JPS62108603A - Fm detection circuit - Google Patents

Fm detection circuit

Info

Publication number
JPS62108603A
JPS62108603A JP24934485A JP24934485A JPS62108603A JP S62108603 A JPS62108603 A JP S62108603A JP 24934485 A JP24934485 A JP 24934485A JP 24934485 A JP24934485 A JP 24934485A JP S62108603 A JPS62108603 A JP S62108603A
Authority
JP
Japan
Prior art keywords
signal
phase
voltage
circuit
phase comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24934485A
Other languages
Japanese (ja)
Inventor
Masami Miura
三浦 正己
Yoshiaki Tanaka
義明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24934485A priority Critical patent/JPS62108603A/en
Publication of JPS62108603A publication Critical patent/JPS62108603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To apply phase locked type FM detection while using a voltage controlled oscillator by branching an input signal into two, inputting the one to a phase comparator via a transmission circuit whose transmission characteristic is varied, inputting the other directly and using a signal filtering the output of the phase comparator so as to change the characteristic of said transmission circuit. CONSTITUTION:The input is inputted to a phase comparator 103a via the 1st signal transmission circuit 101 from a terminal A and inputted to the phase comparator 103a via the 2nd signal transmission circuit 102. The capacitance of varactor elements D1, D2 is varied by a signal voltage inputted to a resistor R3 in the 2nd signal transmission circuit 102 to vary the frequency transmission characteristic. The output of the phase comparator 103a is inputted to a low- pass filter 104a and the output is fed back negatively to the 2nd signal transmis sion circuit 102 to compress the phase difference of the two inputs.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はFM(周波数変調)信号の検波を行う位相同期
型のFM検波回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a phase-locked FM detection circuit that detects an FM (frequency modulation) signal.

〔概要〕〔overview〕

本発明は、位相比較器とそれに接続された低域ろ波器と
を含む位相同期型のFM検波回路において、 入力端子に接続され上記位相比較器の第一の入力を与え
る第一の信号伝達回路と、入力端子に接続され上記位相
比較器の第二の入力を与える第二の信号伝達回路とを含
み、これら第一、第二の信号伝達回路の少なくとも一つ
の回路を、上記低域ろ波器の出力信号によりその周波数
伝達特性を変化させ、第一の入力と第二の入力の位相が
同期するよう帰還回路を構成することにより、従来、必
要とした電圧制御発振器を不要とし、それに伴うスプリ
アスや温度ドリフト等をなくし、回路動作の安定化を図
ったものである。
The present invention provides a phase-locked FM detection circuit including a phase comparator and a low-pass filter connected to the phase comparator, in which a first signal transmission device connected to an input terminal and providing a first input of the phase comparator is provided. circuit, and a second signal transfer circuit connected to the input terminal and providing a second input of the phase comparator, and at least one of the first and second signal transfer circuits is connected to the low-pass filter. By configuring a feedback circuit so that the frequency transfer characteristics of the wave generator are changed by the output signal of the wave generator and the phases of the first input and the second input are synchronized, the conventionally required voltage controlled oscillator is no longer required. This eliminates the accompanying spurious noise and temperature drift, and stabilizes circuit operation.

〔従来の技術〕[Conventional technology]

従来のFM検波回路は基本構成を第8図に示すように位
相比較器103と低域ろ波器104と電圧発振器106
とからなる位相同期回路によって構成される。なお10
5は増幅器である。この従来例のFM検波回路は、入力
端子Aに印加されるFM変調入力(周波数または位相)
に対して電圧制御発振器106の信号周波数(または位
相)を追従させるように低域ろ波器104の出力の制御
電圧により電圧制御発振器106を制御する位相同期方
式を用い、この低域ろ波器104の制御電圧を取り出す
ことによって、FM人力信号に対してFM検波出力を出
力端子Pより得る方式である。
The basic configuration of a conventional FM detection circuit is as shown in FIG.
It is composed of a phase-locked circuit consisting of. Note 10
5 is an amplifier. This conventional FM detection circuit has an FM modulation input (frequency or phase) applied to input terminal A.
A phase synchronization method is used in which the voltage controlled oscillator 106 is controlled by the control voltage of the output of the low pass filter 104 so that the signal frequency (or phase) of the voltage controlled oscillator 106 follows the signal frequency (or phase) of the low pass filter 106. In this method, an FM detection output is obtained from the output terminal P for the FM human input signal by extracting the control voltage of 104.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

」二連した従来の位相同期型のFM検波回路社は以下の
ような欠点がある。
The conventional dual phase synchronized FM detection circuit has the following drawbacks.

第一に電圧制御発振器を有しているため、多くの場合電
圧制御発振器で発生する高次高調波を含むスプリアスが
他の回路ブロックに飛び込んで悪影響を与える。第二に
電圧制御発振器の発振周波数の温度によるドリフト笠が
存在し最悪の場合ロックはずれ等の誤動作も考えられる
First, since it includes a voltage-controlled oscillator, spurious components including high-order harmonics generated in the voltage-controlled oscillator often jump into other circuit blocks and adversely affect them. Secondly, there is a temperature-related drift in the oscillation frequency of the voltage controlled oscillator, and in the worst case, malfunctions such as loss of lock may occur.

本発明の目的は、電圧制御発振器を不要とした、従って
上記欠点を除去したFM検波回路を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide an FM detection circuit that does not require a voltage controlled oscillator and thus eliminates the above drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、位相比較器とその出力に接続された低域ろ波
器とを含む位相同期型のFM検波回路において、入力端
子に接続され」1記位相比較器の第一の入力を与える第
一の信号伝達回路と、入力端子に接続され上記位相比較
器の第二の入力を与える第二の信号伝達回路と、を含み
、上記第一、第二の信号伝達回路の少なくとも−・つの
回路は、−1二記低域ろ波器の出力信号によりその周波
数伝達特性を変化させる構成であることを特徴とする。
The present invention provides a phase-locked FM detection circuit including a phase comparator and a low-pass filter connected to the output thereof. a second signal transmission circuit connected to an input terminal and providing a second input of the phase comparator, at least one of the first and second signal transmission circuits; is characterized in that the frequency transfer characteristic is changed by the output signal of the -1 second low-pass filter.

〔作用〕[Effect]

以下、本発明の作用原理を、第1図に示す本発明の一実
施例の基本的構成を示す回路図および第2図、第3図、
第4図に示す特性図を参照して説明する。
The principle of operation of the present invention will be explained below with reference to a circuit diagram showing the basic configuration of an embodiment of the present invention shown in FIG. 1, and FIGS. 2 and 3.
This will be explained with reference to the characteristic diagram shown in FIG.

第1図において、本発明のFM検波回路は、入力端子A
より第一の信号伝達回路101を介して第一の入力とし
、さらに第二の信号伝達回路102を介して第二の入力
とする位相比較器103aと、低域ろ波器104aと、
低域ろ波器104aの出力を増幅する増幅器105aと
を含んでいる。第1図で、第二の信号伝達回路102は
、抵抗R1、R3とインダクタL1とコンデンサC1と
可変容量素子DI、D2と結合用のコンデンサC1とを
含む。また、低域ろ波器104aは抵抗R2とコンデン
サC2とを含む。
In FIG. 1, the FM detection circuit of the present invention has an input terminal A
A phase comparator 103a that has a first input via the first signal transfer circuit 101 and a second input via the second signal transfer circuit 102; and a low-pass filter 104a.
and an amplifier 105a that amplifies the output of the low-pass filter 104a. In FIG. 1, the second signal transmission circuit 102 includes resistors R1 and R3, an inductor L1, a capacitor C1, variable capacitance elements DI and D2, and a coupling capacitor C1. Furthermore, the low-pass filter 104a includes a resistor R2 and a capacitor C2.

また、B、Cはそれぞれ位相比較器103aの第一、第
二の入力端子である。Slは、第二の信号伝達回路10
2の周波数伝達特性を制御する制御端子である。端子P
は制御端子S1の出力を増幅器105aで増幅して得ら
れる検波出力の出力端子である。
Moreover, B and C are the first and second input terminals of the phase comparator 103a, respectively. Sl is the second signal transmission circuit 10
This is a control terminal for controlling the frequency transfer characteristics of No. 2. Terminal P
is an output terminal of a detection output obtained by amplifying the output of the control terminal S1 with the amplifier 105a.

次に第1図を用いて本発明の作用原理を説明する。第1
図の可変容量素子D1、D2は互いに同一形状のもであ
り、電極間に与えられる電圧■。
Next, the principle of operation of the present invention will be explained using FIG. 1st
The variable capacitance elements D1 and D2 in the figure have the same shape, and the voltage applied between the electrodes is .

によって容量値が第4図に示すように逆比例近似で変化
する特性がある。いま、電圧V a +の時、可変容量
素子D1、D2の直列容量値をCXとすると可変容量素
子D1、D2とインダクタL Lで構成される並列共振
回路のインピーダンスは次の(11式で与えられる。
As shown in FIG. 4, there is a characteristic that the capacitance value changes by inverse proportional approximation. Now, when the voltage is V a +, if the series capacitance value of variable capacitance elements D1 and D2 is CX, the impedance of the parallel resonant circuit composed of variable capacitance elements D1 and D2 and inductor LL is as follows (given by equation 11). It will be done.

(1)式でLlはインダクタL Iのインダクタンスで
ありωは角周波数である。−上記(1)式を図示したの
が第2図であり、周波数r0が並列共振周波数であり、
第一の入力端子Bに対し第二の入力端子Cの電圧位相は
周波数がf ”cより小さいとき進相、fcより大きい
とき遅相となる。周波数fcは次の(2)式で与えられ
る。
In equation (1), Ll is the inductance of the inductor LI, and ω is the angular frequency. - Figure 2 illustrates the above formula (1), where the frequency r0 is the parallel resonance frequency,
The voltage phase of the second input terminal C with respect to the first input terminal B is a leading phase when the frequency is smaller than f''c, and a lagging phase when it is larger than fc.The frequency fc is given by the following equation (2). .

さて、ここで端子S1の電圧Vdを上記の状態のまます
なわち第二の信号伝達回路102が(1)式で示される
インピーダンスで決定される伝達関数で与えられるもの
と仮定し、しかも入力端子八〇人内周波数fが次の(3
)式で与えられるものとする。
Now, let us assume that the voltage Vd of the terminal S1 remains in the above state, that is, that the second signal transfer circuit 102 is given by the transfer function determined by the impedance shown in equation (1), and that the input terminal 8 〇The intraperson frequency f is as follows (3
) shall be given by the formula.

f=fc+Δf         (Hz)−(31こ
の場合第2図より第二の入力端子Cの電圧位相θは次の
(4)式となる。
f=fc+Δf (Hz)−(31 In this case, from FIG. 2, the voltage phase θ of the second input terminal C is expressed by the following equation (4).

θ−−Δθ        (度)−(4)ただしく4
)式では入力端子Aと第一の入力端子Bの電圧位相は同
一でしかもこれを電圧位相基準として取り扱う。
θ−−Δθ (degrees)−(4) just 4
), the voltage phases of the input terminal A and the first input terminal B are the same and are treated as the voltage phase reference.

一方、位相比較器103aは、第一、第二の入力端子B
、C間の電圧位相差を検知してさらに低域ろ波器104
aを通して制御端子S1に出力する機能を有し、制御端
子S1の電圧V、は次の(5)式で書き直される。
On the other hand, the phase comparator 103a has first and second input terminals B.
, C is detected and further low-pass filter 104 is applied.
The voltage V of the control terminal S1 is rewritten by the following equation (5).

V 6= D a + + K a  ・Δθ    
  (V )−(5)(5)式でKdは位相比較器10
3aの変換効率を意味する。制御端子S1の電圧が(5
)式のように変換することにより、第4図より容量値C
8は次の(6)式で示すようにΔCだけ減少する。
V 6 = D a + + K a ・Δθ
(V)-(5) In equation (5), Kd is the phase comparator 10
3a means the conversion efficiency. The voltage of control terminal S1 is (5
) By converting as shown in the formula, the capacitance value C can be obtained from Fig. 4.
8 is decreased by ΔC as shown in the following equation (6).

CX=CX−Δθ        (F )−(6)従
って、(2)式で示される並列共振周波数fcは次の(
7)式で与えられるfc′に変化し第3図に示すように
なる。
CX=CX-Δθ (F)-(6) Therefore, the parallel resonance frequency fc shown by equation (2) is as follows (
7) changes to fc' given by the equation, as shown in FIG.

このようにして、入力端子への人力周波数がΔfだけ太
きく  (f、+Δf)となると、位相比較器103a
と低域ろ波器】04aとによって第二の信号伝達回路1
02の周波数伝達特性が制御され、第一の入力端子Bと
第二の入力端子Cの電圧位相差が圧縮されるように負帰
還が構成される。このことは入力端子Aの入力周波数が
Δfだげ小さくなった場合も同様なことがいえる。
In this way, when the human input frequency to the input terminal becomes thicker by Δf (f, +Δf), the phase comparator 103a
and a low-pass filter] 04a and a second signal transmission circuit 1.
Negative feedback is configured such that the frequency transfer characteristics of 02 are controlled and the voltage phase difference between the first input terminal B and the second input terminal C is compressed. The same thing can be said when the input frequency of input terminal A becomes smaller by Δf.

以上のことをさらに論理的に解析すると以下のようにな
る。いま、低域ろ波器104aの伝達関数をf (s)
 とすると、(5)式は次の(8)式に書き換えられる
A further logical analysis of the above results in the following. Now, the transfer function of the low-pass filter 104a is f (s)
Then, equation (5) can be rewritten as equation (8) below.

Va =Ka  ・F(s)  ・(Q1−00)  
 −(8まただしく8)式では(5)式に含まれるオフ
セット電圧vd1を零と考え、さらにΔθは次の(9)
式で与えられるとする。
Va = Ka ・F(s) ・(Q1-00)
- In the equation (8 and especially 8), the offset voltage vd1 included in the equation (5) is considered to be zero, and Δθ is calculated as shown in the following (9).
Suppose that it is given by Eq.

八〇=θ1−θ。              −(9
1(9)式でθ、およびθ。はそれぞれ第一の入力端子
B、第二の入力端子Cの電圧位相を意味する。
80=θ1−θ. -(9
1(9), θ, and θ. mean the voltage phase of the first input terminal B and the second input terminal C, respectively.

また端子Pの制御電圧Vdに対する(9)式のθGは次
の00)式で表される。
Further, θG in equation (9) with respect to the control voltage Vd of terminal P is expressed by the following equation (00).

θ。−KX 、Va          −00)(I
O)式でに、は第1図の第二の信号伝達回路102の位
相対電圧の変換効率を意味する。(9)式、001式よ
り、第一の入力端子Bの電圧位相に対する第二の入力端
子Cの電圧位相の比、すなわち本発明の位相同期型のF
M検波回路における伝達関数H(s)は次のQ9式とな
る。
θ. -KX, Va -00) (I
In the formula O), means the phase-to-voltage conversion efficiency of the second signal transmission circuit 102 in FIG. From equations (9) and 001, the ratio of the voltage phase of the second input terminal C to the voltage phase of the first input terminal B, that is, the ratio of the voltage phase of the second input terminal C, that is, the F of the phase synchronization type of the present invention
The transfer function H(s) in the M detection circuit is expressed by the following Q9 formula.

一〇′D 011式より明らかに、KX、に6、F(S)の値を大
きくするとθ。とQ1はほとんど等しくなり、θ。とQ
1との位相誤差を小さくできる。
10'D From formula 011, it is clear that when the value of KX, 6, and F(S) is increased, θ. and Q1 are almost equal, and θ. and Q
1 can be made smaller.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の基本的構成を示す回路図で
ある。本実施例の構成および動作の大要については、上
記〔作用〕の項で既に説明したので、ここでは第1図の
主要各部の具体的回路例とその動作について説明する。
FIG. 1 is a circuit diagram showing the basic configuration of an embodiment of the present invention. Since the general structure and operation of this embodiment have already been explained in the above [Operation] section, specific circuit examples of the main parts of FIG. 1 and their operations will be explained here.

第5図は第1図の位相比較器103aの一例を示す回路
図である。第5図で、端子T1、T2およびT3、T4
はそれぞれ位相比較器103aの第一の入力端子または
第二の入力端子に該当する。また端子T5は位相比較器
1038の出力端子であり、端子T6は電源端子である
。またQ1〜Q12はトランジスタで、Q7〜QlOは
P N l)型であり、他はNPN型である。101は
定電流源を示す。第5図において端子TI、T2に入力
される第一の人力と、端子T3、T4に人力される第二
の入力は、トランジスタQ1、Q2の差動増幅器と、ト
ランジスタQ3〜Q6で構成される二重平衡差動増幅器
とによって、掛算回路が構成されることよって第一、第
二の人力信号の位相差が端子T5より出力される。
FIG. 5 is a circuit diagram showing an example of the phase comparator 103a of FIG. 1. In FIG. 5, terminals T1, T2 and T3, T4
correspond to the first input terminal or the second input terminal of the phase comparator 103a, respectively. Further, the terminal T5 is an output terminal of the phase comparator 1038, and the terminal T6 is a power supply terminal. Further, Q1 to Q12 are transistors, Q7 to QlO are of the PN type, and the others are of the NPN type. 101 indicates a constant current source. In FIG. 5, the first input input to terminals TI and T2 and the second input input to terminals T3 and T4 are composed of a differential amplifier of transistors Q1 and Q2, and transistors Q3 to Q6. A multiplication circuit is formed by the double-balanced differential amplifier, so that the phase difference between the first and second human input signals is outputted from the terminal T5.

第6図は、第1図で示した低域ろ波器104aの一例を
示す回路図である。第6図において端子T5は低域ろ波
器104aの入力端子であり、Slはその出力となる制
御端子である。抵抗R11、R12とコンデンサC1l
、CI2とによってラグリードフィルタが構成される。
FIG. 6 is a circuit diagram showing an example of the low-pass filter 104a shown in FIG. 1. In FIG. 6, terminal T5 is the input terminal of the low-pass filter 104a, and Sl is the control terminal serving as its output. Resistors R11, R12 and capacitor C1l
, CI2 constitute a lag lead filter.

第7図は第1図で示した第二の信号伝達回路102の半
導体集積回路で構成した場合の一例を示す回路図である
。第7図において、・NPN型のトランジスタQ31〜
Q34の二重平衡差動増幅器と、NPN型のトランジス
タQ41、Q42の差動増幅器と、抵抗R31〜R37
とコンデンサC31、C32とセラミック共振子F、3
1と、定電流源131、+32により構成される。VC
Cは電源端子であり、■は基準電圧印加端子である。端
子S4と接地間に接続されたセラミック共振子F31は
、等価的にLC並列共振回路を形成し、従って抵抗R3
1とセラミック共振子F31とによる端子S4の電圧位
相の周波数特性は、上記第2図と同様となる。ここで抵
抗R32と抵抗R35との抵抗値が等しくさらにコンデ
ンサC31とコンデンサC32との容量値も等しいとし
、これらの値が次の02式で与えられるものと仮定する
FIG. 7 is a circuit diagram showing an example of the second signal transmission circuit 102 shown in FIG. 1 constructed from a semiconductor integrated circuit. In FIG. 7, ・NPN type transistor Q31~
A double balanced differential amplifier of Q34, a differential amplifier of NPN transistors Q41 and Q42, and resistors R31 to R37.
and capacitors C31, C32 and ceramic resonator F,3
1, and constant current sources 131 and +32. VC
C is a power supply terminal, and ■ is a reference voltage application terminal. Ceramic resonator F31 connected between terminal S4 and ground equivalently forms an LC parallel resonant circuit, and therefore resistor R3
The frequency characteristics of the voltage phase of the terminal S4 due to the ceramic resonator F31 and the ceramic resonator F31 are the same as those shown in FIG. 2 above. Here, it is assumed that the resistance values of the resistor R32 and the resistor R35 are equal, and that the capacitance values of the capacitor C31 and the capacitor C32 are also equal, and that these values are given by the following equation 02.

従って、入力端子Aに基i1#、入力信号が印加されし
かも周波数がfcの場合、トランジスタQ31〜Q34
の二重平衡差動増幅器の電圧利得が互いに等しい状態で
、これに伝達される信号電圧は、セラミック共振信号F
31の端子S4の信号電圧に対し、位相が等しくしかも
振幅が半分となりしかも抵抗R35の両端の電圧ベクト
ルとコンデンサC32の両端の電圧ベクトルのベクトル
和で与えられ、それぞれのベクトルの絶対値は02式で
示されるように一致している。ここで入力端子Aに周波
数がfcよりΔfだけ高い基準入力電圧号に変わった場
合、端子$4における電圧位相について、第2図から明
らかなように入力端子への電圧位相に対しΔθだけの位
相差が生じる。この信月電圧をトランジスタQ31〜Q
34の二重平衡差動増幅器の電圧利得が互いに等しい状
態で伝達すると、第二の信号伝達回路102の出力とな
る端子T3、T4には入力端子Aに印加される基準入力
電圧に対してΔθだけの位相差を生じたものが出力され
る。ここで端子S2、S3を制御電圧によって制御する
ことにより、トランジスタQ31〜Q34の二重平衡差
動増幅器の電圧利得を制御し、第二の信号伝達回路10
2の位相特性を制御する。      。
Therefore, when the input signal i1# is applied to the input terminal A and the frequency is fc, the transistors Q31 to Q34
With the voltage gains of the double-balanced differential amplifiers being equal to each other, the signal voltage transmitted to the double-balanced differential amplifier is equal to the ceramic resonant signal F
The signal voltage at terminal S4 of 31 has the same phase and half the amplitude, and is given by the vector sum of the voltage vector across resistor R35 and the voltage vector across capacitor C32, and the absolute value of each vector is given by formula 02. They match as shown in . Here, if the frequency at input terminal A changes to a reference input voltage signal that is higher than fc by Δf, the voltage phase at terminal $4 will be at a level of Δθ with respect to the voltage phase to the input terminal, as is clear from Figure 2. A phase difference occurs. This Shingetsu voltage is applied to transistors Q31~Q.
When the voltage gains of the 34 double-balanced differential amplifiers are transmitted in a state where they are equal to each other, the terminals T3 and T4, which are the outputs of the second signal transmission circuit 102, have a difference of Δθ with respect to the reference input voltage applied to the input terminal A. The signal with a phase difference of . By controlling terminals S2 and S3 with control voltages, the voltage gain of the double-balanced differential amplifier of transistors Q31 to Q34 is controlled, and the second signal transmission circuit 10
Controls the phase characteristics of 2. .

なお、以上の実施・例においては、第一の信号伝達回路
は単に入力端子を位相比較回路の第一の入力端子との接
続線であり、第二の信号伝達回路を帰還回路としたが、
これはこの反対の構成でもよい。また第一の信号伝達回
路に第二の信号伝達回路に与えられる低域ろ波器の出力
信号とは逆相の帰還信号を与え両回路がそれぞれ帰還回
路を構成するようにしてもよい。
In the above embodiments/examples, the first signal transmission circuit simply has an input terminal connected to the first input terminal of the phase comparator circuit, and the second signal transmission circuit is a feedback circuit.
This may also be the opposite configuration. Alternatively, a feedback signal having an opposite phase to the output signal of the low-pass filter applied to the second signal transfer circuit may be provided to the first signal transfer circuit so that both circuits constitute respective feedback circuits.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、従来の電圧制御発振器
を用いずに、単に第一、第二の信号伝達回路を設けこれ
らの一方または゛両方の伝達関数を制御することによっ
てWI−1i′LにI?M検波が達成できる。従って本
発明は、電圧制御発振器を必要としないので従来電圧制
御発振器があるために発生した諸欠点を除去し、安定に
動作するFM検波器が得られる効果がある。
As explained above, the present invention does not use a conventional voltage-controlled oscillator, but simply provides the first and second signal transfer circuits and controls the transfer function of one or both of them. I in L? M detection can be achieved. Therefore, since the present invention does not require a voltage controlled oscillator, it has the effect of eliminating various drawbacks caused by the conventional voltage controlled oscillator and providing an FM detector that operates stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の基本的構成を示す回路図。 第2図、第3図は第1図の第二の信号伝達回路の電圧位
相の周波数特性図。 第4図は第1図の可変容量素子の特性図。 第5図は第1図の位相比較器の一例を示す回路図。 第6図は第1図の低域ろ波器の一例を示す回路図。 第7図は第1図の第二の信号伝達回路の一例を示す信号
回路図。 第8図は一従来例を示すブロック構成図。 101・・・第一の信号伝達回路、102・・・第二の
信号伝達回路、103.103a・・・位相比較器、1
04.104a・・・低域ろ波器、105.1.05a
・・・増幅器、A・・・入力端子、B・・・第一の入力
端子、C・・・第二の入力端子、CI、C2、C11、
CI2、C31、C32・・・コンデンサ、DI、D2
・・・可変容量素子、F31・・・セラミック共振子、
101.131、I32・・・定電流源、■、1・・・
インダクタ、P・・・出力端子、R1−R3、R11、
R12、R31〜R37・・・抵抗、Sl・・・制御端
子、T1〜T6、S2、S4・・・端子、■・・・基準
電圧印加端子、VCC・・・電源端子、Q1〜Q12、
Q31〜Q34、Q41、Q42・・・トランジスタ。
FIG. 1 is a circuit diagram showing the basic configuration of an embodiment of the present invention. 2 and 3 are voltage phase frequency characteristic diagrams of the second signal transmission circuit of FIG. 1. FIG. 4 is a characteristic diagram of the variable capacitance element shown in FIG. FIG. 5 is a circuit diagram showing an example of the phase comparator shown in FIG. 1. FIG. 6 is a circuit diagram showing an example of the low-pass filter of FIG. 1. FIG. 7 is a signal circuit diagram showing an example of the second signal transmission circuit of FIG. 1. FIG. 8 is a block diagram showing a conventional example. 101...First signal transfer circuit, 102...Second signal transfer circuit, 103.103a...Phase comparator, 1
04.104a...Low pass filter, 105.1.05a
...Amplifier, A...Input terminal, B...First input terminal, C...Second input terminal, CI, C2, C11,
CI2, C31, C32...Capacitor, DI, D2
...variable capacitance element, F31...ceramic resonator,
101.131, I32... Constant current source, ■, 1...
Inductor, P...output terminal, R1-R3, R11,
R12, R31-R37...Resistor, Sl...Control terminal, T1-T6, S2, S4...Terminal, ■...Reference voltage application terminal, VCC...Power supply terminal, Q1-Q12,
Q31 to Q34, Q41, Q42...transistors.

Claims (1)

【特許請求の範囲】[Claims] (1)位相比較器とその出力に接続された低域ろ波器と
を含む位相同期型のFM検波回路において、入力端子に
接続され上記位相比較器の第一の入力を与える第一の信
号伝達回路と、 入力端子に接続され上記位相比較器の第二の入力を与え
る第二の信号伝達回路と、 を含み、 上記第一、第二の信号伝達回路の少なくとも一つの回路
は、上記低域ろ波器の出力信号によりその周波数伝達特
性を変化させる構成であることを特徴とするFM検波回
路。
(1) In a phase-locked FM detection circuit that includes a phase comparator and a low-pass filter connected to its output, a first signal that is connected to the input terminal and provides the first input of the phase comparator. a transmission circuit; and a second signal transmission circuit connected to the input terminal and providing a second input of the phase comparator, and at least one of the first and second signal transmission circuits is connected to the low An FM detection circuit characterized in that the frequency transfer characteristic thereof is changed by the output signal of a band pass filter.
JP24934485A 1985-11-06 1985-11-06 Fm detection circuit Pending JPS62108603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24934485A JPS62108603A (en) 1985-11-06 1985-11-06 Fm detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24934485A JPS62108603A (en) 1985-11-06 1985-11-06 Fm detection circuit

Publications (1)

Publication Number Publication Date
JPS62108603A true JPS62108603A (en) 1987-05-19

Family

ID=17191625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24934485A Pending JPS62108603A (en) 1985-11-06 1985-11-06 Fm detection circuit

Country Status (1)

Country Link
JP (1) JPS62108603A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419641A (en) * 1977-07-15 1979-02-14 Victor Co Of Japan Ltd Fm demodulation circuit by phase tracking loop system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419641A (en) * 1977-07-15 1979-02-14 Victor Co Of Japan Ltd Fm demodulation circuit by phase tracking loop system

Similar Documents

Publication Publication Date Title
US6404277B1 (en) Gm-C tuning circuit with filter configuration
EP0393717A2 (en) Active filter circuit
US4227158A (en) Multifrequency control from a single crystal
JPS62108603A (en) Fm detection circuit
GB2288502A (en) Voltage controlled oscillator
US3629716A (en) Method and apparatus of infinite q detection
JPS63158903A (en) Modulator
US6727736B1 (en) Voltage control oscillator noise reduction technique and method thereof
JP2930305B2 (en) Phase shift type oscillation circuit
US4417215A (en) Tuned analog network
US3099798A (en) Stabilized phase-sensitive servo loop demodulators
JPH0391304A (en) Fm detector with reduced distortion
US4302732A (en) Harmonic phase locked loop with undesired DC component suppression
JP3985191B2 (en) Phase locked loop circuit
Qiu Circuit design of an integrable simulated inductor and its applications
JPS628607A (en) Phase locked loop
JP2578769B2 (en) FM demodulation circuit
JPS59158108A (en) Variable phase difference oscillator
JPS643084B2 (en)
JP3081418B2 (en) Automatic filter adjustment circuit
Sowmya et al. CMOS interfacing and signal conditioning circuit for MEMS gyroscope
US4620314A (en) Method of generating an approximately sinusoidal signal and circuit arrangement for implementing this method, particularly in a stereo demodulator
JPH0380607A (en) Satellite broadcast receiver
SU1095347A1 (en) Balanced modulator
JPS6115606B2 (en)