JPS62108770A - Silicon carbide sintered body and manufacture - Google Patents
Silicon carbide sintered body and manufactureInfo
- Publication number
- JPS62108770A JPS62108770A JP60249055A JP24905585A JPS62108770A JP S62108770 A JPS62108770 A JP S62108770A JP 60249055 A JP60249055 A JP 60249055A JP 24905585 A JP24905585 A JP 24905585A JP S62108770 A JPS62108770 A JP S62108770A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- sintered body
- weight
- powder
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分骨〕
本発明は、高密度でかつ耐酸化性及び¥IL気的時的特
性れた高品位の炭化珪素焼結体およびその製造方法に関
する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a high-grade silicon carbide sintered body having high density, oxidation resistance, and IL-temperature properties, and a method for producing the same.
炭化珪素焼結体は、極めて唆れた化学的および物月1的
性質を有しているので、特にガスタービン部品、高温熱
交換器のような苛酷な条件下で使用されろ高調構造物の
如き用途に対して好適な材料である。Silicon carbide sintered bodies have extremely attractive chemical and mechanical properties, so they are used particularly in gas turbine parts, high-temperature heat exchangers, and other filter structures used under harsh conditions. This material is suitable for such uses.
ところで、炭化珪素は従来難焼結性の材料として知られ
ている。すなわち、この材料は酸化物セラミックスを製
造するのに一般的に行なわれている常温成形後無加圧下
で焼結する常圧焼結法によって高密度の焼結体を得るこ
とは近年まで困難であった。By the way, silicon carbide has been known as a material that is difficult to sinter. In other words, until recently, it has been difficult to obtain a high-density sintered body of this material using the pressureless sintering method, which is commonly used to produce oxide ceramics, in which the material is molded at room temperature and then sintered under no pressure. there were.
しかしながら、最近になって炭化珪葉、ホウ票含有添加
剤および炭素質添加剤から収る混合粉末を成形し、非酸
化性雰囲気中で焼結する常圧焼結方法が種々報告されて
いる。However, recently, various pressureless sintering methods have been reported in which a mixed powder containing silicon carbide leaves, a carbonaceous additive, and a carbonaceous additive is formed and sintered in a non-oxidizing atmosphere.
例えば、特開昭50−78609号公報に[(a)炭化
珪素と、0.3〜3.0重量%の硼素に相当する量にお
ける!M素金含有化合物、そして0.1〜1.0fKt
%の炭素に相当する[Kおける炭素質添加剤とから成る
ミクロン以下の粉末の均質分散体全形成する段階、(b
)該粉末混合物を生の物体に賦形する段階、及び(0)
i生の物体’i 1900〜2100 Cの湿度にお
いて不活性雰囲気中で理論密度の少なくとも85%の密
度を持つセラミック物品を得るに充分の時間焼結する段
Wiを包含する高密度炭化珪素セラミックを製造する方
法」に係る発明が開示されている。For example, JP-A-50-78609 discloses [(a) silicon carbide in an amount corresponding to 0.3 to 3.0% by weight of boron! M elementary gold-containing compound, and 0.1 to 1.0 fKt
forming a homogeneous dispersion of submicron powder consisting of a carbonaceous additive corresponding to % carbon (b
) shaping the powder mixture into a green object; and (0)
A high-density silicon carbide ceramic comprising a stage Wi is sintered in an inert atmosphere at a humidity of 1900-2100 C for a time sufficient to obtain a ceramic article having a density of at least 85% of the theoretical density. An invention related to "a method for manufacturing" is disclosed.
特開昭54−67599号公報に[珪素と炭素金主な骨
格成分とする有機珪素高分子化合物全真空iたは不活性
ガス雰囲気中で1600〜2200 Cの温度で熱分解
して主としてβ−5ic 2主成分とする粉末を得、こ
の粉末を酸化性雰囲気中で500〜soo cの温度に
加熱し念後、少なくとも弗酸を含む酸で処理して不純物
に溶解除去し高純度β−3iCより吸る粉末とし、該粉
末を用いた原料粉末に炭素および硼素を混合物中にそれ
ぞれの含有量が0.1〜5重量%となるまで添加し、該
混合物を所定形状に成形I−た後、真空中、COガス雰
雰囲気中食は不活性ガス雰囲気中で2000〜2300
Cの湿度で密度が少なくとも2.609/儂3以上と
なるのに充分な時間焼結することを特徴とする炭化珪素
焼結体の製造方法」に係る弁明が開示されている。JP-A-54-67599 discloses that [organosilicon polymer compounds containing silicon and carbon gold as main skeleton components are thermally decomposed at a temperature of 1,600 to 2,200 C in a total vacuum or an inert gas atmosphere to mainly form β- A powder containing 5ic 2 as the main component is obtained, and this powder is heated to a temperature of 500 to 500°C in an oxidizing atmosphere, and then treated with an acid containing at least hydrofluoric acid to dissolve and remove impurities to obtain high purity β-3iC. After adding carbon and boron to the raw material powder using this powder until the content of each becomes 0.1 to 5% by weight in the mixture, and shaping the mixture into a predetermined shape. , in vacuum, in CO gas atmosphere, 2000~2300 in inert gas atmosphere.
The patent discloses a method for producing a sintered silicon carbide body, which comprises sintering at a humidity of C for a time sufficient to achieve a density of at least 2.609/min.
特開昭56−1fi9181号公報に「炭化珪素微粉と
ホウ素含有添加剤と炭素質添加剤とを混合し成形した後
、無加圧焼結する炭化珪素・焼結体の製造方法において
、β型結晶の炭化珪素 85重鼠%以上と残部が2H型
結晶の炭化珪素から実質的になる炭化珪素微粉100重
量部とホウ素含有量に換算して0.1〜3.0重量部の
ホウ素含有添加剤と固定炭素含有量に換算して1.0重
量部を越え4.0重量部以下の炭素質添加剤とを均質混
合する第1工程;前記均質混合物を任意の生成形体に成
形する第2工程;前記生成形体をアルゴン、ヘリウム、
ネオン、クリプトン、キセノン、水素から選択されるい
ずれか少なくとも1種からなるガス雰囲気中で2050
〜2200 Cで焼結する第3工程;上記第1〜3工程
の組合せからなりβ型結晶を50〜85虞量%、残留遊
離炭素を1.0重量%を越え3.0重M%以下含有し、
3.097CI’13以上の密度を有する高強度炭化珪
素焼結体の製造方法」に係る発明が開示されている。JP-A-56-1FI9181 describes ``a method for manufacturing a silicon carbide sintered body in which fine silicon carbide powder, a boron-containing additive, and a carbonaceous additive are mixed, molded, and then sintered without pressure. 100 parts by weight of silicon carbide fine powder consisting essentially of 85% by weight or more of crystalline silicon carbide and the remainder being 2H-type crystalline silicon carbide, and a boron-containing addition of 0.1 to 3.0 parts by weight in terms of boron content. A first step of homogeneously mixing the additive and a carbonaceous additive of more than 1.0 parts by weight and less than 4.0 parts by weight in terms of fixed carbon content; a second step of molding the homogeneous mixture into an arbitrary product shape; Step: The formed body is treated with argon, helium,
2050 in a gas atmosphere consisting of at least one selected from neon, krypton, xenon, and hydrogen.
3rd step of sintering at ~2200 C; consists of a combination of the above 1st to 3rd steps, with β-type crystals at 50-85% by weight and residual free carbon exceeding 1.0% by weight and 3.0% by weight or less Contains
3.097CI'13 or higher density manufacturing method for high-strength silicon carbide sintered body" is disclosed.
〔発明が解決1〜ようとする問題点〕
ところで、1lIil記特開昭50−78609号公報
記載の発明により、ば、ホウ素を・暁桔助剤として炭化
珪素に対し0.3〜3.0重量%と比較的多量に含有さ
せることが必要であり、得られる焼結体は耐酸化性に劣
るという欠点がある。[Problems to be Solved by the Invention 1] By the way, according to the invention described in JP-A-50-78609, boron is used as an auxiliary agent in a concentration of 0.3 to 3.0 to silicon carbide. It is necessary to contain it in a relatively large amount (by weight%), and the resulting sintered body has a disadvantage that it has poor oxidation resistance.
また前記特開昭54−67599号公報記載の発明によ
れば、有機珪素高分子化合物を熱分解して得られる極め
て高価なβ−8工C粉末を出発原料として用いる方法で
あるため、工業用材料として広(使用することが困難で
あるという欠点がある。Furthermore, according to the invention described in JP-A-54-67599, the method uses extremely expensive β-8C powder obtained by thermally decomposing an organosilicon polymer compound as a starting material. The disadvantage is that it is difficult to use widely as a material.
前記特開昭56−169181号公報記載の発明は本出
願人の出願に係る発明であり、その目的は炭化珪素常圧
焼結体に改良し、高強度の焼結体を得るために、炭素質
添加剤を炭化珪素微粉の酸素含有量によって必要とされ
ろ量よりも過剰に添加し、積極的に炭化珪素焼結体内に
遊離炭素の形態で含有させろことによってβ型結晶のα
型結晶への相変態を抑制し、β型結晶のα型化に伴う結
晶の粗大化を防止し、微細結晶となるようにしたもので
ある。しかしながら、前記公報記載の発明における遊離
実温による相変態の抑制効果はそれ程充分ではな(、特
に炭化珪素の殆どがβ型結晶からなる高密度の焼結体を
製造することは困楚であった。The invention described in JP-A-56-169181 is an invention filed by the present applicant, and its purpose is to improve a silicon carbide pressureless sintered body and to obtain a high-strength sintered body. By adding the quality additive in excess of the amount required by the oxygen content of the silicon carbide fine powder and actively incorporating it in the form of free carbon into the silicon carbide sintered body, the
This suppresses the phase transformation to type crystals, prevents the coarsening of the crystals due to conversion of β-type crystals to α-type crystals, and makes them fine crystals. However, the effect of suppressing phase transformation due to free actual temperature in the invention described in the above publication is not so sufficient (in particular, it is difficult to produce a high-density sintered body in which most of the silicon carbide is composed of β-type crystals). Ta.
本発明は、前述の如き従来知られた炭化珪素の常圧焼結
方法の欠点を除去し、特にガスタービン部品、高温熱交
換器、炉構造材料のような苛酷な条件下で使用すること
のできろ高密度でかつ用酸化性に優れたβ型結晶を主体
とする炭化珪素常圧焼結体およびその狗遣方法を提供す
ることを目的とする。The present invention eliminates the drawbacks of the previously known pressureless sintering methods for silicon carbide as described above, and is particularly suitable for use under harsh conditions such as gas turbine parts, high temperature heat exchangers, and furnace structural materials. The object of the present invention is to provide an atmospheric pressureless sintered body of silicon carbide mainly composed of β-type crystals that has high density and excellent oxidation properties, and a method for using the same.
このような観点に立ち、本発明者らは炭化珪素常圧焼結
体について種々検討した結果、炭化珪素の少なくとも6
0重量%がβ型結晶よりなり、平均粒径が0.05〜5
μmの範囲内で、かつ粉末の平均粒径値を中心としてそ
の値の±50%の範囲内の粒径を有する粉末を50重i
t%以上含有する炭化珪素粉末が焼結性に優れており、
極めて少量の高密度化助剤の添加盆でもって焼結せしめ
ることができ、しかもβ型結晶からα型結晶への相変S
を殆ど生じさせろことなく高密度の炭化珪素焼結体を常
圧焼結法によって製造することができろことを新規に知
見し、本発明を完成し念。From this point of view, the present inventors have conducted various studies on pressureless silicon carbide sintered bodies, and have found that at least 6
0% by weight consists of β-type crystals, and the average particle size is 0.05-5
50 weight i
Silicon carbide powder containing t% or more has excellent sinterability,
It can be sintered with the addition of a very small amount of densification aid, and the phase change S from β-type crystal to α-type crystal can be achieved.
We have newly found that it is possible to produce a high-density silicon carbide sintered body by the pressureless sintering method without causing almost any sintering, and have completed the present invention.
本発明は、ホウ素と遊離炭素とを含有し、少なくとも2
.99/CIIL3の密度を有する炭化珪素焼結体にお
いて、炭化珪素の少なくとも60%がβ型結晶で、ホウ
素の含有量が0.01〜0.25重t%であることを特
徴とする炭化珪素焼結体およびその製造方法に関する。The present invention contains boron and free carbon, and contains at least 2
.. A silicon carbide sintered body having a density of 99/CIIL3, wherein at least 60% of the silicon carbide is a β-type crystal, and the boron content is 0.01 to 0.25 wt%. The present invention relates to a sintered body and a method for manufacturing the same.
次に本発明の炭化珪素焼結体を詳細に説明する。Next, the silicon carbide sintered body of the present invention will be explained in detail.
本発明の炭化珪素焼結体は、炭化珪素の少なくと本60
%がβ型結晶であることが必要である。The silicon carbide sintered body of the present invention contains at least 60% of silicon carbide.
% is required to be β-type crystal.
その理由は、β型結晶は宜方晶であり、熱膨張率に異方
性を示さないことから、炭化珪素の少なくとも60%が
β型結晶である焼結体は例えば2000C以上の高温で
焼結された後の冷却工程においても焼結体内部に残留応
力が生じないため、極めて高強度の炭化珪素焼結体とな
すことができるからであり、なかでも95%以上である
ことが好ましい。The reason for this is that β-type crystals are iragonal crystals and do not exhibit anisotropy in their coefficient of thermal expansion. Therefore, a sintered body in which at least 60% of silicon carbide is β-type crystals is sintered at a high temperature of, for example, 2000C or higher. This is because no residual stress is generated inside the sintered body even in the cooling process after sintering, so that a silicon carbide sintered body with extremely high strength can be obtained, and it is particularly preferable that the strength is 95% or more.
本発明の炭化珪素焼結体は、ホウ素の含有量が0、01
〜0.25重量%であることが必要である。その理由は
、ホウ素の含有量が0.01重N%よりも少ない焼結体
は極めて高純度であり、β型結晶からα型結晶への相変
態が極めて生じ運いと考えられるが、ホウ素の含有量が
o、oi重量%より4少なくて、しかもV!!5夏が2
.92/−以上の高密度焼結体を得ることが実質的に困
難で現実的でないからであり、一方ホウ素含有量が0.
25重量%よりも多い焼結体は、焼結体内に含有されて
いるホウ素が焼結体表面の7リカ漫の融点を低下させる
ため焼結体の耐酸化性に劣るからであり、前記ホウ素の
含有量はなかでも0.15重量%未満であることが好ま
しい。The silicon carbide sintered body of the present invention has a boron content of 0,01
~0.25% by weight is required. The reason for this is that a sintered body with a boron content of less than 0.01% by weight is extremely pure, and it is considered that phase transformation from β-type crystal to α-type crystal is extremely likely to occur. The content is 4 less than o, oi weight%, and V! ! 5 summer is 2
.. This is because it is substantially difficult and impractical to obtain a high-density sintered body with a density of 92/- or more.On the other hand, when the boron content is 0.
This is because boron contained in the sintered body lowers the melting point of the surface of the sintered body when the amount is more than 25% by weight, resulting in poor oxidation resistance of the sintered body. The content of is preferably less than 0.15% by weight.
本発明の炭化珪素・焼結体は、少なくとも2.92/α
3の密度を有するものであるが、特に高い強度が要求さ
れる場合には、少なくとも3.097α3の密度を有す
るものであることが好せしい。The silicon carbide/sintered body of the present invention has at least 2.92/α
However, if particularly high strength is required, it is preferable to have a density of at least 3.097α3.
本発明の炭化珪素焼結体は、Na、 K、 Ca、 M
g。The silicon carbide sintered body of the present invention contains Na, K, Ca, M
g.
At、 Fe、 Cr、 Cu、 Ti、 Ni (
7)1かかう選ばれロイずれか少なくともxMの元素の
含有率が0.5重1%以下であることが好ましい。その
理由は、前述の妬き元素の含有率が0.5貢R%より本
多い焼結体は、β型結晶からα型結晶への相変態を生じ
易(、β型結晶からα型結晶への相変態に2って粗大な
板状結晶が生成して強度が著しく劣化するため、特に高
温で高い強窄が要求されろような用途への適用が困難に
なるからである。At, Fe, Cr, Cu, Ti, Ni (
7) It is preferable that the content of at least xM of such selected elements is 0.5% by weight or less and 1% or less. The reason for this is that sintered bodies with a content of more than 0.5% of the envy elements described above tend to undergo phase transformation from β-type crystals to α-type crystals (from β-type crystals to α-type crystals). This is because coarse plate-like crystals are formed during the phase transformation and the strength is significantly deteriorated, making it difficult to apply the material to applications that require high toughness, especially at high temperatures.
次に本発明の炭化珪素焼結体の製造方法について説明す
る。Next, a method for manufacturing a silicon carbide sintered body of the present invention will be explained.
本発明の第2発明は、ホウ素と遊離炭素とを含有し、少
なくとも2.’l/c1n の密度を有する炭化珪素
焼結体の製造方法において、
炭化珪素の少なくとも60%がβ型結晶よりなり、平均
粒径が0.05〜5μmの範囲内で、かつ粉末の平均粒
径値を中心としてその値の±50%の範囲内の粒径を有
する粉末を50重j1%以上含有する炭化珪素粉末10
0重量部と、ホウ素含有量に換算して0.01〜0.2
5重量部のホウ素含有添加剤と、固定炭素澁に換算して
0.3〜5.0重1部の炭素質添加剤とからなる原料組
成物を均質に混合し、成形した生成形体を非酸化性雰囲
気中で1800〜2300 Cの導度に加熱して、炭化
珪素の少なくとも60%がβ型結晶よりなる炭化珪素焼
結体となすことを特徴とする炭化珪素焼結体の製造方法
である。The second invention of the present invention contains boron and free carbon, and contains at least 2. In the method for producing a silicon carbide sintered body having a density of 'l/c1n, at least 60% of the silicon carbide is composed of β-type crystals, the average grain size is within the range of 0.05 to 5 μm, and the average grain size of the powder is Silicon carbide powder 10 containing 50% or more of powder having a particle size within ±50% of the diameter value
0 parts by weight and 0.01 to 0.2 in terms of boron content
A raw material composition consisting of 5 parts by weight of a boron-containing additive and 0.3 to 5.0 parts by weight of a carbonaceous additive in terms of fixed carbon is homogeneously mixed, and the formed product is molded into a non-containing material. A method for producing a silicon carbide sintered body, characterized in that the silicon carbide sintered body is heated to a conductivity of 1800 to 2300 C in an oxidizing atmosphere to form a silicon carbide sintered body in which at least 60% of silicon carbide is composed of β-type crystals. be.
本発明によれば、炭化珪素の少なくとも60%がβ型結
晶よりなり、平均粒径が0.05〜5μmの範囲内で、
かつ粉末の平均粒径値を中心としてその値の±50%の
範囲内の粒径を有する粉末を50重量%以上含有する炭
化珪素粉末を使用することが必要である。According to the present invention, at least 60% of silicon carbide is composed of β-type crystals, and the average particle size is within the range of 0.05 to 5 μm,
It is also necessary to use a silicon carbide powder containing 50% by weight or more of powder having a particle size within ±50% of the average particle size of the powder.
前記炭化珪素粉末が、炭化珪素の少なくと本60%がβ
型結晶よりなるものであることが必要な理由は、通常β
型結晶を主体とする炭化珪素に混在する結晶はβ型結晶
より低温域で安定な2H型結晶あるいはβ型結晶より高
温域で安定な4H型結晶、6H型結晶、15R型結晶等
のα型結晶であるが、前記2H型結晶は通常の焼結反応
の生じる温度域において圏めて不安定であり、焼結に際
して異常粒成長の原因となり易いし、一方4H型結晶、
6H型結晶、15R型結晶等の高温域で安定なα型結晶
を含有すると焼結中にβ型結晶からα型結晶への相変態
が促進され、α型化に伴ってα型結晶の粗大な板状結晶
が生成し、緻密化を妨害するため、β型結晶の含有率が
60%よりも少ないと、高密度でかつ均一な微細構造を
有する高強度の焼結体を得ることが困慧であるからであ
り、なかでも95%以上がβ型結晶よりなる炭化珪素で
あることが好ましい。In the silicon carbide powder, at least 60% of the silicon carbide is β.
The reason why it is necessary that it is made of type crystals is that β
Crystals mixed in silicon carbide, which is mainly composed of type crystals, are 2H type crystals that are more stable at lower temperatures than β type crystals, or α type crystals such as 4H type crystals, 6H type crystals, and 15R type crystals, which are more stable at higher temperatures than β type crystals. However, the 2H type crystal is extremely unstable in the temperature range where a normal sintering reaction occurs, and tends to cause abnormal grain growth during sintering.On the other hand, the 4H type crystal,
If α-type crystals that are stable in high temperature ranges, such as 6H-type crystals and 15R-type crystals, are contained, the phase transformation from β-type crystals to α-type crystals will be promoted during sintering, and the α-type crystals will become coarser as the α-type crystals change. If the content of β-type crystals is less than 60%, it will be difficult to obtain a high-strength sintered body with high density and uniform microstructure, since plate-like crystals will be generated and hinder densification. This is because silicon carbide is a silicon carbide having 95% or more of β-type crystals.
本発明における炭化珪素の結晶系の特定は、Ou−にα
線のX線回折により得られるデータを下記に示した同村
の式(1) 、 (2)および(3)に代入して算出し
た。The crystal system of silicon carbide in the present invention is specified by α
The data obtained by X-ray diffraction were substituted into Domura's equations (1), (2), and (3) shown below.
(1) β型結晶と2H型結晶の比率I : d=2
.51A ノピーク強度値’t 100 トした場合に
おけるd=2.67Aの・ピーク強度値。(1) Ratio of β-type crystal to 2H-type crystal I: d=2
.. 51A Peak intensity value 't 100 Peak intensity value of d=2.67A.
但し、Vβはβ型結晶の客種%、■2Hは2H型結晶の
容積%である。However, Vβ is the customer type % of the β type crystal, and 2H is the volume % of the 2H type crystal.
(2) β型結晶と4H型結晶と6H型結晶の比率I
A : d=2.51Aノピークり度値’elO(1−
した場IB : d=2.51Aノピ一ク強度値Th
100とした場合におけるa=2.ssAのピーク強度
値。(2) Ratio I of β-type crystal, 4H-type crystal and 6H-type crystal
A: d=2.51Anopeak degree value 'elO(1-
IB: d=2.51A nopic intensity value Th
When a=2.100. Peak intensity value of ssA.
但し、■βはβ型結晶の客種%、■6Hは6H型結晶の
客種%、V4Hは4H型結晶の客種%である。However, ■β is the customer type % of the β type crystal, ■6H is the customer type % of the 6H type crystal, and V4H is the customer type % of the 4H type crystal.
(3) β型結晶と6H型結晶と15R型結晶の比率
IA : d= 2.51Aのピーク強度値を100と
した場合におけるd−=2,62Aのピーク強度値。(3) Ratio IA of β-type crystal, 6H-type crystal, and 15R-type crystal: peak intensity value of d-=2.62A when the peak intensity value of d=2.51A is set as 100.
IB : d= 2.slAのピーク強度値を100と
した場合におけるd = 2.58Aのピーク強度値。IB: d=2. Peak intensity value of d = 2.58A when the peak intensity value of slA is set to 100.
100 100α””
’ v6H=1+、:1+、/ ’1+α十β
100β
V15=−
1+α+β
但し、■βはβ型結晶の容積チ、■6Iiは6H型結晶
の容積チ、V15Rk′!15 R型結晶の容積チであ
る。100 100α""
'v6H=1+, :1+,/'1+α10β 100β V15=-1+α+β However, ■β is the volume of the β-type crystal, ■6Ii is the volume of the 6H-type crystal, V15Rk'! 15 This is the volume of the R-type crystal.
なお、ピーク強度値は理学電機製ロータフレックス?使
用し、下記のX線回折条件によって得られたデータから
面積法により導出した。In addition, is the peak intensity value of Rigaku Rotaflex? The area method was used to derive data obtained under the following X-ray diffraction conditions.
Scanning 5peed 1/4 〉Ch
art Bpeed l cm/wmTime
Con5tant 55ecFull 5ca
le 2 X 10 Cps負荷
40 KV 、 100 mA@記炭化炭化珪
素粉末均粒径が0.05〜5師の範囲内であることが必
要である理由は、前記平均がo、os P′Lより小さ
い炭化珪素粉末はネックの生成箇所も多く、#8結注に
も優れていると考えられるが、このような炭化珪素微粉
は入手が困難であるからであり、一方5μmより大きい
炭化珪素を出発原料とすると、焼結初期に形成されるネ
ックの発生箇所が少なく、焼結時における収縮が不均一
になるからである。Scanning 5peed 1/4 〉Ch
art Bpeed l cm/wmTime
Con5tant 55ecFull 5ca
le 2 x 10 Cps load
40 KV, 100 mA @The reason why it is necessary that the average particle size of silicon carbide powder is within the range of 0.05 to 5 degrees is that silicon carbide powder whose average is smaller than o, os P'L is a bottleneck. This is because it is difficult to obtain such fine silicon carbide powder, and on the other hand, if silicon carbide larger than 5 μm is used as a starting material, it is difficult to sinter. This is because there are fewer locations where necks are initially formed, and shrinkage during sintering becomes uneven.
前記炭化珪素粉末が平均粒径値を中心としてその値の±
50チの範囲内の粒径を有する粉末を50重量%以上含
有するものであることが必要な理由は、前記平均粒径値
を中心としてその値の±50%の範囲内の粒径を有する
粉末の含有量が50重禁鋒よシも少ない粉末は、各粉末
粒子の保有するエネルギー量に大きな差異が存在するた
め、焼結初期に形成されるネックの発生箇所が不均一に
なり易く、高密度の焼結体を製造することが困難である
からであり、なかでも70重量%以上であることが有利
である。The silicon carbide powder has an average particle diameter value of ±
The reason why it is necessary to contain 50% by weight or more of powder having a particle size within the range of 50 cm is that the powder has a particle size within ±50% of the average particle size value. Powders with a powder content as low as 50% or less have a large difference in the amount of energy held by each powder particle, so the necks that are formed in the initial stage of sintering tend to be uneven in their locations. This is because it is difficult to produce a high-density sintered body, and it is particularly advantageous for the content to be 70% by weight or more.
本発明によれば、@化炭化珪素粉末はβ型結晶の(11
1)におけるX線回折ピークの半価幅が0.35度以下
で、対称度が0.7〜1.1の範囲内であることが好ま
しい。その理由は、β型結晶の(111)におけるX線
回折ピークの半価幅が0.35度よシも大きかったり、
対称度が0.7〜1.1の範囲外の炭化珪素粉末は、粉
末粒子自体の保有するエネルギー量が大きく結晶が不安
定であり、焼結時においてβ型結晶からα型結晶への相
変態や結晶の異常粒成長が生起し易いため高密度の焼結
体を得ることが困難であるばかりでなく、機械的特性に
優れた炭化珪素焼結体を製造することが困難であるから
であり、なかでもβ型結晶の(111) vcおけるX
線回折ピークの半価幅が0.30i以下で、対称度が0
.8〜1.0の範囲内の炭化珪素粉末であることが有利
である。According to the present invention, the @silicon carbide powder has β-type crystals (11
It is preferable that the half width of the X-ray diffraction peak in 1) is 0.35 degrees or less, and the degree of symmetry is within the range of 0.7 to 1.1. The reason for this is that the half-width of the X-ray diffraction peak at (111) in the β-type crystal is as large as 0.35 degrees.
Silicon carbide powder with a symmetry degree outside the range of 0.7 to 1.1 has a large amount of energy held by the powder particles themselves, and the crystals are unstable, and the phase changes from β-type crystal to α-type crystal during sintering. This is because not only is it difficult to obtain a high-density sintered body because transformation and abnormal grain growth of crystals are likely to occur, but also it is difficult to produce a silicon carbide sintered body with excellent mechanical properties. Yes, especially in the (111) vc of β-type crystals
The half width of the line diffraction peak is 0.30i or less, and the degree of symmetry is 0.
.. Advantageously, the silicon carbide powder is within the range of 8 to 1.0.
なお、本発明におけるβ型結晶の(111)におけるピ
ークの半価幅はCu−にα線によるX線回折によって得
られるピーク強度の1/2の高さにおけるピークの幅で
あり、度で表わされる。また、対称度は上記ピークの半
価幅?最高点の位置で分割した場合の低角度側の幅と高
角度側の幅との割合であり、次式によって表わされる。In addition, the half width of the peak at (111) of the β type crystal in the present invention is the width of the peak at a height of 1/2 of the peak intensity obtained by X-ray diffraction using α rays in Cu-, and is expressed in degrees. It will be done. Also, is the degree of symmetry the half width of the above peak? This is the ratio of the width on the low angle side to the width on the high angle side when divided at the highest point position, and is expressed by the following formula.
対称匿−低角度側の幅/高角度側の幅
木発明によれば、@化炭化珪素微粉は酸素含有率が0.
1〜1.0″ILt%であることが有利である。According to the invention, the silicon carbide fine powder has an oxygen content of 0.
Advantageously, it is between 1 and 1.0″ILt%.
前記炭化珪素微粉に含有される酸素は焼結時に炭素と反
応し、次式に示されろ如き機構で除去される。Oxygen contained in the silicon carbide fine powder reacts with carbon during sintering and is removed by a mechanism as shown in the following equation.
5i02 + C−* Si○+Co (1
)SiO+ 20 → SiC+ Go (2
)したがって、前記酸素が1.0直量チよりも多量に存
在すると炭素質添加剤を多量に使用しなければならない
ばかりでなく、焼結助剤としてのホウ素が酸化してし1
つたり、Goガスが大葉に発生するため焼結時にガス抜
きの必要が生じろ等焼結が困難になるからである。一方
前記酸素量が0.1直量チよりも少ない炭化珪素微粉は
例えば弗酸と硝酸の混酸で処理することによって得るこ
とができろか、このようにして得た高純度の炭化珪素微
粉は極めて活性であり、空気雰囲気中で乾燥したりする
と常温でも容易に酸化してしまうため、酸素含有量を低
く維持するには酸処理後の雰囲気?非酸化性に保持した
りしなければならず、実用的でないからである。5i02 + C-* Si○+Co (1
)SiO+ 20 → SiC+ Go (2
) Therefore, if the oxygen is present in an amount greater than 1.0 direct quantity, not only will it be necessary to use a large amount of carbonaceous additive, but also boron as a sintering aid will be oxidized.
This is because sintering becomes difficult, as Go gas is generated in the large leaves, making it necessary to vent gas during sintering. On the other hand, is it possible to obtain fine silicon carbide powder containing less than 0.1 direct quantity of oxygen by treating it with a mixed acid of hydrofluoric acid and nitric acid? It is active and easily oxidizes even at room temperature when dried in an air atmosphere, so in order to maintain a low oxygen content, it is necessary to use an atmosphere after acid treatment. This is because it is not practical because it must be maintained in a non-oxidizing state.
本発明の炭化珪素微粉は、炭素粉末とシリカ粉末とを所
定のモル比で配合した原料組成物であって、Ca、 M
g、 At、 Fe、 Cr、 Cu、 Ti、 Ni
のなかから選ばれるいずれか少なくとも1種の元素の
含有率が0.2重p%以下であるものを使用してSlC
化反応せしめ、窒素ガス分圧が40mHg以下の非酸化
性雰囲気中で加熱して1750〜2300 Cの仕上げ
温度に到らすか、あるいは窒素がス分圧が4Q+w)i
gよりも高く保持された非酸化性雰囲気中で加熱して1
850〜2500 Cの仕上げ温度に到らすことにより
、少なくとも600i!がβ型結晶の炭化珪素となす炭
化珪素粉末の製造方法によって製造することができる。The silicon carbide fine powder of the present invention is a raw material composition containing carbon powder and silica powder in a predetermined molar ratio, and includes Ca, M
g, At, Fe, Cr, Cu, Ti, Ni
The content of at least one element selected from the following is 0.2% by weight or less.
oxidation reaction and heating in a non-oxidizing atmosphere with a nitrogen gas partial pressure of 40 mHg or less to reach a finishing temperature of 1750 to 2300 C, or a nitrogen gas partial pressure of 4Q+w)i
1 by heating in a non-oxidizing atmosphere maintained above 1 g.
By reaching a finishing temperature of 850-2500 C, at least 600i! It can be produced by a method for producing silicon carbide powder in which β-type crystal silicon carbide is formed.
なお、前記炭素粉末とシリカ粉末のC/SiO2モル比
は3.0〜4.5の範囲内とすることが好適である0
本発明によれば、炭化珪素微粉100重量部に対してホ
ウ素含有添加剤をホウ素含有量に換算して0.01〜0
.25ii1部添加することが必要である。The C/SiO2 molar ratio between the carbon powder and the silica powder is preferably within the range of 3.0 to 4.5. According to the present invention, the boron-containing Additives converted to boron content: 0.01 to 0
.. It is necessary to add 1 part of 25ii.
前記ホウ素含有添加剤をホウ素含有量に換算して0.0
1〜0.25重thi1部にする理由は0.01重量部
より少ないとネック形成時の接着作用が充分でなく高密
度化が困難であるからであり、一方0.25重量部より
多いと焼結体内に残留するホウ素が焼結体表面のシリカ
層の融点を低下させて焼結体の耐酸化性を劣化させるか
らである。前記ホウ素含有添加剤としては、例えばホウ
素、炭化ホウ素あるいはそれらの混合物から選択される
少なくとも1種を用いることが有利である。The boron content of the boron-containing additive is 0.0
The reason for setting 1 to 0.25 parts by weight is that if it is less than 0.01 parts by weight, the adhesive effect during neck formation is insufficient and it is difficult to achieve high density.On the other hand, if it is more than 0.25 parts by weight, This is because boron remaining in the sintered body lowers the melting point of the silica layer on the surface of the sintered body, thereby degrading the oxidation resistance of the sintered body. As the boron-containing additive, it is advantageous to use, for example, at least one selected from boron, boron carbide, or a mixture thereof.
なお、本発明によれば、ホウ素含有添加剤の添加量がホ
ウ素含有量に換算して0.15重量部より少ない場合に
特に耐酸化性に優れた炭化珪素焼結体を得ることができ
る。According to the present invention, a silicon carbide sintered body particularly excellent in oxidation resistance can be obtained when the amount of the boron-containing additive added is less than 0.15 parts by weight in terms of boron content.
本発明によれば、炭化珪素微粉100−重量部に対して
炭素質添加剤を固定炭素含有量に換算して0.3〜5.
0i![置部添加することが必要である。前記炭素質添
加剤は炭化珪素微粉に含有される酸素を除去し、かつ炭
化珪素粒子間に介在してS1Cの拡散を適正化させるた
めに用いられろ。したがって炭素質添加剤は酸素含有t
にみあう量を少なくとも添加し、さらに炭化珪素粒子間
に均一に介在するに充分な量を添加することが有利であ
る。前記炭素質添加剤の添加量を固定炭素含有量に換算
して0.3〜5.01奮部にする理由をゴ、0.3重量
部より少ないと炭素質添加剤の大部分が酸素によって消
費されるためSIGの拡散を適正化する作用が光分て発
揮できないからであり、一方5.0重量部よりも多いと
炭化珪素粒子間に過剰の炭素が存在し、焼結を著しく阻
害するからである。According to the present invention, the carbonaceous additive is converted into a fixed carbon content of 0.3 to 5.0 parts by weight per 100 parts by weight of silicon carbide fine powder.
0i! [Additional addition is necessary. The carbonaceous additive is used to remove oxygen contained in the silicon carbide fine powder and to be interposed between the silicon carbide particles to optimize the diffusion of S1C. Therefore, carbonaceous additives contain oxygen
It is advantageous to add at least a suitable amount, and further add a sufficient amount so that it is uniformly interposed between silicon carbide particles. The reason why the amount of the carbonaceous additive added should be 0.3 to 5.01 parts by weight in terms of fixed carbon content is that if it is less than 0.3 parts by weight, most of the carbonaceous additive will be converted to oxygen. This is because the effect of optimizing the diffusion of SIG cannot be exerted because it is consumed, and on the other hand, if the amount exceeds 5.0 parts by weight, excessive carbon exists between silicon carbide particles, significantly inhibiting sintering. It is from.
前記炭素質添加剤は、焼結開始時に少なくとも100妨
の比表面積を有するものであることが有利である。その
理由は前記焼結開始時における比表面積が100m2/
gよりも小さいとSiCの拡散を適正化する作用が弱い
ため、充分にSiOの拡散を適正化する作用な発揮させ
るには大量に添加しなければならず、焼結体中の介在物
層を増加させる結果となり高強度の焼結体な得難いから
である。Advantageously, the carbonaceous additive has a specific surface area of at least 100 min at the start of sintering. The reason is that the specific surface area at the start of sintering is 100 m2/
If the value is smaller than g, the effect of optimizing the diffusion of SiC is weak, so in order to fully exhibit the effect of optimizing the diffusion of SiO, a large amount must be added, and the inclusion layer in the sintered body is This is because, as a result, it is difficult to obtain a high-strength sintered body.
前記炭素質添加剤としては、焼結開始時に炭素を存在さ
せられるものであれば使用でき、例えばフェノール14
脂、 リグニンスルホン酸塩、ポリビニルアルコー
ル、コンスp f−+ MU+ コールタールピッ
チ、アルギン酸塩、ポリフェニレンのような各種有機物
質あるいは、カーボンブラック。As the carbonaceous additive, any material that can cause carbon to be present at the start of sintering can be used, such as phenol 14.
various organic substances such as fat, lignin sulfonate, polyvinyl alcohol, consp f−+ MU+ coal tar pitch, alginate, polyphenylene, or carbon black.
アセチレンブラックのような熱分解炭素が有利に使用で
きる。Pyrolytic carbon such as acetylene black can be advantageously used.
本発明によれば、炭化珪素粉末とホウ素含有添加剤と炭
素質添加剤を均質混合した後、任意の形状を有する生成
形体に成形し、次いで非酸化性雰囲気中で1800〜2
300 Cで暁結し、2.9 g/cm3以上の密度を
有する炭化珪素焼結体が製造される。According to the present invention, silicon carbide powder, a boron-containing additive, and a carbonaceous additive are homogeneously mixed, then molded into a formed body having an arbitrary shape, and then heated to a temperature of 1,800 to 2
A silicon carbide sintered body is produced by sintering at 300 C and having a density of 2.9 g/cm3 or more.
本発明によれば、前記生成形体を1800〜2300C
の温度に加熱することが必要である。その理由は、ml
記温度が1800 Cより低いと本発明の目的とする2
、9j;?/Crn3以上の密度を有する焼結体を得る
ことが困難であり、一方 2300 Cより高いとβ型
結晶からα型結晶の相変態に伴う結晶粒の粗大化が著し
く、焼結体の物性例えば機械的強度が低下するからであ
り、特に均一な微細構造でかつ高強度の焼結体な得る上
では1900〜2200 Cの温度範囲が有利である。According to the present invention, the formed body is heated at a temperature of 1800 to 2300C.
It is necessary to heat it to a temperature of . The reason is ml
When the temperature is lower than 1800 C, the object of the present invention 2
, 9j;? It is difficult to obtain a sintered body having a density of /Crn3 or higher, and on the other hand, if the density is higher than 2300 C, the coarsening of crystal grains due to the phase transformation from β-type crystal to α-type crystal is significant, and the physical properties of the sintered body, such as This is because the mechanical strength decreases, and a temperature range of 1900 to 2200 C is particularly advantageous in obtaining a sintered body with a uniform microstructure and high strength.
ところで、本発明によれば、β型結晶からα型結晶への
相変態をできる限り抑制して焼結せしめることが重要で
あり、通常は前述の如き相変態が生起し難いβ型結晶の
安定な温度域例えば1800〜2100 Cの範囲内で
焼結することが有利であるが、β型結晶の安定な温度域
な拡大し得る雰囲気中例えば窒素がスやCOガスの分圧
が比較的高く保持された雰囲気中では、さらに高い温度
域で焼結することができ、前記♀素ガスあるいはCOガ
スのいずれか少なくとも1種の分圧が11111Hgよ
りも高く保持されている場合には1900〜2300
Cの範囲内で焼結することができろ。By the way, according to the present invention, it is important to suppress the phase transformation from β-type crystal to α-type crystal during sintering. It is advantageous to sinter within a temperature range of, for example, 1800 to 2100 C. In a maintained atmosphere, sintering can be performed in a higher temperature range, and if the partial pressure of at least one of the above-mentioned ♀ elementary gas or CO gas is maintained higher than 11111 Hg, the temperature range is 1900 to 2300 Hg.
It should be possible to sinter within the range of C.
本発明によれば、非酸化性雰囲気としては通常アルゴン
、ヘリウム、水素のなかから選ばれるいずれか少なくと
も1種からなるガス雰囲気であることが有利であり、必
要に応じて前述の窒素あるいはCoを混入したガス雰囲
気とすることもできる。According to the present invention, it is advantageous that the non-oxidizing atmosphere is normally a gas atmosphere consisting of at least one selected from argon, helium, and hydrogen, and if necessary, the above-mentioned nitrogen or Co may be added. It is also possible to use a mixed gas atmosphere.
本発明によれば、前記焼結温度に至る昇温過程のうち1
500〜170011:の温度範囲内において、前記シ
リカ膜の除去反応を速やかに進行させてネックの生成反
応を均一に発生させるために充分時間前記温度範囲にお
けるCOガス分圧をl[Paより低く維持することが有
利である。According to the present invention, one of the heating steps leading to the sintering temperature
500 to 170011: Maintain the CO gas partial pressure in the temperature range lower than l [Pa for a sufficient period of time to allow the silica film removal reaction to proceed quickly and the neck formation reaction to occur uniformly. It is advantageous to do so.
本発明によれば、前記生成形体を外気の侵入を速断する
ことのできる容器内に装入して焼成することにより、比
較的容易に高密度化することができる。その理由は、焼
成時における生成形体からのSiGの揮散を充分に抑制
してSiCの蒸発−再凝縮を促進することができるため
、ネックの成長を均一に生起させることができることに
よるものと考えられる。前記外気の侵入を速断すること
のできる容器としては、例えば黒鉛質の容器を使用する
ことが有利である。According to the present invention, the green body can be relatively easily densified by charging the green body into a container that can rapidly prevent outside air from entering and firing it. The reason for this is thought to be that the volatilization of SiG from the formed body during firing can be sufficiently suppressed and the evaporation and recondensation of SiC can be promoted, so that neck growth can occur uniformly. . It is advantageous to use, for example, a graphite container as the container that can quickly block the intrusion of outside air.
実施例1
平均粒径が151μmのシリカ粉末(8102−99,
8重tJ)100重量部、平均粒径が29μmの石油コ
ークス粉末(G −98,7重1lltチ)76重量部
および平均粒径が39μmの高ピツチ粉末(Ci −5
0,4重t%)71m!一部を配合し、縦型スクリュー
混合機にてlO分間混合した。前記配合原料にポリビニ
ルアルコールの0.2%水溶液をスプレーしながら、パ
ン型造粒機を用いて成形し、篩で整粒した後、150C
で90分間乾燥し、平均粒径がIQ、5m、嵩比重が0
.6Of;//CWr3、C/5i02 % ル比が4
.0の粒状原料を得た。Example 1 Silica powder (8102-99,
100 parts by weight of 8-weight tJ), 76 parts by weight of petroleum coke powder (G-98, 7-weight 1llt) with an average particle size of 29 μm, and high pitch powder (Ci-5) with an average particle size of 39 μm.
0.4 weight t%) 71m! A portion was blended and mixed for 10 minutes in a vertical screw mixer. While spraying a 0.2% aqueous solution of polyvinyl alcohol onto the blended raw materials, the raw materials were molded using a pan-type granulator, and after sieving and sieving, 150C
The average particle size was IQ, 5 m, and the bulk specific gravity was 0.
.. 6Of; //CWr3, C/5i02% Le ratio is 4
.. 0 granular raw material was obtained.
コノ粒状原料は、ALを0.05重量%、Fe¥0.0
9重箪チ、Ti 全0.003重量%、Caを0.02
t 量%、Mg 全0.005重量%、Naを0.0
1″!1%およびKを0.01重量%含有していた。な
お、その他の不純物元素は検出されなかった。Kono granular raw material contains 0.05% by weight of AL and ¥0.0 Fe.
9-layer chest, Ti total 0.003% by weight, Ca 0.02%
t amount%, Mg total 0.005% by weight, Na 0.0
It contained 1''!1% and 0.01% by weight of K. No other impurity elements were detected.
この粒状原料を特公昭57−48485号に記載の間接
加熱炉の上部の原料装入口より装入し、反応容器内の設
定温度が1900 CK制御された加熱帯内に至らせ、
約1時間SiC化反応を行なわせた後、冷却帯に自重降
下させ、密閉自在の排出口より反応生成物を排出させた
。This granular raw material was charged from the upper raw material charging port of the indirect heating furnace described in Japanese Patent Publication No. 57-48485, and brought into the heating zone where the set temperature in the reaction vessel was controlled at 1900 CK.
After carrying out the SiC conversion reaction for about 1 hour, the reactor was allowed to fall under its own weight into a cooling zone, and the reaction product was discharged from a sealable outlet.
得られた反応生成物を精製、粒度分級して炭化珪素微粉
を調製した。The obtained reaction product was purified and classified for particle size to prepare silicon carbide fine powder.
前記炭化珪素微粉は97重量%がβ型結晶で残部が2H
型結晶よりなり、o、32gg%の遊離炭素、0.18
重tSO酸素を含有し、Na、 K、 At、 Fe、
Or。The silicon carbide fine powder has 97% by weight of β-type crystals and the remainder is 2H.
Consisting of type crystals, o, 32gg% free carbon, 0.18
Contains heavy tSO oxygen, including Na, K, At, Fe,
Or.
(u、 Ti、 Ni、 、G2Lk ヨびMgO不純
物元素の含有量の合計は約0.11重t%であった。そ
の他の特性は第1表に示した。(The total content of impurity elements such as u, Ti, Ni, G2Lk and MgO was about 0.11% by weight. Other properties are shown in Table 1.
前記炭化珪素微粉99.85 Nと比表面積が27.8
m2/IIの炭化ホウ素粉末0.15’、Fと固定炭素
含有率51.6ffit%のノボラック型フェノール樹
脂4゜Olとの混合物に対し、アセトン150dを添加
し、振動ミルを使用して2時間混合処理した。前記振動
ミルより混合物スラリーを排出し噴霧乾燥して、平均粒
径がQ、Q9rls、粉体嵩密度が35 % (1,1
21/Crn3)の顆粒を得た。The silicon carbide fine powder has a specific surface area of 99.85 N and 27.8
150 d of acetone was added to a mixture of m2/II boron carbide powder 0.15', F and 4°Ol of novolak type phenolic resin with a fixed carbon content of 51.6 ffit%, and the mixture was heated using a vibration mill for 2 hours. Mixed treatment. The mixture slurry was discharged from the vibration mill and spray-dried to obtain an average particle size of Q, Q9rls, and a powder bulk density of 35% (1,1
21/Crn3) granules were obtained.
この顆粒から適址を採取し、金属性押し型を用いて0.
15 t/crn2の圧力で仮成形し、次に静水圧プレ
ス機を用いて1.8t/crn2の圧力で成形した。前
記成形によって得られた生成形体の密度は61チ(1,
951/cm3)であることが認められた。A suitable amount was taken from the granules and pressed with a metal mold to give a 0.
Temporary molding was carried out at a pressure of 15 t/crn2, and then molding was carried out at a pressure of 1.8 t/crn2 using a hydrostatic press machine. The density of the formed body obtained by the above molding is 61 inches (1,
951/cm3).
前記生成形体をタンマン型焼結炉に装入し、大気圧下の
アルゴンガス気流中で焼結した。昇温過程ハiK 堪〜
1650 Cを5 C/m1n1.1650 CK テ
40分間保持した後、さらに5 C/min、で昇温し
最高温度2060 rで60分間保持した。焼結中のC
oガス分圧は常温〜1650 Cカ5 KPa以下、1
6501.テ保持する際は0,5KPa以下、1650
Cより高温域では5 KPa以下となるようにアルゴ
ンガス流量を適宜lIMI幣した。The formed body was placed in a Tammann type sintering furnace and sintered in an argon gas stream under atmospheric pressure. Temperature rising process high-K
After holding at 1650 C for 40 minutes at 5 C/m1n1.1650 CK, the temperature was further increased at 5 C/min and held at a maximum temperature of 2060 r for 60 minutes. C during sintering
o Gas partial pressure is from room temperature to 1650 C, 5 KPa or less, 1
6501. 0.5KPa or less, 1650 when holding
The argon gas flow rate was adjusted appropriately so that the temperature was 5 KPa or less in the temperature range higher than C.
得られた焼結体は3.05L々−(相対理論密度率95
.0%)の密度を有していた。またこの焼結体の粉末X
線回折測定の結果、この焼結体は炭化珪素の93.0チ
がβ型結晶であることが認められた。The obtained sintered body was 3.05L (relative theoretical density rate 95
.. It had a density of 0%). Also, powder X of this sintered body
As a result of line diffraction measurement, it was found that 93.0% of the silicon carbide in this sintered body was β-type crystal.
前記焼結体を30 X 30 X l wmの板状に加
工し、アセトンで洗浄して耐酸化性テスト用試料を作成
した。前記試料を1400 Cの空気雰囲気に保持され
た加熱炉中で20時間処理し、処理前後の重量増加量を
測定したところ処理前に比較して0.025my/cm
2の割合であり、耐酸化性に優れていることが認められ
た。また、得られた焼結体は従来の高密度化助剤を比較
的多量に使用して得られた炭化珪素焼結体に比較して高
い電気抵抗を有していることが認められた。The sintered body was processed into a plate shape of 30 x 30 x lwm and washed with acetone to prepare a sample for oxidation resistance test. The sample was treated in a heating furnace maintained in an air atmosphere at 1400 C for 20 hours, and the weight increase before and after the treatment was measured, and it was 0.025 my/cm compared to before the treatment.
2, and it was recognized that the oxidation resistance was excellent. It was also found that the obtained sintered body had a higher electrical resistance than a silicon carbide sintered body obtained using a conventional densification aid in a relatively large amount.
実施例2、比較例1
実施例1とほぼ同様であるが、反応容器内の設定温度を
第1表に示す如く変化させて炭化珪素粉末を得た。Example 2, Comparative Example 1 Silicon carbide powder was obtained in substantially the same manner as in Example 1, except that the set temperature in the reaction vessel was changed as shown in Table 1.
次いで、実施例1と同様の方法で焼結体を得た。Next, a sintered body was obtained in the same manner as in Example 1.
得られた炭化珪素粉末の特性およびその粉末を使用して
得た焼結体の%性は第1表に示した。Table 1 shows the properties of the silicon carbide powder obtained and the percentage properties of the sintered body obtained using the powder.
実施例3
実施例1で得られた炭化珪素粉末をさらに分級して第1
表に示す如き平均粒径および粒度分布の炭化珪素粉末を
得た。Example 3 The silicon carbide powder obtained in Example 1 was further classified to
Silicon carbide powder having an average particle size and particle size distribution as shown in the table was obtained.
次いで、実施例1と同様の方法であるが、炭化ホウ素の
添加歓を0.IIとし、焼結時の最高温度を2010
Gに変化させて第1表に示す如き特性の焼結体を得た。Next, the same method as in Example 1 was used, but the addition of boron carbide was reduced to 0. II, and the maximum temperature during sintering is 2010
A sintered body having the characteristics shown in Table 1 was obtained by changing the temperature to G.
実施例1とほぼ同様であるが、反応容器内の設定温度と
雰囲気中の窒素ガス分圧?第1表に示す如き値に設定し
て炭化珪素粉末を得だ。It is almost the same as Example 1, but the set temperature in the reaction vessel and the nitrogen gas partial pressure in the atmosphere are different. Silicon carbide powder was obtained by setting the values as shown in Table 1.
次いで実施例1と同様の方法で焼結体を得た。Next, a sintered body was obtained in the same manner as in Example 1.
得られた炭化珪素粉末の特性およびその粉末を使用して
得た焼結体の特性は第1表に示した。The properties of the obtained silicon carbide powder and the properties of the sintered body obtained using the powder are shown in Table 1.
実施例5
比較例1−1で得られた炭化珪素粉末をタンマン型加熱
炉に装入し、加熱炉内の設定温度と雰囲気中の♀素ガス
分圧を第2表に示す如き値に設定して加熱処理を施した
後、実施例1と同様の方法で焼結体を得た。Example 5 The silicon carbide powder obtained in Comparative Example 1-1 was charged into a Tammann-type heating furnace, and the set temperature in the heating furnace and the partial pressure of ♀ elemental gas in the atmosphere were set to the values shown in Table 2. After heat treatment, a sintered body was obtained in the same manner as in Example 1.
加熱処理することにより得られた炭化珪素粉末およびそ
の粉末を使用して得た焼結体の特性は第2表に示した。The properties of the silicon carbide powder obtained by heat treatment and the sintered body obtained using the powder are shown in Table 2.
実施例6
実施例2−2とほぼ同様であるが、炭化ホウ素の添加量
を第3表に示す如く変化させて焼結体を得た。Example 6 Sintered bodies were obtained in substantially the same manner as in Example 2-2, except that the amount of boron carbide added was changed as shown in Table 3.
第1表、第2表および第3表に示した結果より、本実施
例の炭化珪素粉末はいずれも焼結性に優れておシ、極め
て少量のホウ素含有添加剤の添加量でもって高密度でし
かも高強度の焼結体を得ることができることがわかる。From the results shown in Tables 1, 2, and 3, the silicon carbide powders of this example all have excellent sinterability and can achieve high density with an extremely small amount of boron-containing additive. However, it is clear that a sintered body with high strength can be obtained.
実施例7
実施例1とほぼ同様であるが、焼結温度と雰囲気中の窒
素ガスあるいはCOガスの分圧を第4表に示す如く変化
させて焼結体を得た。Example 7 Sintered bodies were obtained in substantially the same manner as in Example 1, except that the sintering temperature and the partial pressure of nitrogen gas or CO gas in the atmosphere were varied as shown in Table 4.
得られた焼結体の特性は第4表に示した。The properties of the obtained sintered body are shown in Table 4.
実施例8
実施例1とほぼ同様であるが、実施例5−3で得られた
炭化珪素粉末全使用し、第4表に示した如き焼結条件で
焼結体を得た。Example 8 A sintered body was obtained in substantially the same manner as in Example 1, except that all the silicon carbide powder obtained in Example 5-3 was used and the sintering conditions were as shown in Table 4.
得られた焼結体の特性は第4表に示した。The properties of the obtained sintered body are shown in Table 4.
第4表に示した結果より、焼成雰囲気中に存在するン素
ガスやCOガスは結晶のα型化の抑制に極めて有効であ
ることが認められfc。From the results shown in Table 4, it is recognized that nitric gas and CO gas present in the firing atmosphere are extremely effective in suppressing the formation of the α-type crystal.
以上述べた如く、本発明の極めて少量の高密化助剤の添
加量でもって製造されたβ型結晶エリなる炭化珪素焼結
体は、特に耐熱衝撃性や高温強度に優れており、例えば
ガスタービン部品や熱交換器用の材料として極めて適す
るものであり、ま之極めて均一でしか4.@細な結晶構
造を有することから耐摩耗性材料として極めて優れてお
り、炭化珪素焼結体同志の組合せはもちろんのこと、そ
の他各種金属;フッ素樹脂等の各種合成樹脂;および窒
化物、酸化物等の各種セラミックスなどと組合わせて用
いられるメカニカルシール中軸受用の材料として極めて
好適なものであって、産業上極めて有用である。As mentioned above, the silicon carbide sintered body of β-type crystalline produced with an extremely small amount of the densification aid of the present invention is particularly excellent in thermal shock resistance and high-temperature strength, and has excellent thermal shock resistance and high-temperature strength. It is extremely suitable as a material for parts and heat exchangers, and is extremely uniform. @ Due to its fine crystal structure, it is extremely excellent as a wear-resistant material, and can be used not only in combination with silicon carbide sintered bodies, but also various other metals; various synthetic resins such as fluororesin; and nitrides and oxides. It is extremely suitable as a material for bearings in mechanical seals used in combination with various ceramics such as, and is extremely useful industrially.
Claims (1)
/cm^3の密度を有する炭化珪素焼結体において、 炭化珪素の少なくとも60%がβ型結晶で、ホウ素の含
有量が0.01〜0.25重量%であることを特徴とす
る炭化珪素焼結体。 2 炭化珪素の少なくとも95%がβ型結晶である特許
請求の範囲第1項記載の炭化珪素焼結体。 3 少なくとも3.0g/cm^3の密度を有する特許
請求の範囲第1項記載の炭化珪素焼結体。 4 ホウ素の含有量が0.15重量%未満である特許請
求の範囲第1項記載の炭化珪素焼結体。 5 Na、K、Ca、Mg、Al、Fe、Cr、Cu、
Ti、Niのなかから選ばれるいずれか少なくとも1種
の元素の含有率が0.5重量%以下である特許請求の範
囲第1項記載の炭化珪素焼結体。 6 ホウ素と遊離炭素とを含有し、少なくとも2.9g
/cm^3の密度を有する炭化珪素焼結体の製造方法に
おいて、 炭化珪素の少なくとも60%がβ型結晶よりなり、平均
粒径が0.05〜5μmの範囲内で、かつ粉末の平均粒
径値を中心としてその値の±50%の範囲内の粒径を有
する粉末を50重量%以上含有する炭化珪素粉末100
重量部と、ホウ素含有量に換算して0.01〜0.25
重量部のホウ素含有添加剤と、固定炭素量に換算して0
.3〜5.0重量部の炭素質添加剤とからなる原料組成
物を均質に混合し、成形した生成形体を非酸化性雰囲気
中で1800〜2300℃の温度に加熱して、炭化珪素
の少なくとも60%がβ型結晶よりなる炭化珪素焼結体
となすことを特徴とする炭化珪素焼結体の製造方法。 7 前記炭化珪素粉末は、炭化珪素の少なくとも95%
がβ型結晶である特許請求の範囲第6項記載の製造方法
。 8 前記炭化珪素粉末は、Na、K、Ca、Mg、Al
、Fe、Cr、Cu、Ti、Niのなかから選ばれるい
ずれか少なくとも1種の元素の含有率が0.5重量%以
下である特許請求の範囲第6項記載の製造方法。 9 前記炭化珪素粉末はβ型結晶の(111)における
X線回折ピークの半価幅が0.35度以下で、対称度が
0.7〜1.1の範囲内である特許請求の範囲第6項記
載の製造方法。[Claims] 1 Contains boron and free carbon, at least 2.9 g
A silicon carbide sintered body having a density of /cm^3, wherein at least 60% of the silicon carbide is β-type crystal and the boron content is 0.01 to 0.25% by weight. Sintered body. 2. The silicon carbide sintered body according to claim 1, wherein at least 95% of the silicon carbide is a β-type crystal. 3. The silicon carbide sintered body according to claim 1, having a density of at least 3.0 g/cm^3. 4. The silicon carbide sintered body according to claim 1, wherein the boron content is less than 0.15% by weight. 5 Na, K, Ca, Mg, Al, Fe, Cr, Cu,
The silicon carbide sintered body according to claim 1, wherein the content of at least one element selected from Ti and Ni is 0.5% by weight or less. 6 containing boron and free carbon, at least 2.9 g
In the method for producing a silicon carbide sintered body having a density of /cm^3, at least 60% of the silicon carbide is composed of β-type crystals, the average particle size is within the range of 0.05 to 5 μm, and the average particle size of the powder is within the range of 0.05 to 5 μm. Silicon carbide powder 100 containing 50% by weight or more of powder having a particle size within ±50% of the diameter value
Part by weight and 0.01 to 0.25 in terms of boron content
Part by weight of boron-containing additive and 0 in terms of fixed carbon content
.. A raw material composition consisting of 3 to 5.0 parts by weight of a carbonaceous additive is homogeneously mixed, and the molded product is heated to a temperature of 1800 to 2300°C in a non-oxidizing atmosphere to remove at least the silicon carbide. A method for producing a silicon carbide sintered body, characterized in that the silicon carbide sintered body is made of 60% β-type crystals. 7. The silicon carbide powder contains at least 95% of silicon carbide.
7. The manufacturing method according to claim 6, wherein is a β-type crystal. 8 The silicon carbide powder contains Na, K, Ca, Mg, Al
7. The manufacturing method according to claim 6, wherein the content of at least one element selected from among , Fe, Cr, Cu, Ti, and Ni is 0.5% by weight or less. 9. The silicon carbide powder is characterized in that the half width of the (111) X-ray diffraction peak of the β-type crystal is 0.35 degrees or less, and the degree of symmetry is within the range of 0.7 to 1.1. The manufacturing method described in Section 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60249055A JPS62108770A (en) | 1985-11-08 | 1985-11-08 | Silicon carbide sintered body and manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60249055A JPS62108770A (en) | 1985-11-08 | 1985-11-08 | Silicon carbide sintered body and manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62108770A true JPS62108770A (en) | 1987-05-20 |
Family
ID=17187337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60249055A Pending JPS62108770A (en) | 1985-11-08 | 1985-11-08 | Silicon carbide sintered body and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62108770A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008262713A (en) * | 2007-04-10 | 2008-10-30 | Hitachi High-Technologies Corp | Charged particle beam device |
-
1985
- 1985-11-08 JP JP60249055A patent/JPS62108770A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008262713A (en) * | 2007-04-10 | 2008-10-30 | Hitachi High-Technologies Corp | Charged particle beam device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4179299A (en) | Sintered alpha silicon carbide ceramic body having equiaxed microstructure | |
EP0344372A1 (en) | Hexagonal silicon carbide platelets and preforms and methods for making and using same | |
JPS6228109B2 (en) | ||
EP0159186B1 (en) | Method manufacturing high-strength sintered silicon carbide articles | |
JPH0228539B2 (en) | ||
JPS6152106B2 (en) | ||
JPS62108770A (en) | Silicon carbide sintered body and manufacture | |
JPS63236763A (en) | Boron carbide sintered body and manufacture | |
JPS5891065A (en) | Manufacture of silicon carbide ceramic sintered body | |
JPS6212663A (en) | Method of sintering b4c base fine body | |
JPS6034515B2 (en) | Manufacturing method of silicon carbide ceramic sintered body | |
JPS61168567A (en) | Manufacture of silicon carbide sintered body | |
JPS6212664A (en) | Method of sintering b4c base composite body | |
JP2690774B2 (en) | Porous silicon carbide sintered body and method for producing the same | |
WO1989008086A1 (en) | HIGH-STRENGTH, beta-TYPE SILICON CARBIDE SINTER AND PROCESS FOR ITS PRODUCTION | |
JPS5891028A (en) | Manufacture of silicon carbide powder | |
EP0179670A2 (en) | Production of silicon carbide cobweb whiskers | |
JPH0138075B2 (en) | ||
JPS6126514B2 (en) | ||
JPS61251573A (en) | Manufacture of silicon carbide sintered body | |
JPS5915112B2 (en) | Method for manufacturing high-density silicon carbide sintered body | |
JPS62283871A (en) | Manufacture of silicon carbide sintered body | |
JPS6138143B2 (en) | ||
JPH0453829B2 (en) | ||
JPS605071A (en) | Manufacture of silicon carbide sintered body |