JPS62106395A - Boiling water type reactor - Google Patents
Boiling water type reactorInfo
- Publication number
- JPS62106395A JPS62106395A JP60246175A JP24617585A JPS62106395A JP S62106395 A JPS62106395 A JP S62106395A JP 60246175 A JP60246175 A JP 60246175A JP 24617585 A JP24617585 A JP 24617585A JP S62106395 A JPS62106395 A JP S62106395A
- Authority
- JP
- Japan
- Prior art keywords
- primary coolant
- reactor
- boiling water
- water nuclear
- pool liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、原子炉圧力容器の中に一次冷却材の他にプー
ル液を保有し、異常時には炉心部へプール液が流入し炉
停止機能を発揮できる様にすることにより高安全性を有
する沸騰水型原子炉に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention has a pool liquid in addition to the primary coolant in the reactor pressure vessel, and in the event of an abnormality, the pool liquid flows into the reactor core and the reactor shutdown function is activated. This invention relates to a boiling water reactor that has a high degree of safety by being able to exhibit the following characteristics.
特開昭57−175293号公報に示された原子炉では
、原子炉圧力容器内でプール液と冷却水を所定レベルK
fM持し冷却水温度上昇の際には流体密度変化によって
生じる圧力差によりプール液が炉心部へ流入する様にし
た構成が述べられている。In the reactor disclosed in Japanese Patent Application Laid-Open No. 57-175293, pool liquid and cooling water are kept at a predetermined level K in the reactor pressure vessel.
A configuration is described in which pool liquid flows into the reactor core due to a pressure difference caused by a change in fluid density when the fM cooling water temperature rises.
この従来例では炉心を通る冷却水とプール液とは加圧器
により加圧されており、炉形式としては加圧水型原子炉
となっている。In this conventional example, the cooling water and pool liquid passing through the reactor core are pressurized by a pressurizer, and the reactor type is a pressurized water reactor.
上記従来技術は、加圧水型原子炉をベースとしているた
め次の様な問題点があげられる。Since the above-mentioned conventional technology is based on a pressurized water reactor, it has the following problems.
(1)原子炉圧力容器内に加圧装置を設置せざるを得な
いため、原子炉装置として複雑・設備9高となる他、加
圧圧力喪失に伴なう減圧事故事象を想定せざるを得ない
。(1) Since it is necessary to install a pressurization device inside the reactor pressure vessel, the reactor equipment is complicated and the equipment is 9 times taller, and it is necessary to assume a depressurization accident event due to loss of pressurization pressure. I don't get it.
(2)加圧水型原子炉であるため、炉出力制御は一次冷
却材中の中性子吸収材(以下ボロンと称す)の濃度制御
に依らざるを得ないため、沸騰水型原子炉のごとく炉心
流量を制御する場合に比べると制御応答性が悪い。また
ボロン濃度制御装置を必要としている。(2) As it is a pressurized water reactor, reactor power control must depend on the concentration control of the neutron absorbing material (hereinafter referred to as boron) in the primary coolant. Control responsiveness is poorer than in the control case. It also requires a boron concentration control device.
(3)加圧水型原子炉であるため、沸騰水型原子炉に比
べ、原子炉圧力を高くせざるを得ないため、原子炉圧力
容器は高圧容器となり、設備費が高い。(3) Since it is a pressurized water reactor, the reactor pressure has to be higher than that of a boiling water reactor, so the reactor pressure vessel is a high pressure vessel, resulting in high equipment costs.
本発明の目的は、沸騰水型原子炉において、一次冷却材
流出のポテンシャルを低減し、かつ異常時にはプール液
が確実に炉心部へ流入させることにある。An object of the present invention is to reduce the potential for primary coolant to flow out in a boiling water nuclear reactor, and to ensure that pool liquid flows into the reactor core in the event of an abnormality.
本発明は、前記した加圧水型原子炉構想にともなう問題
点を解決するために、原子炉圧力容器内に一次冷却材循
環回路とプール液保有部を設け、炉心を通る一次冷却材
循環回路に、弗噂水型原子炉の原理を適用したものであ
る。In order to solve the problems associated with the above-described pressurized water reactor concept, the present invention provides a primary coolant circulation circuit and a pool liquid storage section in the reactor pressure vessel, and provides a primary coolant circulation circuit that passes through the reactor core. It applies the principle of a water reactor.
すなわち本発明の特徴は、原子炉圧力容器内に、炉心を
通る一次冷却材循環流路と、プール液保有部と、該プー
ル液保有部上部に形成された蒸気相部とを設け、それら
を連通ずる通路を炉心上部と炉心下部に設置し、かつ前
記一次冷却材循環流路に各部の系と熱交換するための熱
交換器を設けたことKある。That is, a feature of the present invention is that a primary coolant circulation flow path passing through the reactor core, a pool liquid holding section, and a vapor phase section formed above the pool liquid holding section are provided in the reactor pressure vessel. A communicating passageway is installed in the upper part of the reactor core and the lower part of the reactor core, and a heat exchanger is provided in the primary coolant circulation flow path for exchanging heat with each part of the system.
炉心部で、一次冷却材が沸騰することにより、その発生
蒸気圧力で一次冷却材およびプール液の両者を同時に所
定圧力に加圧・制御でき、専用加圧装置は不要とするこ
とができる。By boiling the primary coolant in the reactor core, the generated steam pressure can simultaneously pressurize and control both the primary coolant and the pool liquid to a predetermined pressure, making it possible to eliminate the need for a dedicated pressurizing device.
炉出力制御は、炉心流量を制御しボイド発生量を制御す
ることにより行なうことができるため、前記したボロン
濃度制御装置は不要となる他、制御応答性を大幅に改善
できる。Since the reactor output can be controlled by controlling the core flow rate and the amount of void generation, the above-mentioned boron concentration control device is not required, and control responsiveness can be greatly improved.
また沸騰水型原子炉原理を用いることから、原子炉運転
圧力は加圧水型炉の場合に比べ、約半分に低圧化できる
。Furthermore, since the boiling water reactor principle is used, the reactor operating pressure can be reduced to about half that of a pressurized water reactor.
以下、本発明の一実施例を第1図により説明する。原子
炉圧力容器1の内部で、ダウンカマー2゜循環ポンプ4
、ライザー3にて一次冷却材循環回路を構成する。この
循環回路の外側には中性子吸収材であるボロンを添加し
たプール液が貯溜されている。An embodiment of the present invention will be described below with reference to FIG. Inside the reactor pressure vessel 1, the downcomer 2° circulation pump 4
, riser 3 constitutes a primary coolant circulation circuit. A pool liquid containing boron, which is a neutron absorbing material, is stored outside this circulation circuit.
循環ポンプ4によって強制循環させられる一次冷却材は
、炉心5にて加熱され沸騰状態となり気液二相流の形で
ライザー3を上昇する。ライザー3を出た二相流のうち
蒸気は蒸気相部12において上部熱交換器8にて凝縮冷
却される。また飽和水は下部熱交換器9にて冷却されサ
ブクールを得る。以上の様に一次冷却材循環回路は、原
子炉圧力容器1の内部で閉サイクルを構成しており、一
次冷却材が系外へ流出することがない様配慮されI て
いる。The primary coolant that is forcibly circulated by the circulation pump 4 is heated in the reactor core 5, reaches a boiling state, and ascends the riser 3 in the form of a gas-liquid two-phase flow. Of the two-phase flow that exits the riser 3, steam is condensed and cooled in the upper heat exchanger 8 in the vapor phase section 12. Further, the saturated water is cooled in the lower heat exchanger 9 to obtain subcooled water. As described above, the primary coolant circulation circuit constitutes a closed cycle inside the reactor pressure vessel 1, and care is taken to prevent the primary coolant from flowing out of the system.
炉心5の下部および上部には、一次冷却材側とプール液
側とを流木的に接続する下部通路6および上部通路7が
設置される。上部通路7において、一次冷却材側蒸気部
圧力がプール液側に伝達されている。下部通路6におい
ては、下式の内容に示すごとく一次冷却材側圧力とプー
ルC夜側圧力とがバランスする様配慮されており、両流
体間の流れが生じない様になっている。A lower passage 6 and an upper passage 7 are installed in the lower and upper parts of the reactor core 5 to connect the primary coolant side and the pool liquid side in a driftwood manner. In the upper passage 7, the primary coolant side steam section pressure is transmitted to the pool liquid side. In the lower passage 6, care is taken to balance the pressure on the primary coolant side and the pressure on the pool C night side, as shown in the formula below, so that no flow occurs between the two fluids.
(一次冷却材側圧力)P2=P1+ΔP(G)+ρtg
H・・−■(プール液側) P2=Pl+ρ2
gH・・・■パ・ΔP (G) = (ρ2−ρl)
gH・・・■ここで、ΔP(G)ニー次冷却材側流動圧
力損失ρ、ニー次冷却材密度
ρ2 :プール夜密度
H二上部下部通路間の位置水頭差
g :重力加速度
即ち、上記■式に示すごとく、炉心を通る一次冷却材の
鬼動にともなう圧力損失ΔP (G)と、一次冷却材と
プール液との密度差(ρl−ρ2)と上部下部通路間の
位置水頭差Hとの積とが、バランスする様配慮されてい
る。(Primary coolant side pressure) P2 = P1 + ΔP (G) + ρtg
H...-■ (Pool liquid side) P2=Pl+ρ2
gH・・・■Pa・ΔP (G) = (ρ2−ρl)
gH...■Where, ΔP(G) Flow pressure loss on the secondary coolant side ρ, Secondary coolant density ρ2: Pool night density H2 Position head difference between the upper and lower passages g: Gravitational acceleration, that is, the above ■ As shown in the equation, the pressure loss ΔP (G) due to the movement of the primary coolant passing through the reactor core, the density difference between the primary coolant and the pool liquid (ρl-ρ2), and the positional head difference H between the upper and lower passages. Care has been taken to balance the product of
今、上部熱交換器8もしくは下部熱交換器9の二次系除
熱源が喪失する様な事象を想定した場合、一次冷却材の
温度が上昇し密度が小さくなるため、■式に示した圧力
バランスがくずれ、プール液が一次冷却材循環回路内、
即ち炉心側へ流入して行くことになる。Now, if we assume an event where the secondary heat removal source of the upper heat exchanger 8 or the lower heat exchanger 9 is lost, the temperature of the primary coolant will rise and the density will decrease, so the pressure shown in equation The balance is lost and the pool liquid is in the primary coolant circulation circuit.
In other words, it will flow into the reactor core.
また、循環ポンプ4が停止する様な事象を考えた場合に
おいても、■式の圧力バランスがくずれプール液が炉心
側へ流入して行くことになる。Furthermore, even if we consider an event where the circulation pump 4 stops, the pressure balance of equation (2) will collapse and the pool liquid will flow into the reactor core.
プール液には前述のごとく中性子吸収材であるボロンを
添加しているため、プール液の流入により炉停止機能が
達成される。As mentioned above, boron, which is a neutron absorbing material, is added to the pool liquid, so the inflow of the pool liquid achieves the reactor shutdown function.
循環ポンプ4は、可変速度ポンプであり、本ポンプの回
転数を制御することにより、炉心に’FIを変化させ、
炉出力を制御することができる。The circulation pump 4 is a variable speed pump, and by controlling the rotation speed of this pump, it changes the 'FI' in the core,
Furnace output can be controlled.
炉心/i!量を変化させることにより、■式に示し九鑞
動圧力損失ΔP (G)が変化するが、本変動外は下部
通路6における一次冷却材とプール液との境界面の水位
変動分として吸収される。Core/i! By changing the amount, the dynamic pressure loss ΔP (G) shown in equation (2) changes, but the fluctuation outside of this change is absorbed as the water level fluctuation at the interface between the primary coolant and the pool liquid in the lower passage 6. Ru.
以上述べたごとく、本実施例によれば二次系の除熱源喪
失、循環ポンプの停止等考え得る事故事象に対し、物理
法則に基づいた受動的な原理を用いて安全に炉停止を達
成することができ、高安全性を有する原子炉を提供する
ことができる。As described above, according to this embodiment, reactor shutdown can be safely achieved using passive principles based on the laws of physics in response to possible accidental events such as loss of heat removal source in the secondary system and stoppage of the circulation pump. It is possible to provide a nuclear reactor with high safety.
第2図に本発明の他の実施例を示す。第1図と相違する
点は、一次冷却材の循環ポンプが無く自然循環型沸騰水
型炉であること、および下部通路6に弁11が設置され
ていることである。FIG. 2 shows another embodiment of the invention. The difference from FIG. 1 is that there is no primary coolant circulation pump and it is a natural circulation boiling water reactor, and that a valve 11 is installed in the lower passage 6.
自然循環型であることから、■式におけるΔP (G)
は非常に小さくなり、物理的な形状を考えると■式に示
す圧力バランスが成立する範囲は非常に狭いものに限定
され現実的でなくなる。そのためこの実施例においては
、弁11を設置し、一次冷却材側とプール液側とを機械
的に分離したものである。外乱が生じ、炉を停止する必
要が生じた場合、弁11を開にすることによりプール液
が炉心側へ流入し炉は停止されることKなるが、本実施
例では能動的に弁11を開にすることが不可欠であり、
第1図に示した実施例に比較すると安全性の点で劣るこ
とになる。Since it is a natural circulation type, ΔP (G) in formula ■
becomes very small, and considering the physical shape, the range in which the pressure balance shown in equation (2) is established is limited to a very narrow range and becomes unrealistic. Therefore, in this embodiment, a valve 11 is installed to mechanically separate the primary coolant side and the pool liquid side. When a disturbance occurs and it is necessary to shut down the reactor, opening the valve 11 causes the pool liquid to flow into the reactor core and shutting down the reactor. However, in this embodiment, the valve 11 is actively opened. It is essential to be open and
Compared to the embodiment shown in FIG. 1, this embodiment is inferior in terms of safety.
尚、第1図および第2図に示した構成において、原子炉
圧力容器1の内部に、二次系へ熱を移送するための上部
熱交換器8.下部熱交換器9を設置して、一次冷却材循
環回路が原子炉圧力容器内部で閉サイクルを構成する様
にし、一次冷却材の系外苑出が無い様に配慮している。In the configuration shown in FIGS. 1 and 2, an upper heat exchanger 8 is provided inside the reactor pressure vessel 1 for transferring heat to the secondary system. A lower heat exchanger 9 is installed so that the primary coolant circulation circuit forms a closed cycle inside the reactor pressure vessel, and care is taken to prevent primary coolant from leaking out of the system.
本発明によればμドの効果がちる。 According to the present invention, the effect of .mu.do is great.
(1)一次冷却材循壇回路を原子炉圧力容器内部で閉サ
イクルとして込るので、一次冷却材流出のポテンシャル
を低減でき、安全性が向上する。(1) Since the primary coolant circulation circuit is implemented as a closed cycle inside the reactor pressure vessel, the potential for primary coolant leakage can be reduced, improving safety.
(2)原子炉圧力容器内部に中性子吸収材を添加したプ
ール液を保有し、異常時には受動的原理に基づきプール
液が炉心部へ流入するようにしているから、炉停止機能
を確実に達成でき、高安全性を確保できる。(2) A pool liquid containing neutron absorbing material is kept inside the reactor pressure vessel, and in the event of an abnormality, the pool liquid flows into the reactor core based on the passive principle, so the reactor shutdown function can be reliably achieved. , high safety can be ensured.
(3)沸櫓水型原子炉の原理を用いたこと釦より、設備
の簡素化、炉出力制御性の向上、および原子炉圧°力容
器の設計圧力の低圧化により経済性を向上できる。(3) By using the principle of a boiling water reactor, economic efficiency can be improved by simplifying equipment, improving reactor output controllability, and lowering the design pressure of the reactor pressure vessel.
炉構造の概略断1百図である。 1 is a schematic cross-sectional view of the furnace structure.
Claims (1)
路と、プール液保有部と、該プール液保有部上部に形成
された蒸気相部とを設け、それらを連通する通路を、炉
心上部と炉心下部に設置し、かつ前記一次冷却材循環流
路に各部の系と熱交換するための熱交換器を設けたこと
を特徴とする沸騰水型原子炉。 2、特許請求の範囲第1項において、蒸気相部の一次冷
却材の沸騰蒸気圧力により一次冷却材とプール液とを加
圧することを特徴とする沸騰水型原子炉。 3、特許請求の範囲第2項において、一次冷却材とプー
ル液との圧力がバランスする様に蒸気相部を設置したこ
とを特徴とする沸騰水型原子炉。 4、特許請求の範囲第1項において、一次冷却材循環回
路は炉心発生熱による自然循環を形成させたことを特徴
とする沸騰水型原子炉。 5、特許請求の範囲第1項において、一次冷却材循環回
路に一次冷却材循環ポンプを設置し、強制循環としたこ
とを特徴とする沸騰水型原子炉。 6、特許請求の範囲第5項において、循環ポンプの回転
数を制御して循環流量を制御することを特徴とする沸騰
水型原子炉。 7、特許請求の範囲第4項において、炉心下部に設けた
通路に流路を遮断する弁を設置したことを特徴とする沸
騰水型原子炉。[Scope of Claims] 1. A primary coolant circulation flow path passing through the reactor core, a pool liquid holding section, and a vapor phase section formed above the pool liquid holding section are provided in the reactor pressure vessel; A boiling water nuclear reactor characterized in that passages communicating with each other are installed in the upper part of the reactor core and the lower part of the reactor core, and a heat exchanger is provided in the primary coolant circulation flow path for exchanging heat with other parts of the system. 2. A boiling water nuclear reactor according to claim 1, characterized in that the primary coolant and pool liquid are pressurized by the boiling steam pressure of the primary coolant in the vapor phase. 3. A boiling water nuclear reactor according to claim 2, characterized in that a vapor phase section is installed so that the pressures of the primary coolant and the pool liquid are balanced. 4. A boiling water nuclear reactor according to claim 1, characterized in that the primary coolant circulation circuit forms natural circulation using heat generated by the reactor core. 5. A boiling water nuclear reactor according to claim 1, characterized in that a primary coolant circulation pump is installed in the primary coolant circulation circuit to provide forced circulation. 6. A boiling water nuclear reactor according to claim 5, characterized in that the circulation flow rate is controlled by controlling the rotation speed of a circulation pump. 7. A boiling water nuclear reactor according to claim 4, characterized in that a valve for shutting off a flow path is installed in a passage provided in the lower part of the reactor core.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60246175A JPS62106395A (en) | 1985-11-05 | 1985-11-05 | Boiling water type reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60246175A JPS62106395A (en) | 1985-11-05 | 1985-11-05 | Boiling water type reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62106395A true JPS62106395A (en) | 1987-05-16 |
Family
ID=17144629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60246175A Pending JPS62106395A (en) | 1985-11-05 | 1985-11-05 | Boiling water type reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62106395A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7736440B2 (en) | 2000-08-08 | 2010-06-15 | Ebara Corporation | Method and apparatus for preventing adherence of solid products in gas exhaust pipe and exhaust gas abatement device with same apparatus |
-
1985
- 1985-11-05 JP JP60246175A patent/JPS62106395A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7736440B2 (en) | 2000-08-08 | 2010-06-15 | Ebara Corporation | Method and apparatus for preventing adherence of solid products in gas exhaust pipe and exhaust gas abatement device with same apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4762667A (en) | Passive reactor auxiliary cooling system | |
US20020122526A1 (en) | Nuclear reactor | |
KR870008334A (en) | Manual safety system for pressurized water reactor | |
US3392087A (en) | Heterogeneous nuclear reactor of the pressure vessel type | |
JPH03502005A (en) | Full-pressure passive emergency core cooling and residual heat removal equipment for water-cooled reactors | |
US9431136B2 (en) | Stable startup system for nuclear reactor | |
JPS62200292A (en) | Emergency core cooling device | |
CA1064167A (en) | Nuclear reactor core flow baffling | |
JPS62106395A (en) | Boiling water type reactor | |
JP2899979B2 (en) | High temperature gas furnace | |
CN205920763U (en) | A reactor core moisturizing case for nuclear power station | |
JPH067180B2 (en) | Reactor with integrated pressure vessel structure | |
US4613478A (en) | Plenum separator system for pool-type nuclear reactors | |
US3276964A (en) | Segmented nuclear reactor core having pivotable outer control assemblies | |
JPS62204193A (en) | Method of controlling natural circulation type boiling watertype reactor | |
US4557891A (en) | Pressurized water reactor flow arrangement | |
JPS591995B2 (en) | water cooled reactor | |
GB2225476A (en) | Nuclear reactor | |
WO1991004560A1 (en) | Nuclear reactor cooling system | |
JPH01123196A (en) | Apparatus for suppressing passage flow rate of density difference lock for nuclear reactor | |
JPS6273191A (en) | Magneto hydrodynamic stop and liquid metal cooling tank typefast reactor using said stop | |
JPS604883A (en) | Upper mechanism of core | |
JPS60235092A (en) | Emergency core cooling device for nuclear reactor | |
JPS6055796B2 (en) | pressure tube reactor | |
JPH0326996A (en) | Pressure vessel with built-in emergency core cooling system |