JPS62108598A - Porous heat emission and reception element - Google Patents

Porous heat emission and reception element

Info

Publication number
JPS62108598A
JPS62108598A JP60247899A JP24789985A JPS62108598A JP S62108598 A JPS62108598 A JP S62108598A JP 60247899 A JP60247899 A JP 60247899A JP 24789985 A JP24789985 A JP 24789985A JP S62108598 A JPS62108598 A JP S62108598A
Authority
JP
Japan
Prior art keywords
heat
heat sink
porous
air
sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60247899A
Other languages
Japanese (ja)
Inventor
稲畑 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INAHATA KENKYUSHO KK
Original Assignee
INAHATA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INAHATA KENKYUSHO KK filed Critical INAHATA KENKYUSHO KK
Priority to JP60247899A priority Critical patent/JPS62108598A/en
Publication of JPS62108598A publication Critical patent/JPS62108598A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種機器に装備される多孔質放受熱体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a porous heat radiation/reception body installed in various types of equipment.

従来の技術 電気電子機器、音響機器及び一般機械類において、冷却
を要する構成部品にはフィン状、コイル状等の放熱器を
、また、熱源には受熱板をそれぞれ熱的授受可能に配し
て放熱及び受熱を行うようにしている。
Conventional technology In electrical and electronic equipment, audio equipment, and general machinery, radiators such as fin-shaped or coil-shaped radiators are arranged for components that require cooling, and heat receiving plates are arranged for heat sources so that they can transfer and receive heat. It is designed to radiate and receive heat.

しかしながら、これら従来の放受熱部品は熱伝達効率が
充分とはいえず、所要量の放熱及び受熱を行うためには
比較的大型にならざるを得す、この種の放受熱部品が搭
載されている各種機器の小型軽量化を阻害し、また、省
力化を困難にしている。
However, these conventional heat dissipation and reception components do not have sufficient heat transfer efficiency, and must be relatively large in order to dissipate and receive the required amount of heat. This hinders the miniaturization and weight reduction of various types of equipment, and also makes it difficult to save labor.

発明が解決しようとする問題点 本発明は、熱伝達効率が高く小型軽量な放置熱体を提供
することを目的とする。
Problems to be Solved by the Invention It is an object of the present invention to provide a small and lightweight left-standing heating element with high heat transfer efficiency.

問題点を解決するための手段 本発明は、気孔が多数形成された多孔質体よりなること
を特徴とする構成よりなる。
Means for Solving the Problems The present invention is characterized in that it is made of a porous body in which a large number of pores are formed.

作  用 多孔質放置熱体を熱源に対し熱的授受可能に配すると、
熱源との間で熱交換を行う。この際、放置熱体は多数の
気孔が形成され表面積が大きいので熱交換が促進される
。このため小型軽量の多孔質放置熱体によっても所要の
放受熱を行える。
Function: When a porous heating element is arranged so as to be able to transfer heat to and receive heat from a heat source,
Performs heat exchange with the heat source. At this time, heat exchange is promoted in the left heating body because it has a large number of pores and a large surface area. Therefore, the required heat radiation and reception can be achieved even with a small and lightweight porous heating element.

実施例 以下、図面を参照して本発明の詳細な説明する。Example Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、ドツト・マトリックス・プリンタの印字ヘッ
ドに装着される本発明の一実施例による多孔質放熱板を
示し、多孔質放置熱体としての放熱板1は平面視略四角
形状の平板で、発熱源としての印字ヘッドの印字ワイヤ
駆動用ソレノイドに一面が近接し、他面が印字ヘッド外
方に露出した状態で取付孔2を挿通するビスによりフレ
ームに固着されるようになっている。この放熱板1は、
アルミニウム、アルミニウム合金、銅などの高熱伝導性
金属またはジルコニア(Zi 02 ) 、窒化アルミ
ニウム(AJIN)等のセラミックを素材とし、その表
面及び内部全体にわたって互いに連続して連通ずる多数
の気孔が形成された多孔質体よりなる。そして、放熱板
1の放熱特性向上の観点から、気孔は好ましくは直径5
0〜1000ミクロンの大きさに形成されている。勿論
、この気孔の好適寸法範囲は、放熱板1の使用環境例え
ば可動状態で用いるか或いは強制空冷されるか否かに応
じて変動するが、一般には気孔直径が50ミクロン未満
の場合は放熱板1の表面の気孔内での空気循環性及び内
部の気孔を介する通風性が悪化し、また、1000ミク
ロンを越えると気孔形成による表面積増大効果が薄れ、
いずれの場合にも放熱板1と熱源との間の熱交換作用が
低下し、放熱板1の放熱性が悪化する。また、気孔直径
が大きくなるほど放熱板1の機械的強度が低下するので
、強度面からも気孔直径に上限があり、1000ミクロ
ン以下が好ましい。
FIG. 1 shows a porous heat sink according to an embodiment of the present invention which is attached to a print head of a dot matrix printer.The heat sink 1 as a porous left heating body is a flat plate having a substantially rectangular shape in plan view. , one side is close to the solenoid for driving the print wire of the print head as a heat generation source, and the other side is fixed to the frame with a screw inserted through the mounting hole 2 with the other side exposed to the outside of the print head. This heat sink 1 is
Made of highly thermally conductive metals such as aluminum, aluminum alloys, and copper, or ceramics such as zirconia (Zi 02 ) and aluminum nitride (AJIN), many pores that communicate with each other are formed throughout the surface and interior of the material. Made of porous material. From the viewpoint of improving the heat dissipation characteristics of the heat dissipation plate 1, the pores preferably have a diameter of 5
It is formed to have a size of 0 to 1000 microns. Of course, the preferred size range of the pores varies depending on the usage environment of the heat sink 1, for example, whether it is used in a moving state or whether it is forced air cooled, but in general, if the pore diameter is less than 50 microns, the heat sink Air circulation within the pores on the surface of 1 and ventilation through the internal pores deteriorate, and if the diameter exceeds 1000 microns, the effect of increasing the surface area due to pore formation diminishes.
In either case, the heat exchange effect between the heat sink 1 and the heat source is reduced, and the heat dissipation performance of the heat sink 1 is deteriorated. Further, as the pore diameter increases, the mechanical strength of the heat sink 1 decreases, so there is an upper limit to the pore diameter from the viewpoint of strength, and the pore diameter is preferably 1000 microns or less.

多孔質の放熱板1は公知の方法で製造され、例えば、上
記気孔に対応する粒径を有しかつ粒度が均一な水溶性塩
類を成形後、焼結して得た該塩類の多孔質結晶物中にこ
れより低融点のアルミニウム溶湯を注入して固化し、該
塩類を水洗除去し、多孔質アルミニウムの放熱板1を得
る。あるいは、粒度の揃った金属粉末と塩類粉末とを混
合、焼結侵、塩類を除去して多孔質焼結体の放熱板1を
得る。
The porous heat sink 1 is manufactured by a known method, for example, a porous crystal of a water-soluble salt having a particle size corresponding to the pores and having a uniform particle size is formed and then sintered. Molten aluminum having a lower melting point is poured into the material and solidified, and the salts are removed by washing with water to obtain a porous aluminum heat sink 1. Alternatively, a porous sintered heat sink 1 is obtained by mixing metal powder and salt powder with uniform particle size, sintering, and removing the salts.

上述の構成の放熱板1を装備したプリンタ用印字ヘッド
における放熱作用につき説明する。印字ヘッドは従来知
られているように所要の印字ワイヤをソレノイドで駆動
して印字を行い、この印字動作時ソレノイドが発熱し、
発熱源を構成する。
The heat dissipation effect in a print head for a printer equipped with the heat dissipation plate 1 having the above-described configuration will be explained. As is conventionally known, the print head performs printing by driving the required print wire with a solenoid, and during this printing operation, the solenoid generates heat.
Constitutes a heat source.

そして、このソレノイドに近接して配された放熱板1の
一側表面とソレノイドとの間で空気を介して熱交換が行
われる。このとき放熱板10表面に多数形成した各気孔
内を空気が良好に循環するので熱交換作用が促進され、
ソレノイドから放熱板1へ伝熱し、ソレノイドを冷却す
る。放熱板1の一側表面に伝わった熱の一部は放熱板1
両側間の熱勾配により放熱板1の構成材自体を介し、残
部は放熱板1内部の連続した気孔中を流通する空気を媒
介として放熱板1の他側表面まで熱伝達される。そして
さらに、他側表面の熱は、該表面と印字ヘッド外方雰囲
気との間で上述と同様の良好な熱交換により速やかに放
散される。そして、プリンタ運転時、印字ヘッドは往復
運動し、特に印字開始位置への復帰時には移動速度が大
きいので、放熱板1の外表面での熱交換が促進されて放
熱板1内の熱勾配が大ぎくなり、また、放熱板1内部の
気孔を介する空気流通による熱伝達も効果的になされる
Then, heat exchange is performed between the solenoid and one side surface of the heat sink 1 disposed close to the solenoid through the air. At this time, air circulates well through the pores formed in large numbers on the surface of the heat sink 10, promoting heat exchange.
Heat is transferred from the solenoid to the heat sink 1 to cool the solenoid. A portion of the heat transmitted to one side surface of the heat sink 1 is transferred to the heat sink 1.
Due to the thermal gradient between both sides, heat is transferred to the other side surface of the heat sink 1 through the constituent materials of the heat sink 1 itself, and the remaining portion through the air flowing through continuous pores inside the heat sink 1. Furthermore, the heat on the other side surface is quickly dissipated due to the same good heat exchange as described above between the other side surface and the atmosphere outside the print head. When the printer is operating, the print head moves back and forth, and the movement speed is particularly high when returning to the printing start position, so heat exchange on the outer surface of the heat sink 1 is promoted and the thermal gradient inside the heat sink 1 is large. In addition, heat transfer by air circulation through the pores inside the heat sink 1 is also effectively achieved.

なお、放熱板1に向けて図示しない冷却ファンから送風
し強制空冷すれば、放熱性が向上する。
Note that if forced air cooling is performed by blowing air toward the heat sink 1 from a cooling fan (not shown), the heat dissipation performance will be improved.

上述の構成及び作用の放熱板1の放熱効果を比較実験に
より以下のように確認した。すなわち、印字ヘッドのソ
レノイドから10ワツトの熱量を連続して発生させてソ
レノイド中央部を100℃まで昇温させ、各種放熱器を
介して30℃の外部雰囲気に熱放散させた。上記実験条
件下において所要の熱放散を行うためには従来のアルミ
ニウム製フィンでは、フィン外形寸法50 mmX 6
4 mmx4mm厚のときの所要フィン枚数は10枚、
40mmx 45 mmx 4 mm厚のとき15枚、
及び36mmx50mn+x4nv厚のとき15枚であ
った。一方、本発明に従い放熱板1を気孔径500μm
、気孔率60%の純アルミニウム製多孔質板で構成した
場合、40mmx 40mmx 5mm厚のものを1枚
すれば足りた。
The heat dissipation effect of the heat dissipation plate 1 having the above-described configuration and operation was confirmed as follows through a comparative experiment. That is, 10 watts of heat was continuously generated from the solenoid of the print head to raise the temperature of the central portion of the solenoid to 100° C., and the heat was dissipated to the external atmosphere at 30° C. via various heat radiators. In order to achieve the required heat dissipation under the above experimental conditions, conventional aluminum fins require a fin external dimension of 50 mm x 6
The number of fins required for 4 mm x 4 mm thickness is 10.
15 pieces when 40mm x 45mm x 4mm thick,
And when the thickness was 36 mm x 50 mn + x 4 nv, the number of sheets was 15. On the other hand, according to the present invention, the heat sink 1 has a pore diameter of 500 μm.
In the case of a porous plate made of pure aluminum with a porosity of 60%, one piece measuring 40 mm x 40 mm x 5 mm thick was sufficient.

第2図及び第3図は本発明の第2の実施例による印字ヘ
ッド用放熱板11を示し、該放熱板11は通気不良な環
境下での使用に適合するようにされている。すなわち、
放熱板11の一側例えば印字ヘッド外面側にはその全幅
にわたって互いに平行に延びる複数のV字状断面の溝1
3が形成され、放熱板11の表面積の増大及び通気性の
改良が図られている。なお、溝13を放熱板11の両面
に形成してもよい。また、図中12は取付孔である。
2 and 3 show a heat sink 11 for a print head according to a second embodiment of the present invention, which heat sink 11 is adapted for use in a poorly ventilated environment. That is,
On one side of the heat dissipation plate 11, for example, on the outer surface of the print head, there are a plurality of grooves 1 having a V-shaped cross section extending parallel to each other over the entire width thereof.
3 is formed to increase the surface area of the heat sink 11 and improve air permeability. Note that the grooves 13 may be formed on both sides of the heat sink 11. Moreover, 12 in the figure is a mounting hole.

上記第2の実施例の作動は第1の実施例と略同様である
ので説明を省略する(以下、同様)。
The operation of the second embodiment is substantially the same as that of the first embodiment, so a description thereof will be omitted (the same applies hereinafter).

第4図は上記第2の実施例の変形例に係わる放熱板21
を示し、該放熱板21の溝23は印字へラドすなわち放
熱板21の移動方向Aに対し傾斜して延在し、放熱板2
1の移動時のV溝傾斜面の空気流に対する有効接触面積
を増大させ、放熱板21と外気との間の熱交換をざらに
促進させ、また、放熱板21の通気性を改良している。
FIG. 4 shows a heat sink 21 according to a modification of the second embodiment.
, the groove 23 of the heat sink 21 extends obliquely to the printing direction, that is, with respect to the moving direction A of the heat sink 21, and the groove 23 of the heat sink 21
1 increases the effective contact area of the V-groove inclined surface with respect to the air flow, roughly promotes heat exchange between the heat sink 21 and the outside air, and improves the air permeability of the heat sink 21. .

22は取付孔を示す。22 indicates a mounting hole.

第5図及び第6図は本発明の第3の実施例に係わる放熱
板31を示し、この放熱板31は上記各実施例のものに
比べ平面視円形に形成した点に加え、適宜部位例えばV
溝33内にスタッド34を植設した点で相異する。スタ
ッド34は、放熱板31の移動または冷却ファンからの
送風による空気流を乱してその近傍に渦流(カルマン渦
)を発生させて放熱板31のまわりの空気循環を促進し
、放熱効果を向上させる。なお、32は取付孔である。
5 and 6 show a heat dissipation plate 31 according to a third embodiment of the present invention, in addition to the fact that this heat dissipation plate 31 is formed in a circular shape in plan view compared to those of the above-mentioned embodiments, appropriate parts such as V
The difference is that a stud 34 is installed in a groove 33. The stud 34 disturbs the air flow caused by the movement of the heat sink 31 or the air blown from the cooling fan, and generates a vortex (Karman vortex) in the vicinity thereof, thereby promoting air circulation around the heat sink 31 and improving the heat radiation effect. let Note that 32 is a mounting hole.

第7図は本発明の第4の実施例に係わる放熱板41を示
し、該放熱板41は、第1図に示す放熱板1と同一構成
の多孔質体42に無孔質体43を一体に形成し若しくは
多孔質体42に無孔質体43を合体したもので、放熱板
41を介する騒音の流出防止を図っている。
FIG. 7 shows a heat sink 41 according to a fourth embodiment of the present invention, in which a non-porous body 43 is integrated into a porous body 42 having the same structure as the heat sink 1 shown in FIG. or a porous body 42 and a non-porous body 43 are combined to prevent noise from flowing out through the heat sink plate 41.

無孔質体43を一体形成するには、金属製多孔質体42
の一側に熱的または化学的エツチングを施し、あるいは
低融点はんだを含浸させる。一方、無孔質体43を合体
させるには金属板、好ましくはアルミニウムー亜鉛合金
等の制脈合金よりなる板状の無孔質体43を多孔質体4
2に溶着または接着する この放熱板41は無孔質体43を熱源に対向させて各種
機器例えばプリンタ用印字ヘッドに装着され、プリンタ
運転時に上記実施例のものと同様の放熱作用を果すと共
に以下のように消音動作する。すなわち、プリンタ運転
に伴って騒音及び脈動が発生すると、放熱板41に向か
う騒音等の音波はまず該放熱板41の無孔質体43に衝
突し、その低周波部分が無孔質体43の質最効果によっ
て低減される。該無孔質体43を通過した高周波部分は
通過時により低い周波数にされ、多孔質体42において
無孔質体43を通過した低周波部分の残部と共に吸音さ
れ、または多孔質体42のマフラー効果によってその騒
音が低減される。この結果、多孔黄体生体よりなる放熱
板例えば第1図の放熱板1に比べ、機器運転時に放熱板
41を介して外部に流出する音圧が大幅に抑制される。
In order to integrally form the non-porous body 43, the metal porous body 42
thermally or chemically etched or impregnated with a low melting point solder on one side. On the other hand, in order to combine the non-porous body 43, the plate-shaped non-porous body 43 made of a metal plate, preferably a control alloy such as an aluminum-zinc alloy, is combined with the porous body 4.
This heat dissipation plate 41, which is welded or bonded to the heat source 2, is attached to various devices such as printer print heads with the non-porous body 43 facing the heat source, and when the printer is in operation, it has the same heat dissipation effect as that of the above embodiment, and also has the following effects. It works like a mute function. That is, when noise and pulsation occur as a result of printer operation, sound waves such as noise heading toward the heat sink 41 first collide with the nonporous body 43 of the heat sink 41, and the low frequency portion of the sound waves travels toward the heat sink 41. The quality is reduced by the most effective. The high-frequency part that has passed through the non-porous body 43 is made to have a lower frequency when passing through, and is absorbed by the porous body 42 together with the rest of the low-frequency part that has passed through the non-porous body 43, or due to the muffler effect of the porous body 42. The noise is reduced by As a result, compared to a heat sink made of a porous corpus luteum body, for example, the heat sink 1 of FIG. 1, the sound pressure flowing outside through the heat sink 41 during equipment operation is significantly suppressed.

第8図は、上記各実施例による放熱板をヒートバイブと
組合せた使用例を示し、各種機器の発熱部3例えば集積
回路、レーザー回路等の半導体デバイスと放熱板例えば
第1図の放熱板1間をマイクロ・ヒートバイブ4で熱的
に直接結合し、外気に直接放熱するようにし、放熱効果
を高めると共に発熱部3と放熱板1間に配置される各種
部品(図示略)への熱的悪影響を除去している。なお、
図中5は、放熱板1が装着される機器の圧体を示す。
FIG. 8 shows an example of use in which the heat sink according to each of the embodiments described above is combined with a heat vibrator. The micro-heat vibrator 4 is used to directly thermally connect the space between the two to radiate heat directly to the outside air, thereby increasing the heat radiation effect and dissipating heat to various parts (not shown) placed between the heat generating part 3 and the heat sink 1. Removes negative influences. In addition,
In the figure, 5 indicates a pressure body of a device to which the heat sink 1 is attached.

また、発熱部3と放熱板1間距離が比較的短かければ、
ヒートバイブ4に代え、アルミニウム。
Also, if the distance between the heat generating part 3 and the heat sink 1 is relatively short,
Aluminum instead of Heat Vibe 4.

銅などの良熱伝導体の棒板または板材を用いてもよい。A bar or plate made of a good thermal conductor such as copper may also be used.

第9図は、本発明の第5の実施例に係わる多孔質放受熱
体を用いた熱的回路を示す。図中、50は一般機械類ま
たは熱交換器の熱交換媒体としての流体が環流する流体
回路で、該回路の吸熱側及び放熱側には受熱体51及び
放熱体52が図示しない発熱源及び吸熱源に熱的授受可
能にそれぞれ配されている。受熱体51及び放熱体52
は同一構成の薄肉中空円筒状の多孔質体よりなり、第1
図の放熱板1と同様にして製造される。
FIG. 9 shows a thermal circuit using a porous heat radiation/reception body according to a fifth embodiment of the present invention. In the figure, 50 is a fluid circuit in which a fluid as a heat exchange medium of general machinery or a heat exchanger circulates, and a heat receiving body 51 and a heat radiating body 52 (not shown) are provided on the heat absorption side and the heat radiation side of the circuit. They are arranged so that they can receive and receive heat from the heat source. Heat receiving body 51 and heat radiating body 52
are made of a thin-walled hollow cylindrical porous body with the same configuration, and the first
It is manufactured in the same manner as the heat sink 1 shown in the figure.

本実施例の作動は、受熱体51が外周面で発熱源との間
の熱交換作用により受熱する一方、内周面において受熱
体51の中空部を挿通する流体回路50の吸熱側との間
で熱交換を行う。そして、受熱体が多孔質体であること
から放熱板1について述べた理由によりこの熱交換は効
率よく行われる。受熱した熱は流体回路50内を環流す
る流体により放熱側に伝搬され、流体回路5oの放熱側
とこれを囲繞する放熱体52間、次いで放熱体52と吸
熱源間における上述と同様の高効率の熱交換作用により
吸熱源に吸熱される。結局、熱交換効率がよいので、シ
ステム全体のエネルギーロスを低減でき、省力化を図れ
る。
The operation of this embodiment is such that the heat receiving body 51 receives heat on its outer circumferential surface through a heat exchange action with a heat generating source, while its inner circumferential surface receives heat between the heat receiving body 51 and the heat absorbing side of the fluid circuit 50 passing through the hollow portion of the heat receiving body 51. to perform heat exchange. Since the heat receiving body is a porous body, this heat exchange is performed efficiently for the reason described regarding the heat sink 1. The received heat is propagated to the heat radiation side by the fluid circulating in the fluid circuit 50, and the same high efficiency as described above is achieved between the heat radiation side of the fluid circuit 5o and the heat radiator 52 surrounding it, and then between the heat radiator 52 and the heat absorption source. Heat is absorbed by the heat absorption source due to the heat exchange action of After all, since the heat exchange efficiency is good, the energy loss of the entire system can be reduced and labor savings can be achieved.

第10図は、本発明の第6の実施例による多孔質受熱体
を示し、該受熱体61は有底中空円筒状に第1図の放熱
板1と略同様にして製造され、好ましくはアルミニウム
、アルミニウム合金、セラミック等の非磁性体よりなる
。この受熱体61内に熱を保有した流体を入れると、受
熱体61は流体から受熱し、これを外部に放出する。流
体として磁性流体を用いる際、受熱体61の外方にマグ
ネット62を配すると、磁性流体が磁力で受熱体61内
周面側に吸引され、受熱効率が向上する。
FIG. 10 shows a porous heat receiving body 61 according to a sixth embodiment of the present invention, and the heat receiving body 61 is manufactured in a hollow cylindrical shape with a bottom in substantially the same manner as the heat sink 1 of FIG. 1, and is preferably made of aluminum. , aluminum alloy, ceramic, or other non-magnetic material. When a fluid containing heat is introduced into the heat receiving body 61, the heat receiving body 61 receives heat from the fluid and releases the heat to the outside. When a magnetic fluid is used as the fluid, if the magnet 62 is placed outside the heat receiving body 61, the magnetic fluid is attracted to the inner peripheral surface of the heat receiving body 61 by magnetic force, improving heat receiving efficiency.

第11図は本発明の第7の実施例による多孔質受熱体を
示し、該受熱体71は丸棒状を成す。受熱体71の下半
部を容器72に入れた高温の流体中に浸すと、流体から
受熱した熱を上半部から外部に放散する。
FIG. 11 shows a porous heat receiving body 71 according to a seventh embodiment of the present invention, and the heat receiving body 71 has a round bar shape. When the lower half of the heat receiving body 71 is immersed in the high temperature fluid contained in the container 72, the heat received from the fluid is radiated to the outside from the upper half.

第12図及び第13図は、空気調和装置の換気ダクト部
に適用される本発明の第8の実施例による多孔質放置熱
体を示し、該ダクト部は主要素として受熱体81及び放
熱体82を備え、両者は上記放熱板1と略同様に製造さ
れる。放熱体82は3つの構成部82a 、82a 、
82aよりなり、全体として中空円筒状をなし、薄肉環
状外壁部材83に内1釈されている。放熱体82の内部
空間には送風方向に先細にされた円錐台状の受熱体81
が例えばアルミニウムよりなる薄肉環状隔壁部材84を
介して密に嵌合している。隔壁85は放熱体82の相隣
れる構成部82a、82a間に介在し、その外側縁及び
内側縁が外壁部材83及び隔壁部材84に結合し、補強
部材として機能する。
12 and 13 show a porous heating body according to an eighth embodiment of the present invention applied to a ventilation duct section of an air conditioner, and the duct section has a heat receiving body 81 and a heat radiating body as main elements. 82, both of which are manufactured in substantially the same manner as the heat sink 1 described above. The heat sink 82 has three components 82a, 82a,
82a, and has a hollow cylindrical shape as a whole, and is enclosed in a thin annular outer wall member 83. In the internal space of the heat sink 82, there is a heat receiver 81 in the shape of a truncated cone tapered in the direction of air blowing.
are tightly fitted through a thin annular partition member 84 made of aluminum, for example. The partition wall 85 is interposed between the adjacent constituent parts 82a, 82a of the heat sink 82, and its outer and inner edges are coupled to the outer wall member 83 and the partition member 84, and functions as a reinforcing member.

そして、受熱体81の一端面と隔壁部材84とで画成さ
れる空間にはファン86が配されている。
A fan 86 is disposed in a space defined by one end surface of the heat receiving body 81 and the partition member 84.

次に、上記構成の空気調和装置用ダクト部の作用を説明
する。まず、図示しない駆動源によりファン86を回転
させると、清浄な空気が多孔質体よりなる受熱体81を
介して矢印B方向に供給される。このとき、受熱体81
を囲繞する先細の隔壁部材84により外部への空気漏洩
が防止されると共に空気流はダクト部の軸心方向に収斂
される。
Next, the operation of the air conditioner duct section having the above configuration will be explained. First, when the fan 86 is rotated by a drive source (not shown), clean air is supplied in the direction of arrow B through the heat receiving body 81 made of a porous body. At this time, the heat receiving body 81
A tapered partition wall member 84 surrounding the duct prevents air from leaking to the outside and converges the air flow in the axial direction of the duct.

このように新たな空気が供給されると、例えば暖房時に
は未だ暖かいが汚れを生じた空気が矢印C方向に多孔質
体82を介して排出される。
When fresh air is supplied in this way, air that is still warm but contaminated during heating, for example, is discharged through the porous body 82 in the direction of arrow C.

この空気排出時、上述の放熱体1と同様、熱交換作用に
優れた放熱体82及びこれに隣接して配され、かつ同様
の熱交換作用をなす受熱体81を介して排出空気が保有
していた熱が供給空気に効率的に移され、排熱の有効利
用が図られる。
When this air is discharged, the discharged air is retained through the heat radiator 82 which has an excellent heat exchange effect and the heat receiver 81 which is arranged adjacent to the heat radiator 82 and which has a similar heat exchange effect, like the heat radiator 1 described above. The waste heat is efficiently transferred to the supplied air, making effective use of waste heat.

なお、上述の換気系は空気調和装置以外の各種機器にも
勿論適用可能である。
Note that the above-mentioned ventilation system can of course be applied to various types of equipment other than air conditioners.

発明の効果 上述のように、本発明によれば、熱源に対し熱的授受可
能に配される放置熱体を多孔質体で構成したので、その
熱交換特性すなわち熱伝達性が良好で、放熱部及び/ま
たは受熱部をなす放置熱体ひいてはこれを装備した各種
機器の小型軽量化ざらには機器の省力化を図れる。
Effects of the Invention As described above, according to the present invention, the left heating body arranged to be able to transfer heat to and from the heat source is made of a porous material, so its heat exchange characteristics, that is, heat transfer properties are good, and heat dissipation is improved. This makes it possible to reduce the size and weight of the left heating element forming the heat receiving part and/or the heat receiving part, as well as various equipment equipped with this, and to save labor in the equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の多孔質放熱板を示す平
面図、第2図及び第3図は本発明の第2の実施例による
放熱板の平面図及び横断面図、第4図は同実施例の変形
例による放熱板の平面図、第5図は本発明の第3の実施
例による平面図、第6図は第5図のVl −Vl線に沿
う断面図、第7図は本発明の第4の実施例の放熱板を示
す概略横断面図、第8図は本発明の放熱板をヒートパイ
プと組合せて使用する場合を示す一部断面部分概略平面
図、第9図は本発明の第5の実施例の放置熱体を装備し
た熱的回路を示す概略構成図、第10図は本発明の第6
の実施例の受熱体を示す斜視図、第11図は本発明の第
7の実施例に係わる受熱体の斜視図、第12図は換気系
に用いた本発明の第8の実施例の放置熱体を示す端面図
、第13図は第12図のxm−xm線に沿う断面図であ
る。 1.11.21,31.41・・・放熱板、3・・・発
熱部、4・・・ヒートパイプ、13.33・・・溝、3
4・・・スタッド、42・・・多孔質体、43・・・無
孔質体、51.61.71.81・・・受熱体、52.
82・・・放熱体。 第9図 第11図 第12図 第13図 舶
FIG. 1 is a plan view showing a porous heat sink according to a first embodiment of the present invention, FIGS. 2 and 3 are a plan view and a cross-sectional view of a heat sink according to a second embodiment of the present invention, and FIG. 4 is a plan view of a heat sink according to a modified example of the same embodiment, FIG. 5 is a plan view according to a third embodiment of the present invention, FIG. 6 is a sectional view taken along the line Vl-Vl in FIG. 7 is a schematic cross-sectional view showing a heat sink according to a fourth embodiment of the present invention, FIG. 8 is a partially cross-sectional partial schematic plan view showing a case where the heat sink of the present invention is used in combination with a heat pipe, FIG. 9 is a schematic configuration diagram showing a thermal circuit equipped with a standing heating element according to the fifth embodiment of the present invention, and FIG.
FIG. 11 is a perspective view of the heat receiving body according to the seventh embodiment of the present invention, and FIG. 12 is a perspective view of the heat receiving body according to the seventh embodiment of the present invention used in a ventilation system. FIG. 13 is an end view showing the heating body, and a sectional view taken along the xm-xm line in FIG. 12. 1.11.21, 31.41... Heat sink, 3... Heat generating part, 4... Heat pipe, 13.33... Groove, 3
4... Stud, 42... Porous body, 43... Non-porous body, 51.61.71.81... Heat receiving body, 52.
82... Heat sink. Figure 9 Figure 11 Figure 12 Figure 13 Vessel

Claims (5)

【特許請求の範囲】[Claims] (1)多数の気孔が形成された多孔質体よりなることを
特徴とする多孔質放受熱体。
(1) A porous heat radiation/reception body characterized by being made of a porous body in which a large number of pores are formed.
(2)気孔の直径が50ミクロン乃至1000ミクロン
である特許請求の範囲第1項記載の多孔質放受熱体。
(2) The porous heat dissipating body according to claim 1, wherein the pores have a diameter of 50 microns to 1000 microns.
(3)少なくとも一側面に溝を形成した特許請求の範囲
第1項または第2項記載の多孔質放受熱体。
(3) A porous heat radiation/reception body according to claim 1 or 2, wherein a groove is formed on at least one side surface.
(4)一側面に無孔質体を設けた特許請求の範囲第1項
、第2項または第3項記載の多孔質放受熱体。
(4) A porous heat dissipating and receiving body according to claim 1, 2, or 3, wherein a nonporous body is provided on one side surface.
(5)中空円筒状に形成され、内外周面を介して熱交換
可能にされた特許請求の範囲第1項または第2項記載の
多孔質放受熱体。
(5) The porous heat radiation/reception body according to claim 1 or 2, which is formed into a hollow cylindrical shape and is capable of heat exchange through the inner and outer circumferential surfaces.
JP60247899A 1985-11-07 1985-11-07 Porous heat emission and reception element Pending JPS62108598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60247899A JPS62108598A (en) 1985-11-07 1985-11-07 Porous heat emission and reception element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60247899A JPS62108598A (en) 1985-11-07 1985-11-07 Porous heat emission and reception element

Publications (1)

Publication Number Publication Date
JPS62108598A true JPS62108598A (en) 1987-05-19

Family

ID=17170217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60247899A Pending JPS62108598A (en) 1985-11-07 1985-11-07 Porous heat emission and reception element

Country Status (1)

Country Link
JP (1) JPS62108598A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011398A (en) * 2001-07-02 2003-01-15 Toshiba Tec Corp Impact dot printer head and printer
JP2006343048A (en) * 2005-06-09 2006-12-21 Mitsubishi Electric Corp Ventilating fan
JP2008544489A (en) * 2005-06-10 2008-12-04 クリー インコーポレイテッド Optical device and lamp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011398A (en) * 2001-07-02 2003-01-15 Toshiba Tec Corp Impact dot printer head and printer
JP4531299B2 (en) * 2001-07-02 2010-08-25 東芝テック株式会社 Printing device
JP2006343048A (en) * 2005-06-09 2006-12-21 Mitsubishi Electric Corp Ventilating fan
JP2008544489A (en) * 2005-06-10 2008-12-04 クリー インコーポレイテッド Optical device and lamp

Similar Documents

Publication Publication Date Title
US8397796B2 (en) Porous media cold plate
JP4391366B2 (en) Heat sink with heat pipe and method of manufacturing the same
US10996001B2 (en) Heatsink
US20130068433A1 (en) Heat exchanger
TW202041825A (en) Heat sink
JPS62108598A (en) Porous heat emission and reception element
JP2008061458A (en) Cylindrical linear motor
JP4265500B2 (en) Heating element cooling device
JP2006207968A (en) Heat transfer device
CN207652886U (en) A kind of liquid cooling heat radiator
EP1233645A2 (en) Loudspeaker pole piece and loudspeaker assembly
JP2534363B2 (en) Heat pipe cooler
JPH09203595A (en) Radiator device
JPH02244748A (en) Heat pipe type cooler
CN108419417A (en) A kind of electronic instrument case
CN214099144U (en) Prevent overheated SMD bee calling organ
US4213311A (en) Superleak
JPH0746064Y2 (en) Linear motor cooling device
TW595305B (en) Heat sink
JPH03233297A (en) Heat-pipe heat exchanger
JP2536691B2 (en) Isolator cooling structure
JP2004251133A (en) Rotary type compressor
CN115280647A (en) Cooling fin structure
JPH0310048Y2 (en)
JPS6337698A (en) Cold frame