JPH0326996A - Pressure vessel with built-in emergency core cooling system - Google Patents

Pressure vessel with built-in emergency core cooling system

Info

Publication number
JPH0326996A
JPH0326996A JP1160771A JP16077189A JPH0326996A JP H0326996 A JPH0326996 A JP H0326996A JP 1160771 A JP1160771 A JP 1160771A JP 16077189 A JP16077189 A JP 16077189A JP H0326996 A JPH0326996 A JP H0326996A
Authority
JP
Japan
Prior art keywords
cooling water
pressure vessel
reactor
partition
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1160771A
Other languages
Japanese (ja)
Inventor
Shiyouichirou Kinoshita
木下 詳一郎
Minoru Akita
実 秋田
Masato Koshiishi
正人 越石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1160771A priority Critical patent/JPH0326996A/en
Publication of JPH0326996A publication Critical patent/JPH0326996A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To attain simplification of a facility by reseving cooling water between a reactor pressure vessel and a partition provided in the inside thereof. CONSTITUTION:A partition 13 is provided in the inside of a reactor pressure vessel 1 to reserve cooling water 7 in a space formed between the vessel 1 and the partition 13 and a reactor core 6 in a primary cooling circuit can be immersed by its quantity of the cooling water. In addition, a small hole 8 is drilled on the upper part of the partition 13 to communicate a steam phase of a primary coolant circuit and a cooling water supply side steam phase each other to provide a rupture disc 9 on the lower part of the partition 13 so as to isolate the cooling water 7 and the primary coolant circuit each other. And at the time of an accident, for instance, in a case where main steam tubing 3 connected to the vessel 1 is broken, the pressure at the side of the primary coolant circuit lowers suddenly to break the disc 9 so as to allow the cooling water 7 to flow in the reactor core 6 since the pressure in the side of the cooling water 7 lowers slowly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は沸騰水型原子炉、ならびに、蒸気冷却型原子炉
の非常用炉心冷却設備に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to emergency core cooling equipment for boiling water nuclear reactors and steam cooled nuclear reactors.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭61− 213792号公報に記
載のように、炉心より発生する熱を移送する一次冷却材
回路とこれを取りまく冷却水プールは流体力学的な圧力
均衡によってロックされるハイドロウリツクロックを備
えることにより、しゃ断されている.これは一次冷却材
循環ポンプ停止等の事象が発生した場合に、流体力学的
な圧力均衡が崩れることにより、冷却水プール側から一
次冷却材回路側へ冷却水が流入し、大量の水によって炉
心を冷却するようにしたものである。
In the conventional system, as described in Japanese Patent Application Laid-Open No. 61-213792, the primary coolant circuit that transfers heat generated from the core and the cooling water pool surrounding it are hydrodynamically locked by hydrodynamic pressure balance. This is cut off by the provision of a Uritsu clock. This is because when an event such as the primary coolant circulation pump stops, the hydrodynamic pressure balance is disrupted and cooling water flows from the cooling water pool side to the primary coolant circuit side, causing a large amount of water to flow into the reactor core. It is designed to cool the air.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の特開昭61− 213792号公報にて開示され
ている技術では,一次冷却材回路を、巨大なプール状の
圧力容器内に水没させているため、圧力容器が巨大なも
のとなり、プラントの建設工程ならびに経済性の観点か
ら、実現性に乏しいという問題があった。
In the technology disclosed in JP-A No. 61-213792, the primary coolant circuit is submerged in a huge pool-shaped pressure vessel, which makes the pressure vessel huge and causes problems for the plant. There was a problem with the lack of feasibility in terms of the construction process and economic efficiency.

さらに、従来技術では、ハイドロウリツクロックなる高
温流体と低温流体の密度差と一次冷却材回路の内外圧力
均衡を利用しているため,原子炉の運転状態の変動によ
り,ロック機構が崩れる恐れがある,さらに,従来技術
では通常運転時に炉心での安定な流動状態,即ち,単相
流での流動状態となる加圧木型原子炉にしか適用できな
い。また,沸騰水型原子炉のように二相流での流動状態
の原子炉には適用が困難という問題もある。
Furthermore, because the conventional technology uses the density difference between the high-temperature fluid and the low-temperature fluid (hydraulic lock) and the internal and external pressure balance of the primary coolant circuit, there is a risk that the lock mechanism will collapse due to fluctuations in the operating status of the reactor. Moreover, the conventional technology can only be applied to pressurized wooden reactors that have a stable flow state in the core during normal operation, that is, a single-phase flow state. Another problem is that it is difficult to apply to reactors with two-phase flow, such as boiling water reactors.

cmsを解決するための手段〕 本発明では従来の三課題を解決するために圧力容器内部
に隔壁を設け、隔壁と圧力容器で形成される空間内に冷
却水を貯留しておくことにより、一次冷却材回路を巨大
なプール内に水没させる様な必要性をなくしたものであ
る。
[Means for solving cms] In order to solve the three conventional problems, the present invention provides a partition inside the pressure vessel and stores cooling water in the space formed by the partition and the pressure vessel. This eliminates the need to submerge the coolant circuit in a huge pool.

また、本発明では一次冷却材回路とこれをとりまく冷却
水は隔壁,および、隔壁に取付けられたラプチャディス
クにより物理的に隔離されているため一次冷却材回路の
流動状態によって隔離機能が喪失するような事態は生じ
ない. さらに,上述のように本発明では一次冷却材回路の流動
状態、即ち、単相流流動ないし、二相流流動によらず隔
壁は安定に隔離機能をもつため、加圧水型原子炉,沸騰
水型原子炉のみならず蒸気冷却式高転換型原子炉にも適
用が可能である。
Furthermore, in the present invention, the primary coolant circuit and the cooling water surrounding it are physically isolated by the partition wall and the rupture disk attached to the partition wall, so that the isolation function may be lost depending on the flow state of the primary coolant circuit. No such situation will occur. Furthermore, as mentioned above, in the present invention, the partition wall has a stable isolation function regardless of the flow state of the primary coolant circuit, that is, single-phase flow or two-phase flow, so that it can be used in pressurized water reactors, boiling water reactors, It can be applied not only to nuclear reactors but also to steam-cooled high conversion reactors.

〔作用〕[Effect]

第2図に本発明の概要断面図を示す。本発明では.yX
子炉圧力容器lの内部に隔壁工3を設け、隔壁13と原
子炉圧力容器の内壁との間で形或される空間内に冷却水
7を貯留している。隔壁の上部には小孔を設け原子炉ド
ーム部l9と冷却水7側の圧力を均圧している.また、
隔壁の下部には所定の差圧が作用すると破裂するラプチ
ャディスク9を設ける. 原子炉の通常運転状態では原子炉ドーム部19側の圧力
と冷却水7側の圧力は小孔8を通して均圧されており、
ラプチャディスク9には殆んど圧力は作用せず,ラプチ
ャディスク9を介して一次冷却材回路と冷却水7は隔離
されている.ここで、原子炉圧力容器工に接続する配管
、例えば、主蒸気配管3が破断したような事態が発生し
た場合、破断口を通じて一次冷却材回路の冷却材が原子
炉圧力容器外へ放出されるため、一次冷却材回路側の圧
力は急激に低下していく。
FIG. 2 shows a schematic sectional view of the present invention. In the present invention. yX
A partition wall 3 is provided inside the sub-reactor pressure vessel l, and cooling water 7 is stored in a space formed between the partition wall 13 and the inner wall of the reactor pressure vessel. A small hole is provided at the top of the bulkhead to equalize the pressure between the reactor dome l9 and the cooling water 7 side. Also,
A rupture disk 9 is provided at the bottom of the partition wall, which ruptures when a predetermined differential pressure is applied. In the normal operating state of the reactor, the pressure on the reactor dome 19 side and the pressure on the cooling water 7 side are equalized through the small holes 8.
Almost no pressure acts on the rupture disk 9, and the primary coolant circuit and the cooling water 7 are isolated via the rupture disk 9. Here, in the event that a pipe connected to the reactor pressure vessel works, for example, the main steam pipe 3, ruptures, the coolant in the primary coolant circuit will be released outside the reactor pressure vessel through the rupture port. Therefore, the pressure on the primary coolant circuit side rapidly decreases.

一方,冷却水7側の圧力も小孔8を通じて一次冷却材回
路と連通しているため圧力が低下していくが、冷却水側
からの蒸気の放出は小孔8によって制限されるため、圧
力の低下度合は、一次冷却材回路側の低下度合よりも小
さい。この現象を第3図に示している.第3図より一次
冷却材側の圧力11は配管破断が生じた場合、急激に減
少するのに対して、冷却水側の圧力10は小孔からの蒸
気流出制限があるため減圧速度はゆるやかで、圧力は高
いまま維持される。
On the other hand, the pressure on the cooling water 7 side also decreases because it communicates with the primary coolant circuit through the small holes 8, but the release of steam from the cooling water side is restricted by the small holes 8, so the pressure decreases. The degree of decrease is smaller than the degree of decrease on the primary coolant circuit side. This phenomenon is shown in Figure 3. Figure 3 shows that the pressure 11 on the primary coolant side decreases rapidly when a pipe rupture occurs, whereas the pressure 10 on the cooling water side decreases slowly due to restrictions on steam outflow from the small holes. , the pressure remains high.

従って,ラプチャディスクに差圧が生じることにより、
ラプチャディスクが破裂し、冷却水が炉心へ流入し,炉
心冷却、及び,冠水を行なうものである。
Therefore, due to the differential pressure generated across the rupture disk,
The rupture disk ruptures and cooling water flows into the core, cooling the core and flooding it.

本発明では、一次冷却材回路と冷却水側の圧力が急激に
変化する事態以外にはラプチャディスクは破裂しないた
め,原子炉の起動停止時のゆるやかな圧力上昇、圧力下
降時には誤動作するようなことはない. 〔実施例〕 以下、本発明の一実施例を第1図により説明する.第1
図は沸騰水型原子炉圧力容器のダウンカマ部2の外側に
隔壁13を設け、隔壁13の上部に取付けた小孔8を介
して一次冷却材回路の蒸気相と冷却水側蒸気相を連通し
たものである。隔壁13と原子炉圧力容器内壁で形成さ
れる空間に貯留される冷却水は一次冷却回路内に位置す
る炉心を水没できる水量以上の水を炉心上端部20より
高位置の部分に貯留している,これにより、圧力容器に
接続する配管破断が生じた場合に、炉心6を冠水するこ
とができる. ここで、圧力容器に接続する大口径の配管の破断の場合
は,炉圧が急激に減少していくが小口径の配管破断の際
には、原子炉水位は低下していくものの圧力の低下率は
小さいため、一次冷却材回路側と冷却水側の差圧が生じ
にくくなるため,この場合に対応できる様に,逃がし安
全弁14を自動的に開放する自動減圧設備を設け原子炉
水位低、ないしは、格納容器圧力高信号により、原子炉
圧力を強制的に減圧し、冷却水を炉心へ流入させ,原子
炉水位を回復させる. 本実施例によれば、従来の沸騰水型原子炉圧力容器より
多少大きな圧力容器形状となるものの、従来、非常用デ
ィーゼル発電機、電動ポンプ,配管,弁類で構成されて
いた非常用炉心冷却設備を削除することができ、安全設
備のS素化を図ることができる。また、本実施例では全
ての構或要素は、隔壁、小孔,ラプチャディスクなど静
的機器のみであるため、信頼性を向上させることが可能
である. さらに,本実施例では,炉心の外周部に冷却水を貯留す
るため,この冷却水がしやへい材としての機能を果し,
yX子炉圧力容器への中性子照射量を低減することがで
き、圧力容器材料の照射脆化呪象を緩和することも可能
である。
In the present invention, the rupture disk will not rupture except in situations where the pressure on the primary coolant circuit and the cooling water side changes rapidly, so there is no possibility of malfunctions occurring during gradual pressure rises or pressure drops during reactor startup and shutdown. No. [Example] An example of the present invention will be described below with reference to FIG. 1st
The figure shows a partition wall 13 provided on the outside of the downcomer section 2 of a boiling water reactor pressure vessel, and the vapor phase of the primary coolant circuit and the vapor phase of the cooling water side communicated through a small hole 8 attached to the top of the partition wall 13. It is something. The amount of cooling water stored in the space formed by the bulkhead 13 and the inner wall of the reactor pressure vessel is greater than the amount of water that can submerge the reactor core located in the primary cooling circuit, and is stored in a portion higher than the upper end 20 of the reactor core. This allows the reactor core 6 to be submerged in water in the event of a pipe rupture connecting to the pressure vessel. Here, in the case of a rupture in a large-diameter pipe connected to a pressure vessel, the reactor pressure will rapidly decrease, but in the case of a rupture in a small-diameter pipe, the reactor water level will drop, but the pressure will drop. Since the rate is small, a pressure difference between the primary coolant circuit side and the cooling water side is less likely to occur.In order to cope with this situation, automatic depressurization equipment that automatically opens the relief safety valve 14 is installed to prevent the reactor water level from being low. Alternatively, the reactor pressure is forcibly reduced using a high containment vessel pressure signal, allowing cooling water to flow into the reactor core and restoring the reactor water level. According to this embodiment, although the pressure vessel is somewhat larger in shape than the conventional boiling water reactor pressure vessel, it is possible to cool the emergency core, which was previously composed of an emergency diesel generator, electric pump, piping, and valves. Equipment can be deleted, and safety equipment can be made S-based. Furthermore, in this embodiment, all structural elements are static devices such as partition walls, small holes, and rupture disks, so reliability can be improved. Furthermore, in this example, since cooling water is stored in the outer periphery of the core, this cooling water functions as a damping material.
It is possible to reduce the amount of neutron irradiation to the yX nuclear reactor pressure vessel, and it is also possible to alleviate the irradiation embrittlement curse of the pressure vessel material.

第4図は本発明の他の実施例である。本実施例も前述の
実施例と同じく沸騰水型原子炉に本発明を適用したもの
であるが、圧力容器内の炉心シュラウ下l3と圧力容器
内壁の間のダウンカマ部を周方向に仕切板18で分割し
、一部を一次冷却回路として原子炉冷却材が循環する流
路として利用し、残りの部分を一次冷却回路と隔離して
冷却水貯留空間とじτ、使用するものである。冷却水貯
留空間には前述の実施例と同じく原子炉ドーム部と冷却
水貯留空間蒸気相部を連通ずる小孔8を設けるとともに
下部にはラプチャディスクを配置している. 本実施例によると、ダウンカマ部の一部を冷却水貯留空
間として使用するため、第3図に示す実施例に比べて、
原子炉圧力容器の内径を小さくすることができるのが特
徴である. 第1図及び第4図に示す実施例では一次冷却材回路と冷
却水はラプチャディスク9によって完全に隔離されてい
るため,両流体が混合することがない.従って、貯留す
る冷却水にほう酸水等の中性子吸収材を充てんしておけ
ば、万一の事故の際にほう酸水を試水へ注入することが
できるため、制御捧挿入に加えて原子炉停止機能のバッ
クアップを行なうこともできる。
FIG. 4 shows another embodiment of the invention. This embodiment also applies the present invention to a boiling water reactor like the previous embodiments, but a partition plate 18 is provided in the circumferential direction of the downcomer between the lower core shrou 13 in the pressure vessel and the inner wall of the pressure vessel. A part of the reactor coolant is used as a flow path for circulating reactor coolant as a primary cooling circuit, and the remaining part is used as a cooling water storage space isolated from the primary cooling circuit. As in the previous embodiment, the cooling water storage space is provided with a small hole 8 that communicates the reactor dome with the steam phase part of the cooling water storage space, and a rupture disk is placed at the bottom. According to this embodiment, a part of the downcomer section is used as a cooling water storage space, so compared to the embodiment shown in FIG.
The feature is that the inner diameter of the reactor pressure vessel can be made smaller. In the embodiment shown in FIGS. 1 and 4, the primary coolant circuit and the cooling water are completely separated by the rupture disk 9, so that the two fluids do not mix. Therefore, if the stored cooling water is filled with a neutron absorbing material such as boric acid water, boric acid water can be injected into the test water in the event of an accident, and in addition to inserting a control plug, it is possible to shut down the reactor. You can also back up the functionality.

第5図は蒸気冷却式高転換炉に本概念を適用した実施例
を示している。本実施例の場合も第3図及び第4図と同
じく,圧力容器内隔壁上部に小孔を、また,下部にラプ
チャディスクを設けているが、蒸気冷却炉の場合、一次
冷却材回路側は蒸気であるため、ラプチャディスクにラ
プチャディスクと冷却水水面間の水頭差が、常に、差圧
として作用していることになる.従って、この場合には
前記の沸騰水型炉の場合に比べてラプチャディスクの破
裂設定圧力を水頭差分だけ高めに設定しておいて通常の
運転時にラプチャディスクが破裂しないようにしておく
FIG. 5 shows an embodiment in which this concept is applied to a steam-cooled high conversion reactor. In the case of this embodiment, as in Figures 3 and 4, a small hole is provided in the upper part of the partition wall inside the pressure vessel, and a rupture disk is provided in the lower part, but in the case of a steam-cooled furnace, the primary coolant circuit side is Since it is steam, the difference in water head between the rupture disk and the cooling water surface always acts on the rupture disk as differential pressure. Therefore, in this case, the rupture setting pressure of the rupture disk is set higher than that of the boiling water reactor by the water head difference to prevent the rupture disk from rupturing during normal operation.

第6図はラプチャディスクの代りに冷却水側から一次冷
却回路側への流れを形戒する逆止弁を設けた実施例であ
る。本実施例によれば、逆止弁の閉止力を得るために一
次冷却回路の水位、即ち、炉水位を、非常用炉心冷却水
の水位より高くしておく,これにより、水頭差によって
逆止弁の閉止を行なっておく. 〔発明の効果〕 本発明によれば、事故時の炉心への冷却水の注入を圧力
容器ドーム部と冷却水貯留部の圧力差を駆動源として行
なうため、ポンプ等の昇圧用機器が不要となっている.
さらに、蓄圧器のように窒素ガスの様な加圧設備も不要
であり、設備の簡素化を図ることができる. さらに、炉心の外周部分に水じゃへい材を追加すること
になるため、圧力容器内壁への中性子照射量を低減する
ことができ、圧力容器材料の中性子照射脆化寿命の延長
に寄与することもできる。
FIG. 6 shows an embodiment in which a check valve for controlling the flow from the cooling water side to the primary cooling circuit side is provided in place of the rupture disk. According to this embodiment, in order to obtain the closing force of the check valve, the water level of the primary cooling circuit, that is, the reactor water level, is made higher than the water level of the emergency core cooling water. Keep the valve closed. [Effects of the Invention] According to the present invention, since cooling water is injected into the reactor core in the event of an accident using the pressure difference between the pressure vessel dome and the cooling water reservoir as a driving source, pressure boosting equipment such as pumps is not required. It has become.
Furthermore, there is no need for pressurizing equipment such as nitrogen gas such as a pressure accumulator, and the equipment can be simplified. Furthermore, since a water barrier material will be added to the outer periphery of the reactor core, the amount of neutron irradiation to the inner wall of the pressure vessel can be reduced, contributing to the extension of the neutron irradiation embrittlement life of the pressure vessel material. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を沸騰水型原子炉に適用した
場合の断面図、第2図は本発明の概要を表わす断面図、
第3図は本発明における原子炉ド一ム圧力と冷却水貯留
空間内圧力挙動を示す特性図、第4図はBWRに適用し
た本発明の他の実施例の断面図、第5図は蒸気冷却炉に
適用した実施例の系統図、第6図は本発明のさらに他の
実施例の断面図である。 1・・・涼子炉圧力容器、2・・・ダウンカマ、3・・
・主蒸気配管、4・・・給水配管、5・・・ドライヤ、
6・・・炉心,7・・・非常用炉心冷却水、8・・・小
孔、9・・・ラプチャ茶2 ロ $3 第4口 (aノ (の l 乙 口 1(−A軒め \ 7クリBin
FIG. 1 is a sectional view of an embodiment of the present invention applied to a boiling water reactor, FIG. 2 is a sectional view showing an overview of the present invention,
Fig. 3 is a characteristic diagram showing the reactor dom pressure and cooling water storage space pressure behavior in the present invention, Fig. 4 is a sectional view of another embodiment of the present invention applied to BWR, and Fig. 5 is a steam A system diagram of an embodiment applied to a cooling furnace, and FIG. 6 is a sectional view of still another embodiment of the present invention. 1... Ryoko furnace pressure vessel, 2... Downcomer, 3...
・Main steam piping, 4... Water supply piping, 5... Dryer,
6...Reactor core, 7...Emergency core cooling water, 8...Small hole, 9...Rapcha tea 2 Ro $3 4th mouth (a no (l) Otsu mouth 1 (-A \ 7 chestnut Bin

Claims (1)

【特許請求の範囲】 1、原子炉圧力容器内に隔壁を設け、隔壁と圧力容器内
壁で形成される空間内に冷却水を貯留したことを特徴と
する非常用炉心冷却設備。 2、請求項1の前記隔壁の上部に前記圧力容器に接続す
る最小口径の配管内径より小さい小孔を設け前記隔壁内
外の圧力を均圧させることを特徴とする原子炉圧力容器
内隔壁。 3、請求項1または2の前記隔壁の下部に破裂板を設け
たことを特徴とする非常用炉心冷却設備。 4、請求項1または2の前記隔壁の下部に前記隔壁と前
記圧力容器の内壁で形成される空間から前記原子炉の冷
却材側へ流入する流路を形成する逆止弁を設けたことを
特徴とする非常用炉心冷却設備。 5、請求項1の前記空間内に貯留する冷却水にほう酸水
を添加したことを特徴とする非常用炉心冷却設備。
[Scope of Claims] 1. An emergency core cooling facility characterized in that a partition is provided within a reactor pressure vessel, and cooling water is stored in a space formed by the partition and the inner wall of the pressure vessel. 2. The internal partition wall of a nuclear reactor pressure vessel according to claim 1, wherein a small hole smaller than the inner diameter of a minimum diameter pipe connected to the pressure vessel is provided in the upper part of the partition wall to equalize the pressure inside and outside the partition wall. 3. An emergency core cooling facility, characterized in that a rupture disc is provided at the lower part of the partition wall according to claim 1 or 2. 4. According to claim 1 or 2, a check valve is provided at the lower part of the partition wall to form a flow path flowing from the space formed by the partition wall and the inner wall of the pressure vessel to the coolant side of the reactor. Features of emergency core cooling equipment. 5. An emergency core cooling facility characterized in that boric acid water is added to the cooling water stored in the space according to claim 1.
JP1160771A 1989-06-26 1989-06-26 Pressure vessel with built-in emergency core cooling system Pending JPH0326996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1160771A JPH0326996A (en) 1989-06-26 1989-06-26 Pressure vessel with built-in emergency core cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1160771A JPH0326996A (en) 1989-06-26 1989-06-26 Pressure vessel with built-in emergency core cooling system

Publications (1)

Publication Number Publication Date
JPH0326996A true JPH0326996A (en) 1991-02-05

Family

ID=15722103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1160771A Pending JPH0326996A (en) 1989-06-26 1989-06-26 Pressure vessel with built-in emergency core cooling system

Country Status (1)

Country Link
JP (1) JPH0326996A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6928133B2 (en) * 2003-04-08 2005-08-09 Korea Atomic Energy Research Institute Pressurized light water reactor having flow converting grooves for emergency core cooling water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6928133B2 (en) * 2003-04-08 2005-08-09 Korea Atomic Energy Research Institute Pressurized light water reactor having flow converting grooves for emergency core cooling water

Similar Documents

Publication Publication Date Title
JP4675926B2 (en) Boiling water reactor
US9318225B2 (en) Reactor containment vessel and boiling water reactor power plant
EP2366180B1 (en) Steam generator flow by-pass system
US5102616A (en) Full pressure passive emergency core cooling and residual heat removal system for water cooled nuclear reactors
US4473528A (en) Passive containment system
WO2010038358A1 (en) Pressurized water nuclear power plant
US4587079A (en) System for the emergency cooling of a pressurized water nuclear reactor core
JPS62187291A (en) Passive safety device for nuclear reactor
US11043310B2 (en) Valve assembly with isolation valve vessel
JPH0666985A (en) Method for reducing leakage from heat-transfer pipe of pressurized water reactor and steam generator
KR101785460B1 (en) Safety injection system and nuclear power plant having the same
US20220367076A1 (en) Passive containment cooling system for a nuclear reactor
US4239596A (en) Passive residual heat removal system for nuclear power plant
EP4128279B1 (en) Reactor control device
EP2270815A2 (en) Nuclear reactor with inherent shutdown and associated control method
JPH0326996A (en) Pressure vessel with built-in emergency core cooling system
US4728480A (en) Apparatus and method for refurbishing a spectral shift mechanism for a nuclear reactor fuel assembly
JPH05142380A (en) Emergency core cooling system
WO2021138806A1 (en) Safety system for handling severe accident of nuclear power plant and control method therefor
JP2020165660A (en) Atws countermeasure facility and natural circulation type boiling water reactor including the same
RU2776024C1 (en) Method for passive cooldown of reactor plant with reactor under pressure
JPS62148890A (en) Cooling spray system of container for nuclear reactor
JP2823984B2 (en) Containment vessel cooling system
JPH07159581A (en) Atomic reactor cooling facility
JP2918353B2 (en) Reactor containment vessel