy power generator 104.
 この検出値間誤差804は、センサ700から第2通信手段802を介して得られる総出力電力検出値(PRE)と、第1通信手段107を介して取得される各第1電力変換装置101の出力電力検出値PRE1,PRE2を加算して得られる総出力電力検出値(PRE1+PRE2)との差分を算出することによって得られる。 This detection value error 804 is the total output power detection value (P RE ) obtained from the sensor 700 via the second communication unit 802, and each first power conversion device 101 obtained via the first communication unit 107. It is obtained by calculating the difference from the total output power detection value (P RE1 +P RE2 ) obtained by adding the output power detection values P RE1 and P RE2 of.
 PRE1,PRE2は、第1電力変換装置101の制御部108からの動作情報に基づき中央制御部106が取得後、中央制御部106から自律制御部803に配信される。なお、PRE1,PRE2は、第1電力変換装置101の制御部108から自律制御部803に配信されてもよい。 P RE1 and P RE2 are delivered to the autonomous control unit 803 from the central control unit 106 after being acquired by the central control unit 106 based on the operation information from the control unit 108 of the first power conversion apparatus 101. Note that P RE1 and P RE2 may be distributed from the control unit 108 of the first power conversion device 101 to the autonomous control unit 803.
 遅延部806は、中央制御部106が第2電力変換装置102へ蓄電装置105の電力指令値を配信する時に起きる遅延を表している。第2通信手段802の遅れ時間が短いため、センサ700によって検出される電力値は、複数の第1電力変換装置101の実際の電力とほとんど同じである。 The delay unit 806 represents a delay that occurs when the central control unit 106 delivers the power command value of the power storage device 105 to the second power conversion device 102. Since the delay time of the second communication unit 802 is short, the power value detected by the sensor 700 is almost the same as the actual power of the plurality of first power conversion devices 101.
 本実施例2においては、中央制御部106における電力平滑化制御部302と同じ電力変動補償部である電力平滑化制御部807が、通信遅延を含む制御の遅れを補償する自律制御部803において適用される。 In the second embodiment, the power smoothing control unit 807, which is the same power fluctuation compensating unit as the power smoothing control unit 302 in the central control unit 106, is applied to the autonomous control unit 803 that compensates the control delay including the communication delay. To be done.
 電力平滑化制御部807は、検出値間誤差804(PRE(センサ700の検出値)-(PRE1+PRE2))を平滑化処理する。自律制御部803は、平滑化処理された検出値間誤差と、平滑化前の検出値間誤差804との差分を算出することにより、第2補償電力指令値805(P BAT2C)を作成して出力する。複数(図8では2台)の第2電力変換装置の内の一部(図8では1台)の制御部108は、中央制御部106から送信される補償電力指令P BAT2と自律制御部803によって作成される第2補償電力指令を加算した電力指令に応じて、一部の第2電力変換装置の出力電力PBAT2を制御する。 The power smoothing control unit 807 smoothes the error between detection values 804 (PRE (detection value of the sensor 700)-(P RE1 +P RE2 )). The autonomous control unit 803 creates the second compensation power command value 805 (P * BAT2C ) by calculating the difference between the smoothed detection value error and the unsmoothed detection value error 804. Output. The control unit 108 of a part (one unit in FIG. 8) of the plurality (two units in FIG. 8) of the second power conversion device includes the compensation power command P * BAT2 transmitted from the central control unit 106 and the autonomous control unit. The output power P BAT2 of some of the second power conversion devices is controlled according to the power command added with the second compensation power command created by 803.
 本実施例2によれば、通信遅延を含む制御の遅れによる誤制御を補償することができるので、電力変換システム800の出力電力の変動速度を確実に低減できる。 According to the second embodiment, since the erroneous control due to the control delay including the communication delay can be compensated, the fluctuation speed of the output power of the power conversion system 800 can be surely reduced.
 図10は、実施例2の電力変換システムの動作を示す。なお、図10中の破線は、図1における電力変換システム100について述べたように、電力平滑化制御部を備える中央制御部だけが適用される場合における動作波形を示す。また、図10中の実線は、図8に示した実施例2の電力変換システムが適用される場合における動作波形を示す。 FIG. 10 shows the operation of the power conversion system of the second embodiment. It should be noted that the broken line in FIG. 10 indicates an operation waveform in the case where only the central control unit including the power smoothing control unit is applied, as described in the power conversion system 100 in FIG. 1. Moreover, the solid line in FIG. 10 shows an operation waveform when the power conversion system of the second embodiment shown in FIG. 8 is applied.
 図10の右図(左図の一部(1725~1735sec)の時間スケールを拡大した図)において、波形PRE(109)は、第1電力変換装置が出力する再生可能エネルギー発電装置による電力を示す。この波形においては、急峻な電力変動がある。 In the right diagram of FIG. 10 (a diagram in which the time scale of a part (1725-1735 sec) of the left diagram is enlarged), the waveform P RE (109) represents the power generated by the renewable energy power generation device output from the first power conversion device. Show. There is a sharp power fluctuation in this waveform.
 波形PRE(201)が示すように、中央制御部において発生する時間遅れ(通信遅延および制御の遅れ)が、再生可能エネルギー発電装置の電力の検出波形の遅れをもたらす。このため、波形PBAT(110)および波形PSYS(111)が示すように、蓄電装置の出力および電力変換システムの出力に平滑化制御の誤制御が生じる。 As shown by the waveform PRE (201), the time delay (communication delay and control delay) that occurs in the central control unit causes a delay in the detected waveform of the electric power of the renewable energy power generation device. Therefore, as shown by the waveform P BAT (110) and the waveform P SYS (111), erroneous control of smoothing control occurs in the output of the power storage device and the output of the power conversion system.
 これに対し、実施例2では、図10における波形109(センサ700によって検出されるPRE)と波形201(遅延したPRE(=PRE1+PRE2))との差分を算出することによって導出される、再生可能エネルギー発電装置の発電電力の検出値間誤差が監視される。さらに、本実施例2によれば、自律制御部803における誤制御補償機能のための第2電力指令805(図9における「P BAT2C」)が設定される。これにより、電力変換システム800の出力電力は、波形811(PSYS)が示すように、電力変動が抑制されるように制御される。 On the other hand, in the second embodiment, it is derived by calculating the difference between the waveform 109 (P RE detected by the sensor 700) and the waveform 201 (delayed P RE (=P RE1 +P RE2 )) in FIG. The error between the detected values of the generated power of the renewable energy power generation device is monitored. Further, according to the second embodiment, the second power command 805 (“P * BAT2C ” in FIG. 9) for the erroneous control compensation function in the autonomous control unit 803 is set. As a result, the output power of the power conversion system 800 is controlled so that the power fluctuation is suppressed as indicated by the waveform 811 (P SYS ).
 なお、本発明は前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and various modifications are included. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, it is possible to add/delete/replace other configurations with respect to a part of the configuration of each example.
 例えば、第1電力変換装置の台数、第2電力変換装置の台数、自律制御部を備える第2電力変換装置の台数は、電力変換システムの電力容量に応じて、いずれも任意でよい。 For example, the number of the first power conversion devices, the number of the second power conversion devices, and the number of the second power conversion devices including the autonomous control unit may all be arbitrary according to the power capacity of the power conversion system.
 また、蓄電装置は、電力変換システムの余剰電力の蓄電や、電力変換システムの出力の平準化などに用いてもよい。 Also, the power storage device may be used to store surplus power of the power conversion system, level the output of the power conversion system, or the like.
100 電力変換システム、101 第1電力変換装置、102 第2電力変換装置、103 電力系統、104 再生可能エネルギー発電装置、105 蓄電装置、106 中央制御部、107 第1通信手段、108 制御部、700 センサ、500 電力変換システム、501 電力検出部、502 第2通信手段、503 自律制御部、800 電力変換システム、802 第2通信手段、803 自律制御部 100 power conversion system, 101 first power conversion device, 102 second power conversion device, 103 power system, 104 renewable energy power generation device, 105 power storage device, 106 central control unit, 107 first communication means, 108 first control unit, 108 control unit, 700 Sensor, 500 power conversion system, 501 power detection unit, 502 second communication unit, 503 autonomous control unit, 800 power conversion system, 802 second communication unit, 803 autonomous control unit

Claims (9)

  1.  再生可能エネルギー発電装置からの電力を電力変換する第1電力変換装置と、
     蓄電装置からの電力を電力変換する第2電力変換装置と、
     前記第1電力変換装置および前記第2電力変換装置を制御する中央制御部と、
     前記第1電力変換装置および前記第2電力変換装置と、前記中央制御部との間で、情報伝送を行う第1通信手段と、
    を備え、
     前記中央制御部は、前記第1通信手段を介して得られる情報に基づいて、前記第1電力変換装置を制御し、かつ前記再生可能エネルギー発電装置の発電電力の変動を補償するように前記第2電力変換装置を制御し、
     前記第1電力変換装置および前記第2電力変換装置の出力電力を外部系統へ出力する電力変換システムにおいて、
     前記第2電力変換装置を個別に制御する自律制御部と、
     前記第1通信手段よりも通信遅延が小さく、前記電力変換システムと前記自律制御部との間で情報伝送を行う第2通信手段と、
    を備え、
     前記自律制御部は、前記第2通信手段を介して得られる情報に基づいて、前記再生可能エネルギー発電装置の前記発電電力の変動を補償するように前記第2電力変換装置を制御することを特徴とする電力変換システム。
    A first power converter that converts power from a renewable energy power generator;
    A second power conversion device that converts the power from the power storage device into electric power;
    A central control unit that controls the first power conversion device and the second power conversion device;
    First communication means for transmitting information between the first power conversion device and the second power conversion device, and the central control unit;
    Equipped with
    The central control unit controls the first power conversion device based on the information obtained via the first communication means, and compensates the fluctuation of the generated power of the renewable energy power generation device. 2 control the power converter,
    In a power conversion system that outputs the output power of the first power conversion device and the second power conversion device to an external system,
    An autonomous control unit that individually controls the second power conversion device;
    A second communication unit having a communication delay smaller than that of the first communication unit and performing information transmission between the power conversion system and the autonomous control unit;
    Equipped with
    The autonomous control unit controls the second power conversion device so as to compensate the fluctuation of the generated power of the renewable energy power generation device based on information obtained via the second communication unit. And power conversion system.
  2.  請求項1に記載の電力変換システムにおいて、
     前記第1電力変換装置は、出力が並列接続される複数の第1電力変換部を備え、
     前記第2電力変換装置は、出力が並列接続される複数の第2電力変換部を備え、
     前記自律制御部は、前記複数の第2電力変換部の一部を制御することを特徴とする電力変換システム。
    The power conversion system according to claim 1,
    The first power conversion device includes a plurality of first power conversion units whose outputs are connected in parallel,
    The second power converter includes a plurality of second power converters whose outputs are connected in parallel,
    The autonomous control unit controls a part of the plurality of second power conversion units, and the power conversion system is characterized.
  3.  請求項1に記載の電力変換システムにおいて、前記第2通信手段は、一対一通信によって情報伝送を行うことを特徴とする電力変換システム。 The power conversion system according to claim 1, wherein the second communication means performs information transmission by one-to-one communication.
  4.  請求項1に記載の電力変換システムにおいて、
     前記第2通信手段を介して得られる情報が、前記第1電力変換装置および前記第2電力変換装置の総出力電力の検出値であることを特徴とする電力変換システム。
    The power conversion system according to claim 1,
    The power conversion system, wherein the information obtained via the second communication means is a detected value of the total output power of the first power conversion device and the second power conversion device.
  5.  請求項4に記載の電力変換システムにおいて、
     前記自律制御部は、変化率リミッタを用いて、前記総出力電力の前記検出値に基づいて、前記第2電力変換装置に対する、前記再生可能エネルギー発電装置の前記発電電力の変動を補償するための出力電力指令を作成することを特徴とする電力変換システム。
    The power conversion system according to claim 4,
    The autonomous control unit uses a rate of change limiter to compensate for fluctuations in the generated power of the renewable energy power generation device with respect to the second power conversion device, based on the detected value of the total output power. A power conversion system characterized by creating an output power command.
  6.  請求項5に記載の電力変換システムにおいて、
     前記自律制御部は、前記変化率リミッタの出力と、前記総出力電力の前記検出値との差分に基づいて、前記出力電力指令を作成することを特徴とする電力変換システム。
    The power conversion system according to claim 5,
    The power conversion system, wherein the autonomous control unit creates the output power command based on a difference between the output of the change rate limiter and the detected value of the total output power.
  7.  請求項1に記載の電力変換システムにおいて、
     前記第2通信手段を介して得られる情報が、前記第1電力変換装置の出力電力の検出値であることを特徴とする電力変換システム。
    The power conversion system according to claim 1,
    The power conversion system, wherein the information obtained via the second communication means is a detected value of the output power of the first power conversion device.
  8.  請求項7に記載の電力変換システムにおいて、
     前記自律制御部は、電力平滑化制御部を用いて、前記出力電力の前記検出値に基づいて、前記第2電力変換装置に対する、前記再生可能エネルギー発電装置の前記発電電力の変動を補償するための出力電力指令を作成することを特徴とする電力変換システム。
    The power conversion system according to claim 7,
    The autonomous control unit uses a power smoothing control unit to compensate for fluctuations in the generated power of the renewable energy power generation device with respect to the second power conversion device, based on the detected value of the output power. A power conversion system characterized by creating an output power command.
  9.  請求項8に記載の電力変換システムにおいて、
     前記自律制御部は、前記出力電力の前記検出値と、前記第1通信手段を介して得られる前記第1電力変換装置の出力電力値との差分に応じた前記電力平滑化制御部の出力と、前記差分との差分値に基づいて、前記第2電力変換装置に対する、前記再生可能エネルギー発電装置の前記発電電力の変動を補償するための出力電力指令を作成することを特徴とする電力変換システム。
    The power conversion system according to claim 8,
    The autonomous control unit outputs an output of the power smoothing control unit according to a difference between the detected value of the output power and an output power value of the first power conversion device obtained via the first communication unit. , An output power command for compensating for a variation in the generated power of the renewable energy power generation device with respect to the second power conversion device, based on a difference value with the difference. ..
PCT/JP2019/044071 2019-02-21 2019-11-11 Power conversion system WO2020170513A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019029433A JP7156968B2 (en) 2019-02-21 2019-02-21 power conversion system
JP2019-029433 2019-02-21

Publications (1)

Publication Number Publication Date
WO2020170513A1 true WO2020170513A1 (en) 2020-08-27

Family

ID=72144129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044071 WO2020170513A1 (en) 2019-02-21 2019-11-11 Power conversion system

Country Status (2)

Country Link
JP (1) JP7156968B2 (en)
WO (1) WO2020170513A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079559A (en) * 2007-09-27 2009-04-16 Hitachi Engineering & Services Co Ltd Power storage system with wind power generation system
JP2010022122A (en) * 2008-07-10 2010-01-28 Meidensha Corp Stabilization control method for distributed power supply
JP2014204466A (en) * 2013-04-01 2014-10-27 三菱重工業株式会社 Control device, method and program, and microgrid provided therewith
JP2015198526A (en) * 2014-04-02 2015-11-09 富士電機株式会社 Frequency control method in power system, and frequency control system
JP2016149839A (en) * 2015-02-10 2016-08-18 株式会社東芝 Controller for power storage device, wind power generation system, and control method for power storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079559A (en) * 2007-09-27 2009-04-16 Hitachi Engineering & Services Co Ltd Power storage system with wind power generation system
JP2010022122A (en) * 2008-07-10 2010-01-28 Meidensha Corp Stabilization control method for distributed power supply
JP2014204466A (en) * 2013-04-01 2014-10-27 三菱重工業株式会社 Control device, method and program, and microgrid provided therewith
JP2015198526A (en) * 2014-04-02 2015-11-09 富士電機株式会社 Frequency control method in power system, and frequency control system
JP2016149839A (en) * 2015-02-10 2016-08-18 株式会社東芝 Controller for power storage device, wind power generation system, and control method for power storage device

Also Published As

Publication number Publication date
JP2020137292A (en) 2020-08-31
JP7156968B2 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
EP3618217B1 (en) Photovoltaic power plant and secondary control method therefor
EP2096299B1 (en) Automatic generation control augmentation for wind plant integration
CN102055241B (en) Integrated realtime power and solar-electricity station control system
US9570916B2 (en) Inertial response function for grids with high turbine penetration
JP7191046B2 (en) Method for operating island network and island network
EP2485378A1 (en) Control arrangement and method for regulating the output voltage of a dc source power converter connected to a multi-source dc system
US9353731B2 (en) Wind turbine
WO2018139164A1 (en) Method for controlling linking system for accumulator cells and power conversion devices, and power conditioning system
US20210111581A1 (en) Hybrid energy storage system
CN102668299A (en) Power station regulating system
KR102167279B1 (en) Method for controlling of energy storage system for stabilizing output power of solar power generation system
JP6255894B2 (en) Self-sustaining operation system, self-sustaining operation control device, and storage battery system
US8723359B2 (en) Method for controlling sodium-sulfur battery
CN111641232A (en) Voltage regulation method and device for large-scale energy storage system and energy storage system
US11095124B2 (en) Method for compensating feed-in currents in a wind park
US8598839B2 (en) Method for controlling sodium-sulfur battery
WO2021205700A1 (en) Power conversion device
WO2020170513A1 (en) Power conversion system
Mai et al. Consensus-based distributed control for overvoltage mitigation in LV microgrids
US11349408B2 (en) Power supply system and method for controlling power supply system
Nguyen et al. Agent-based distributed event-triggered secondary control for energy storage system in islanded microgrids-cyber-physical validation
CN108988397B (en) Parallel operation power distribution control method for energy storage converters
JP2021168555A (en) Power conversion device
Wang et al. Distributed secondary control of energy storage systems in islanded ac microgrids
US10355629B2 (en) Control method for protecting generators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 12/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19916272

Country of ref document: EP

Kind code of ref document: A1