JPS6210683B2 - - Google Patents

Info

Publication number
JPS6210683B2
JPS6210683B2 JP58131812A JP13181283A JPS6210683B2 JP S6210683 B2 JPS6210683 B2 JP S6210683B2 JP 58131812 A JP58131812 A JP 58131812A JP 13181283 A JP13181283 A JP 13181283A JP S6210683 B2 JPS6210683 B2 JP S6210683B2
Authority
JP
Japan
Prior art keywords
aqueous solution
particle size
purity
particles
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58131812A
Other languages
Japanese (ja)
Other versions
JPS6025532A (en
Inventor
Haruyuki Kawai
Keiji Kawasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP13181283A priority Critical patent/JPS6025532A/en
Publication of JPS6025532A publication Critical patent/JPS6025532A/en
Publication of JPS6210683B2 publication Critical patent/JPS6210683B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は、例えば、アンモニア、塩化水素、フ
ツ化水素等の、高品質水溶液を製造し、供給する
方法に関する。 従来技術 近年、電子工業や分析等の分野において、アン
モニア水、塩酸、フツ化水素酸等の水溶液につい
て、より高品質の製品が望まれている。このよう
な水溶液において、特に厳重に管理されるべき不
純物は、金属類及び微粒子類である。従来、これ
らの高品質水溶液は、原料となる水溶液を蒸留
し、生成する蒸気を精製した水に吸収させること
によつて所定濃度の水溶液を得、次いでこれを再
度精密過後、所定量づつ試薬びんに小分けされ
て供給されていた。 しかしながら、従来の方法では、原料水溶液中
の金属、微粒子類は、蒸留操作を実施しても、液
滴同伴等のため微量の混入は避けられない。更
に、試薬びんにつめる過程及び試薬びんからの取
り出しの過程において、空気中から微粒子類や金
属類等の混入の可能性があり、かつ試薬びんに保
存中においてはびんからも不純物が微量溶出す
る。更に、前述の如き水溶液の製造、供給の操作
では、清浄な手袋の着用を必要とし、また望まし
くは、クリーンルーム内で行う等の細心の注意を
必要とする。また、試薬びんは、不純物の溶出を
できるだけ減少させるため、回収され、再使用さ
れるのが通常であり、これらの操作は非常な労力
と煩雑さを必要とする。しかして、このような点
に留意しても、上記の如き不純物混入の可能性が
本質的に存在しているために、現状における高品
質水溶液中の不純物濃度は、例えば、塩酸中の
Feを例にとれば、約200ppb程度に留まつてい
る。 発明の目的 本発明の主要な目的は、これらの不純物の混入
の可能性を無くすることによつて、不純物濃度を
著るしく低減した高品質水溶液を製造し、供給す
る方法を提供することにあり、更にこれらの水溶
液を取扱う際の前述した如き困難を解消すること
にある。 発明の構成 本発明によれば、含有される金属類の合計が
0.5ppm以下でかつ0.2μ以上の粒径の微粒子が
200個/ml以下である高品質水溶液を製造し、供
給する方法が提供されるのであつて、この方法
は、使用場所において、純度99.5%以上の液化ガ
スを蒸発させて実質上不純分を含まない蒸気と
し、この蒸気を比抵抗が5MΩ以上でかつ含有さ
れる0.2μ以上の粒径の微粒子が200個/ml以下で
ある純水に吸収させ、このようにして得られた水
溶液をそのまま使用に供することを特徴とする。 発明の構成の具体的説明 本発明の方法は、即ち、使用場所において、目
的とする水溶液の溶質成分、例えば、アンモニ
ア、塩化水素又はフツ化水素等の液化ガスを気化
させて、実質上不純物を含まない蒸気を得、これ
を高純水に吸収させることによつて、所定濃度の
高品質水溶液を得る方法である。ここに、実質上
不純分を含まない蒸気とは、金属類の合計が
200ppb以下でかつ0.2μ以上の粒径の微粒子が
100個/ml以下の蒸気をいう。また、本発明にお
いて、金属類とは、Ag,Al,Ba,Ca,Cd,
Co,Cr,Cu,Fe,K,Li,Mg,Mn,Na,Ni,
Pb,Sr,Zn等の金属類をいい、微粒子とは、粒
径が10μ程度以下の粒子をいう(JIS Z
8122)。高純水とは、比抵抗が5MΩ以上でかつ含
有される0.2μ以上の粒径の微粒子が200個/ml以
下である純水をいう。更に、水溶液とは、高純水
が2〜90重量%、即ち、溶質濃度が10〜98重量%
のものをいう。 目的とする溶質成分は、通常液化されてボンベ
内に保持されており、これを気化させることによ
り当該成分の蒸気が容易に得られる。ボンベ内の
液中の不純物(金属類、微粒子類)は、気化の際
ほとんど液中に残留し、蒸気中にはほとんど流出
してこないけれども、液滴を同伴する場合には不
純物の混入が見込まれるので、これを防止するた
め蒸気の流出速度を管理するとともに、必要に応
じてミストキヤツチヤーやフイルターを設置し、
更に使用する液化ガスの純度をより高く、好まし
くは99.5%以上に保持するのが望ましい。また、
本発明方法の実施に際しては、ボンベ中の液化ガ
スは、5〜10%程度のガスが未だ残留している状
態で新たなボンベの液化ガスと切換交換されるの
がよい。ボンベ中の液化ガスの残留分があまり少
なくなると、液化ガスの純度の急激な低下によ
り、得られる水溶液の純度が低下する恐れがあ
る。 本発明の方法で用いられる純水は、比抵抗が
5MΩ以上で、含有される0.2μ以上の粒径の微粒
子が200個/ml以下である、いわゆる高純水であ
り、このような高純水の品質は得られる水溶液に
所望される品質等により決定される。比抵抗が
16MΩ以上で、含有される0.2μ以上の粒径の微
粒子が50個/ml以下である、いわゆる超純水を用
いることは、より好ましいことである。使用場所
において、純度99.5%以上の液化ガスを気化させ
て蒸気化し、この気化時に液滴の同伴を防止する
ため流出速度を管理したり、場合によつてはフイ
ルター等を設置し、更にボンベ中の液化ガスは5
〜10%程度のガスを残すような方法等により、実
質上不純分を含まない蒸気、即ち金属類の合計が
200ppb以下でかつ0.2μ以上の粒径の微粒子が
100個/ml以下の蒸気を得る。この蒸気の品質で
あれば、吸収させる純水中の不純物の量を高純水
の品質とし、所定濃度の高品質水溶液を製造する
装置、例えば第1図の如き装置の容器からの不純
分の溶出が微量あつても、本発明では、含有され
る金属類の合計が0.5ppm以下でかつ0.2μ以上の
粒径の微粒子が200個/ml以下である高品質水溶
液を製造し、供給されるのである。 常に一定濃度の水溶液を得る方法としては、一
定量の高純水に目的とする溶質成分の蒸気を所定
量吸収させる方法、又は高純水と蒸気とを一定量
づつ同時に流すことによつて所定濃度を得る方法
等があり、一例として前者の場合に用いることの
できる装置を第1図に示す。第1図において、液
化ガスボンベ1より溶質成分の蒸気が、好ましく
はフイルター7を介して、よく管理された所定流
量をもつて、所定量の高純水が満たされた吸収器
3中に導入される。この高純水は高純水供給ライ
ン2より供給される。ガス供給ラインには逆流防
止均圧ライン5が設けられ、また吸収器3には溶
解熱冷却器4及びレベルゲージ6が付設されてい
る。このようにして所定時間ガスを導入すれば吸
収器中において所定濃度の水溶液が調製され、こ
れをコツク8より取り出して直接使用に供するこ
とができる。 これらの方法乃至装置は、所望により、例え
ば、ボタンを押すだけでいつでも所定濃度の液が
所定量得られることを可能にするような自動化も
可能である。また、装置の材質としては、目的と
する水溶液に浸されないもの、例えば、テフロン
もしくはテフロンコーテイング、タンタルもしく
はそのライニング等があり、目的とする水溶液の
種類により選択することができる。 本発明の方法によれば、目的とする水溶液を使
用する場所において調製することを可能とし、試
薬びんを使用すること等によつて生ずるその後の
不純物混入の可能性を解消することができ、従来
よりもはるかに高品質の水溶液を容易に入手し、
使用することができる。 実施例 以下、実施例を挙げ、本発明を更に説明する。 例 1 純度99.999%以上で、Fe分100ppbの液化アン
モニアをボンベより蒸発させ、第1図に示す如き
装置を用いて、比抵抗18MΩ,0.2μ以上の微粒
子20個/mlの超純水に吸収させ、濃度29%のアン
モニア水を調製した。ボンベよりのガスの流量を
3/minとし、280gの超純水に約1時間通し
た。そして、その際、吸収器全体を氷浴で冷却し
て、吸収器の温度が常温以下に保持されるように
した。 得られたアンモニア水中のFeは1ppbであり、
粒径0.2μ以上のダストは30個/mlであつた。 比較のため、下記に得られたアンモニア水の分
析値と現在の電子工業用のアンモニア水の分析値
とを示す。
TECHNICAL FIELD The present invention relates to a method for producing and dispensing high quality aqueous solutions, such as, for example, ammonia, hydrogen chloride, hydrogen fluoride, etc. BACKGROUND OF THE INVENTION In recent years, in fields such as the electronic industry and analysis, higher quality products have been desired for aqueous solutions such as aqueous ammonia, hydrochloric acid, and hydrofluoric acid. In such an aqueous solution, impurities that should be particularly strictly controlled are metals and fine particles. Conventionally, these high-quality aqueous solutions have been obtained by distilling the raw material aqueous solution and absorbing the generated steam into purified water to obtain an aqueous solution of a predetermined concentration.Then, this solution is passed through another precision sieve, and a predetermined amount is poured into reagent bottles. It was supplied in small portions. However, in conventional methods, even if a distillation operation is performed, trace amounts of metals and fine particles in the raw material aqueous solution cannot be avoided due to droplet entrainment. Furthermore, during the process of filling and removing reagent bottles from the reagent bottles, there is a possibility that fine particles and metals may be mixed in from the air, and during storage in the reagent bottles, trace amounts of impurities may be eluted from the bottles. . Furthermore, the operations for producing and supplying the aqueous solution as described above require the wearing of clean gloves and, preferably, must be performed with great care, such as in a clean room. In addition, reagent bottles are usually collected and reused in order to reduce the elution of impurities as much as possible, and these operations require a great deal of labor and complexity. However, even with these points in mind, the possibility of impurity contamination as described above essentially exists, so the impurity concentration in current high-quality aqueous solutions is lower than that in, for example, hydrochloric acid.
Taking Fe as an example, it remains at around 200 ppb. OBJECTS OF THE INVENTION The primary object of the present invention is to provide a method for producing and delivering high quality aqueous solutions with significantly reduced impurity concentrations by eliminating the possibility of contamination with these impurities. Furthermore, it is an object of the present invention to solve the above-mentioned difficulties when handling these aqueous solutions. Structure of the Invention According to the present invention, the total amount of metals contained is
Fine particles with a particle size of 0.5ppm or less and 0.2μ or more
A method is provided for producing and supplying a high-quality aqueous solution with a concentration of 200 particles/ml or less, which method involves vaporizing a liquefied gas with a purity of 99.5% or higher at the point of use to substantially eliminate impurities. This vapor is absorbed into pure water that has a specific resistance of 5 MΩ or more and contains 200 particles/ml or less with a particle size of 0.2 μ or more, and the aqueous solution obtained in this way is used as it is. It is characterized by being served. Detailed Description of the Structure of the Invention In other words, the method of the present invention vaporizes a solute component of a target aqueous solution, for example, a liquefied gas such as ammonia, hydrogen chloride, or hydrogen fluoride, to substantially eliminate impurities at the place of use. In this method, a high-quality aqueous solution with a predetermined concentration is obtained by obtaining vapor-free vapor and absorbing it into high-purity water. Here, steam that does not contain substantially impurities is defined as steam containing substantially no impurities.
Fine particles with a particle size of 200ppb or less and a particle size of 0.2μ or more
Steam containing 100 particles/ml or less. In addition, in the present invention, metals include Ag, Al, Ba, Ca, Cd,
Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni,
Refers to metals such as Pb, Sr, and Zn, and fine particles refer to particles with a particle size of approximately 10μ or less (JIS Z
8122). Highly pure water refers to pure water that has a specific resistance of 5 MΩ or more and contains 200 particles/ml or less with a particle size of 0.2 μ or more. Furthermore, an aqueous solution is a high-purity water containing 2 to 90% by weight, that is, a solute concentration of 10 to 98% by weight.
It refers to something. The target solute component is usually liquefied and held in a cylinder, and by vaporizing it, the vapor of the component can be easily obtained. Most of the impurities (metals, particulates) in the liquid in the cylinder remain in the liquid during vaporization, and hardly ever flow out into the vapor, but if droplets are accompanied, impurities can be expected to be mixed in. To prevent this, the speed of steam outflow should be controlled, and mist catchers and filters should be installed as necessary.
Furthermore, it is desirable to maintain the purity of the liquefied gas used at a higher level, preferably at 99.5% or higher. Also,
When carrying out the method of the present invention, the liquefied gas in the cylinder is preferably replaced with the liquefied gas in a new cylinder while about 5 to 10% of the gas still remains. If the residual amount of liquefied gas in the cylinder becomes too small, the purity of the liquefied gas may drop sharply, leading to a decrease in the purity of the resulting aqueous solution. The pure water used in the method of the present invention has a specific resistance of
It is so-called high-purity water that has a resistance of 5 MΩ or more and contains 200 particles/ml or less with a particle size of 0.2 μ or more, and the quality of such high-purity water is determined by the desired quality of the resulting aqueous solution. The specific resistance
It is more preferable to use so-called ultrapure water, which has a resistance of 16 MΩ or more and contains 50 particles/ml or less with a particle size of 0.2 μ or more. At the place of use, liquefied gas with a purity of 99.5% or higher is vaporized and the outflow rate is controlled to prevent entrainment of droplets during vaporization, and in some cases, filters are installed, and further The liquefied gas is 5
Steam containing virtually no impurities, that is, the total amount of metals, is produced by a method that leaves about 10% of the gas.
Fine particles with a particle size of 200ppb or less and a particle size of 0.2μ or more
Obtain steam of 100 pieces/ml or less. If the quality of this steam is high, the amount of impurities in the absorbed pure water is defined as the quality of high-pure water, and the impurities will not be leached from the container of a device that produces a high-quality aqueous solution with a predetermined concentration, such as the device shown in Figure 1. Even if the amount is small, in the present invention, a high quality aqueous solution is produced and supplied in which the total amount of metals contained is 0.5 ppm or less and the number of fine particles with a particle size of 0.2 μ or more is 200 particles/ml or less. . Methods for always obtaining an aqueous solution with a constant concentration include a method in which a predetermined amount of vapor of the target solute component is absorbed into a predetermined amount of high-purity water, or a method in which a predetermined concentration is obtained by simultaneously flowing a predetermined amount of high-purity water and steam. As an example, an apparatus that can be used in the former case is shown in FIG. In FIG. 1, vapor of a solute component is introduced from a liquefied gas cylinder 1, preferably through a filter 7, at a well-controlled predetermined flow rate into an absorber 3 filled with a predetermined amount of high-purity water. This high purity water is supplied from a high purity water supply line 2. The gas supply line is provided with a backflow prevention pressure equalization line 5, and the absorber 3 is provided with a heat of solution cooler 4 and a level gauge 6. By introducing gas for a predetermined period of time in this way, an aqueous solution of a predetermined concentration is prepared in the absorber, and this can be taken out from the pot 8 and used directly. These methods and devices can be automated, if desired, such that a predetermined amount of a liquid of a predetermined concentration can be obtained at any time, for example, by simply pressing a button. The material of the device includes materials that cannot be immersed in the target aqueous solution, such as Teflon or Teflon coating, tantalum or its lining, and can be selected depending on the type of target aqueous solution. According to the method of the present invention, it is possible to prepare the desired aqueous solution at the place where it will be used, and it is possible to eliminate the possibility of subsequent contamination with impurities caused by the use of reagent bottles. easily obtain aqueous solutions of much higher quality than
can be used. Examples Hereinafter, the present invention will be further explained with reference to Examples. Example 1 Liquefied ammonia with a purity of 99.999% or higher and a Fe content of 100 ppb is evaporated from a cylinder and absorbed into ultrapure water with a resistivity of 18 MΩ and 20 particles/ml of 0.2 μ or higher using a device as shown in Figure 1. Aqueous ammonia with a concentration of 29% was prepared. The gas flow rate from the cylinder was set at 3/min, and the gas was passed through 280 g of ultrapure water for about 1 hour. At that time, the entire absorber was cooled in an ice bath to maintain the temperature of the absorber below room temperature. Fe in the obtained ammonia water was 1 ppb,
The number of dust particles with a particle size of 0.2μ or more was 30 pieces/ml. For comparison, the analytical values of ammonia water obtained below and the analytical values of ammonia water currently used in the electronics industry are shown below.

【表】 例 2 純度99.999%以上で、Fe分120ppbの液化塩化
水素を蒸発させ、例1と同様にして、例1で用い
たと同品質の超純水に吸収させ、濃度35%の塩酸
を調製した。ボンベよりのガスの流量を0.9/
minとし、650gの超純水に約4時間通した。吸
収器全体を氷浴で冷却して、吸収器の温度が常温
以下に保持されるようにした。 得られた塩酸は、下記の如く、市販の電子工業
用塩酸の高純度品よりもはるかに高品質のもので
あつた。
[Table] Example 2 Liquefied hydrogen chloride with a purity of 99.999% or higher and a Fe content of 120 ppb was evaporated, and in the same manner as in Example 1, it was absorbed into ultrapure water of the same quality used in Example 1, and hydrochloric acid with a concentration of 35% was added. Prepared. The flow rate of gas from the cylinder is 0.9/
min, and passed through 650 g of ultrapure water for about 4 hours. The entire absorber was cooled in an ice bath to maintain the absorber temperature below ambient temperature. The obtained hydrochloric acid was of much higher quality than commercially available high-purity hydrochloric acid for use in the electronic industry, as described below.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するのに有用な装
置の一例を示す模式図である。図において、1は
液化ガスボンベ、2は超純水供給ライン、3は吸
収器、4は溶解熱冷却器、5は逆流防止均圧ライ
ン、6はレベルゲージ、7はフイルター、8はコ
ツクを示す。
FIG. 1 is a schematic diagram illustrating an example of an apparatus useful for carrying out the method of the present invention. In the figure, 1 is a liquefied gas cylinder, 2 is an ultrapure water supply line, 3 is an absorber, 4 is a melt heat cooler, 5 is a backflow prevention pressure equalization line, 6 is a level gauge, 7 is a filter, and 8 is a pot. .

Claims (1)

【特許請求の範囲】[Claims] 1 含有される金属類の合計が0.5ppm以下でか
つ0.2μ以上の粒径の微粒子が200個/ml以下であ
る高品質水溶液を製造し、供給する方法であつ
て、使用場所において、純度99.5%以上の液化ガ
スを蒸発させて実質上不純分を含まない蒸気と
し、この蒸気を比抵抗が5MΩ以上でかつ含有さ
れる0.2μ以上の粒径の微粒子が200個/ml以下で
ある純水に吸収させ、このようにして得られた水
溶液をそのまま使用に供することを特徴とする方
法。
1. A method for producing and supplying a high-quality aqueous solution containing 0.5 ppm or less of metals in total and 200 particles/ml with a particle size of 0.2 μ or more, which has a purity of 99.5 at the place of use. % or more of liquefied gas is evaporated to produce a vapor containing virtually no impurities, and this vapor is converted into pure water that has a specific resistance of 5 MΩ or more and contains 200 particles/ml or less with a particle size of 0.2 μ or more. A method characterized in that the aqueous solution thus obtained is used as it is.
JP13181283A 1983-07-21 1983-07-21 Preparation of high quality aqueous solution Granted JPS6025532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13181283A JPS6025532A (en) 1983-07-21 1983-07-21 Preparation of high quality aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13181283A JPS6025532A (en) 1983-07-21 1983-07-21 Preparation of high quality aqueous solution

Publications (2)

Publication Number Publication Date
JPS6025532A JPS6025532A (en) 1985-02-08
JPS6210683B2 true JPS6210683B2 (en) 1987-03-07

Family

ID=15066680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13181283A Granted JPS6025532A (en) 1983-07-21 1983-07-21 Preparation of high quality aqueous solution

Country Status (1)

Country Link
JP (1) JPS6025532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000227A1 (en) * 1995-06-14 1997-01-03 Sumitomo Chemical Company, Limited Process for producing high-purity chemicals

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259522A (en) * 1985-09-09 1987-03-16 Mitsubishi Metal Corp Apparatus for producing ammonia water
JPS6259523A (en) * 1985-09-09 1987-03-16 Mitsubishi Metal Corp Apparatus for producing ammonia water
JPS6259521A (en) * 1985-09-09 1987-03-16 Mitsubishi Metal Corp Apparatus for producing ammonia water
JPS6259520A (en) * 1985-09-09 1987-03-16 Mitsubishi Metal Corp Apparatus for producing ammonia water
CN106139939A (en) * 2016-04-21 2016-11-23 福建漳州久依久化工有限公司 A kind of device and method utilizing the water-soluble material of steam jet ejector heating for dissolving
CN112897467B (en) * 2021-03-18 2022-09-30 福建省建阳金石氟业有限公司 Production method of electronic-grade hydrofluoric acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55108731A (en) * 1979-02-13 1980-08-21 Fujitsu Ltd Cleaning method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55108731A (en) * 1979-02-13 1980-08-21 Fujitsu Ltd Cleaning method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000227A1 (en) * 1995-06-14 1997-01-03 Sumitomo Chemical Company, Limited Process for producing high-purity chemicals

Also Published As

Publication number Publication date
JPS6025532A (en) 1985-02-08

Similar Documents

Publication Publication Date Title
KR930003209B1 (en) Abatement of vapors from gas streams by solidification
DE69828201T2 (en) METHOD FOR PRODUCING HIGH-PURITY SILICON AND DEVICE THEREFOR
US7753989B2 (en) Direct passivation of metal powder
US6793905B1 (en) Method for producing high-purity hydrochloric acid
KR100916187B1 (en) The Manufacturing Apparatus for High Purity of Sponge Titanium and the Same Method
DE102009044249B3 (en) Process and apparatus for separating argon from a gas mixture
JPS6210683B2 (en)
US4402741A (en) Process for the precise and continuous injection of a halogenated derivative in the gaseous state into a liquid metal
DE69829788T2 (en) Cleaning of special electronic gases by vapor phase transfer
WO2008064738A1 (en) Device and method for the processing of nonferrous metals
FR2641269A1 (en) CONTINUOUS PROCESS FOR SEPARATING IMPURITIES FROM ZIRCONIUM CHLORIDE AND / OR HAFNIUM CHLORIDE
KR100687214B1 (en) Method for purification of tungsten hexafluoride
JPH0379288B2 (en)
US3401095A (en) Method of purifying nitric acid
US2700431A (en) Purification of chlorine
US4201739A (en) Manufacture of metal halide particles
KR100856187B1 (en) Process for the purification of corrosive gases
JPH05255154A (en) Isopropyl alcohol
US5296001A (en) Process for separating silicic compounds from cleaning baths and plant for its application
US2734820A (en) Process and composition for treating
JP3198575B2 (en) Production method of high purity sulfuric acid
Baxter et al. A REVISION OF THE ATOMIC WEIGHT OF SILICON. THE ANALYSIS OF SILICON TETRACHLORIDE. Preliminary Paper.
JPH06171909A (en) Sulfur refining method
JPH0418881B2 (en)
SU1471933A3 (en) Method of oxidizable amalgam granulate