JP2020165660A - Atws countermeasure facility and natural circulation type boiling water reactor including the same - Google Patents

Atws countermeasure facility and natural circulation type boiling water reactor including the same Download PDF

Info

Publication number
JP2020165660A
JP2020165660A JP2019063392A JP2019063392A JP2020165660A JP 2020165660 A JP2020165660 A JP 2020165660A JP 2019063392 A JP2019063392 A JP 2019063392A JP 2019063392 A JP2019063392 A JP 2019063392A JP 2020165660 A JP2020165660 A JP 2020165660A
Authority
JP
Japan
Prior art keywords
atws
reactor
countermeasure
chimni
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019063392A
Other languages
Japanese (ja)
Other versions
JP7105719B2 (en
Inventor
隆久 松崎
Takahisa Matsuzaki
隆久 松崎
智彦 池側
Tomohiko Ikegawa
智彦 池側
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2019063392A priority Critical patent/JP7105719B2/en
Publication of JP2020165660A publication Critical patent/JP2020165660A/en
Application granted granted Critical
Publication of JP7105719B2 publication Critical patent/JP7105719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

To provide a countermeasure facility of anticipated transient without scram (ATWS) and a natural circulation type boiling water reactor including the facility, which improve safety of a plant by efficiently reducing output of all fuel assemblies when ATWS occurs and which do not require reinforcement of a cooling system and high pressure resistance of a reactor pressure vessel and a reactor containment vessel.SOLUTION: An ATWS countermeasure facility includes: communication flow channels 6 which are partially provided outside a reactor pressure vessel 1 and which allow the inside of a chimney 7 and the outside of a shroud wall 4 to communicate with each other; and bypass valves 24 which are provided at the communication flow channels 6 outside the reactor pressure vessel 1 and which control flow of cooling water in the communication flow channels 6.SELECTED DRAWING: Figure 1

Description

本発明は、ATWS対策設備やそれを備えた自然循環型沸騰水型原子炉に関する。 The present invention relates to ATWS countermeasure equipment and a natural circulation type boiling water reactor equipped with the same.

コンパクトで経済的な原子力発電プラントの一例として、特許文献1には、原子炉圧力容器の内底部に、炉心支持板、上部格子板およびこれらによって支持された燃料集合体からなる炉心を設け、上部格子板上に制御棒案内筒および炉心シュラウドを配置し、さらにその上方に制御棒駆動機構を設けることにより、制御棒を炉心の上部から挿入し得るとともに、制御棒案内筒のチムニ効果によって冷却水の炉内自然循環を可能とする、ことが記載されている。 As an example of a compact and economical nuclear power plant, Patent Document 1 provides a core composed of a core support plate, an upper lattice plate, and a fuel assembly supported by these at the inner bottom of the reactor pressure vessel, and provides an upper portion. By arranging the control rod guide cylinder and core shroud on the lattice plate and further providing the control rod drive mechanism above it, the control rod can be inserted from the upper part of the core, and the cooling water is cooled by the chimni effect of the control rod guide cylinder. It is stated that it enables natural circulation in the reactor.

特開2002−122686号公報JP-A-2002-122686

沸騰水型原子炉では炉心の発熱により冷却水を沸騰させることで蒸気を発生させ、その蒸気をタービンに送って発電する。 In a boiling water reactor, steam is generated by boiling cooling water due to the heat generated by the core, and the steam is sent to a turbine to generate electricity.

一般的な沸騰水型原子炉では、原子炉圧力容器内の水を循環させて炉心に供給する再循環ポンプを設けて、この再循環ポンプを電力で動かすことにより炉心に冷却水を供給する。 In a general boiling water reactor, a recirculation pump that circulates water in the reactor pressure vessel and supplies it to the core is provided, and the recirculation pump is operated by electric power to supply cooling water to the core.

一方、自然循環型沸騰水型原子炉は、原子炉圧力容器内の炉心の発熱により発生した蒸気が混じった水と、原子炉圧力容器内のシュラウド壁外側のダウンカマ領域の沸騰していない水(蒸気が混じっていない水)との密度の差(自然循環力)によって冷却水が循環する原子炉であり、再循環ポンプが必要ない、との利点を有している。このため、一般的な沸騰水型原子炉に比べてコストを削減できる。 On the other hand, in the natural circulation type boiling water reactor, water mixed with steam generated by the heat generated by the core inside the reactor pressure vessel and non-boiling water in the down-kama region outside the shroud wall inside the reactor pressure vessel ( It is a nuclear reactor in which cooling water circulates due to the difference in density (natural circulation force) from water without steam), and has the advantage of not requiring a recirculation pump. Therefore, the cost can be reduced as compared with a general boiling water reactor.

このような自然循環型沸騰水型原子炉では、自然循環力を増加させる目的で、炉心上部、かつ先述のシュラウド壁内側にチムニという多数の筒状の構造物が並んでいる領域を設けている。チムニの設置により、このチムニの高さの分だけシュラウド壁内外で密度の差がある領域が拡大し、冷却水流量が増加する。 In such a natural circulation type boiling water reactor, for the purpose of increasing the natural circulation force, an area is provided in the upper part of the core and inside the shroud wall described above in which a large number of tubular structures called chimni are lined up. .. By installing the chimni, the area where there is a difference in density inside and outside the shroud wall is expanded by the height of this chimni, and the cooling water flow rate increases.

沸騰水型原子炉では、一般的に冷却水流量が増加すると出力が増加し、冷却水流量が減少すると出力が減少するという特性があるため、冷却水流量が増加させることで運転時の出力を増加させることができる。 Boiling water reactors generally have the characteristic that the output increases as the cooling water flow rate increases, and the output decreases as the cooling water flow rate decreases. Therefore, increasing the cooling water flow rate increases the output during operation. Can be increased.

原子力プラントでは、プラントの一部に不具合が生じた場合などプラントを停止させる必要が生じた場合、制御棒を炉心に挿入することで核分裂反応を停止させる。 In a nuclear power plant, when it becomes necessary to stop the plant, such as when a part of the plant malfunctions, the fission reaction is stopped by inserting control rods into the core.

また、非常に低い確率ではあるが、制御棒の挿入に失敗した場合(以下、ATWS:Anticipated Transient Without Scramと呼ぶ)の後備の反応度制御系として、ホウ酸水注入系により炉内にホウ酸水を注入し、炉心の反応を停止させる。 In addition, although it is a very low probability, boric acid is introduced into the reactor by a boric acid water injection system as a reactivity control system for the preparation when the control rod insertion fails (hereinafter referred to as ATWS: Anticipated Transient Without Sclam). Inject water to stop the core reaction.

ホウ酸水注入系によるホウ酸水の注入が完了するまでには、制御棒の挿入と比較して時間が掛かる。そのため、従来の再循環ポンプを備えた沸騰水型原子炉ではポンプを停止させ、炉心を流れる冷却水の流量を減少させる必要がある。冷却水の流量を減少させた場合、炉心での冷却水の沸騰が促進され、炉心に負の反応度が投入されることで出力が減少し、現象が緩和される。 It takes time to complete the injection of boric acid water by the boric acid water injection system as compared with the insertion of the control rods. Therefore, in a conventional boiling water reactor equipped with a recirculation pump, it is necessary to stop the pump and reduce the flow rate of the cooling water flowing through the core. When the flow rate of the cooling water is reduced, the boiling of the cooling water in the core is promoted, and the negative reactivity is applied to the core to reduce the output and alleviate the phenomenon.

一方、自然循環型沸騰水型原子炉は再循環ポンプを持たないため、冷却水流量をコントロールして出力を低下させることができない。そこで、このような事象に備えるために、ホウ酸水の注入系を強化したり、冷却系を強化したり、原子炉圧力容器や原子炉格納容器の耐圧を高めたりする必要があるが、これらにはコストが掛かる。 On the other hand, since the natural circulation type boiling water reactor does not have a recirculation pump, the cooling water flow rate cannot be controlled to reduce the output. Therefore, in order to prepare for such an event, it is necessary to strengthen the boric acid water injection system, strengthen the cooling system, and increase the pressure resistance of the reactor pressure vessel and the reactor containment vessel. Is costly.

そこで、これらの対策の必要性を無くしコスト低減を図るため、ATWS発生時に冷却水流量を減少させ、出力を減少させる機構として特許文献1のような機構がある。 Therefore, in order to eliminate the need for these measures and reduce costs, there is a mechanism as described in Patent Document 1 as a mechanism for reducing the cooling water flow rate and the output when ATWS occurs.

特許文献1では、炉心上部に制御棒案内筒を設け、この筒をチムニとして利用し、ATWS発生時にこのチムニ内部からダウンカマ領域へ冷却水をバイパスすることでATWS発生時に冷却水流量を減少させ、出力を減少させている。 In Patent Document 1, a control rod guide cylinder is provided in the upper part of the core, and this cylinder is used as a chimni. When ATWS occurs, the cooling water is bypassed from the inside of the chimni to the down-kama region to reduce the cooling water flow rate when ATWS occurs. The output is decreasing.

自然循環型沸騰水型原子炉において、ATWSが発生した場合に冷却水流量を減少させ、出力を減少させるために、特許文献1では、冷却水を制御棒案内筒を兼ねているチムニをバイパスさせることで冷却水流量を減少させている。 In a naturally circulating boiling water reactor, in order to reduce the cooling water flow rate and reduce the output when ATWS occurs, in Patent Document 1, the cooling water bypasses the chimni that also serves as the control rod guide tube. This reduces the cooling water flow rate.

そのために、この特許文献1では、シュラウドヘッド部分の内側から外側へ貫通するパイプ等の流路を設け、この流路のダウンカマ部側に任意に開放できる原子炉圧力容器内蔵弁を取付けることが記載されている。 Therefore, Patent Document 1 describes that a flow path such as a pipe penetrating from the inside to the outside of the shroud head portion is provided, and a valve with a built-in reactor pressure vessel that can be arbitrarily opened is attached to the downside of this flow path. Has been done.

しかし、特許文献1では、このバイパス流路を流れる冷却水の流量を決定する原子炉圧力容器内蔵弁が原子炉圧力容器内に設置されている。しかし、原子炉圧力容器内は高温高圧の冷却水が流れていることから、この冷却水から弁を保護する必要がある。しかし、バルブの信頼性を保つには大掛かりな防護装置などが必要となり、保護が非常に困難である。また、この圧力容器内に配置される原子炉圧力容器内蔵弁の存在が冷却水の流れを阻害しないように何かしら別個の対処を取る必要がある、との問題がある。 However, in Patent Document 1, a valve with a built-in reactor pressure vessel that determines the flow rate of cooling water flowing through the bypass flow path is installed in the reactor pressure vessel. However, since high-temperature and high-pressure cooling water is flowing in the reactor pressure vessel, it is necessary to protect the valve from this cooling water. However, in order to maintain the reliability of the valve, a large-scale protective device or the like is required, and it is very difficult to protect the valve. In addition, there is a problem that some separate measures must be taken so that the presence of the reactor pressure vessel built-in valve arranged in the pressure vessel does not obstruct the flow of cooling water.

そこで、本発明では、ATWS発生時に全燃料集合体の出力を効率的に減少させてプラントの安全性を向上させると共に、冷却系の強化や、原子炉圧力容器や原子炉格納容器の高耐圧化を不要としたATWS対策設備やそれを備えた自然循環型沸騰水型原子炉を提供することを目的とする。 Therefore, in the present invention, the output of the entire fuel assembly is efficiently reduced when ATWS occurs to improve the safety of the plant, the cooling system is strengthened, and the pressure resistance of the reactor pressure vessel and the reactor containment vessel is increased. It is an object of the present invention to provide an ATWS countermeasure facility that does not require the above and a natural circulation type boiling water reactor equipped with the same.

本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、燃料集合体が装荷された炉心と、前記燃料集合体における核分裂反応によって発熱している前記炉心の上部に配置され、その内側を冷却水が鉛直方向上向きへ流れるとともに、その外側を前記冷却水が鉛直方向下向きに流れるシュラウド壁と、前記炉心の上部領域に形成されたチムニと、前記炉心を内包する原子炉圧力容器と、を備えた自然循環型沸騰水型原子炉におけるATWS対策設備であって、一部が前記原子炉圧力容器の外側に配置されており、前記チムニの内側と前記シュラウド壁の外側とを連通する連通流路と、前記連通流路のうち前記原子炉圧力容器の外側の部分に配置され、前記連通流路を流れる冷却水の流れを制御するバイパス弁と、を備えたことを特徴とする。 The present invention includes a plurality of means for solving the above problems, for example, a core loaded with a fuel assembly and an upper portion of the core that generates heat due to a nuclear split reaction in the fuel assembly. A shroud wall in which the cooling water flows vertically upward and the cooling water flows downward in the vertical direction inside the shroud wall, a chimni formed in the upper region of the core, and the core are included. It is an ATWS countermeasure facility in a natural circulation type boiling water type reactor equipped with a reactor pressure vessel, and a part thereof is arranged outside the reactor pressure vessel, and inside the chimni and the shroud wall. It is provided with a communication flow path that communicates with the outside and a bypass valve that is arranged in the outer portion of the communication flow path and controls the flow of cooling water flowing through the communication flow path. It is characterized by.

本発明によれば、ATWS発生時に全燃料集合体の出力を効率的に減少させ、プラントの安全性を向上させると共に、冷却系の強化や、原子炉圧力容器や原子炉格納容器の高耐圧化を不要とできるため、コストを削減することができる。上記した以外の課題、構成および効果は、以下の実施例の説明により明らかにされる。 According to the present invention, the output of the entire fuel assembly is efficiently reduced when ATWS occurs, the safety of the plant is improved, the cooling system is strengthened, and the pressure resistance of the reactor pressure vessel and the reactor containment vessel is increased. Can be eliminated, so the cost can be reduced. Issues, configurations and effects other than those mentioned above will be clarified by the description of the following examples.

本発明の実施例1に係る自然循環型沸騰水型原子炉の主要系統の概略を示す図である。It is a figure which shows the outline of the main system of the natural circulation type boiling water reactor which concerns on Example 1 of this invention. 図1のA−A’断面図である。FIG. 1 is a cross-sectional view taken along the line AA'in FIG. 本発明の実施例1に係るバイパス弁の開閉機構の通常時の様子を示す模式図である。It is a schematic diagram which shows the state of the opening / closing mechanism of the bypass valve which concerns on Example 1 of this invention in a normal state. 本発明の実施例1に係るバイパス弁の開閉機構のATWS時の様子を示す模式図である。It is a schematic diagram which shows the state at the time of ATWS of the opening / closing mechanism of the bypass valve which concerns on Example 1 of this invention. 本発明の実施例2に係る自然循環型原子炉のうち、図1に示す部分のA−A’断面図である。It is a cross-sectional view of AA' of the part shown in FIG. 1 in the natural circulation type nuclear reactor which concerns on Example 2 of this invention. 本発明の実施例3に係る自然循環型原子炉のうち、図1に示す部分のA−A’断面図である。It is a cross-sectional view of AA' of the part shown in FIG. 1 in the natural circulation type nuclear reactor which concerns on Example 3 of this invention. 本発明の実施例4に係る自然循環型原子炉のうち、図1に示す部分のA−A’断面図である。It is a cross-sectional view of AA' of the part shown in FIG. 1 in the natural circulation type nuclear reactor which concerns on Example 4 of this invention. 本発明の実施例5に係る自然循環型原子炉のうち、図1に示す部分のA−A’断面図である。It is a cross-sectional view of AA' of the part shown in FIG. 1 in the natural circulation type nuclear reactor which concerns on Example 5 of this invention.

以下に本発明のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉の実施例を、図面を用いて説明する。 Hereinafter, an example of the ATWS countermeasure equipment of the present invention and a naturally circulating boiling water reactor equipped with the same will be described with reference to the drawings.

<実施例1>
本発明のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉の実施例1について図1乃至図4を用いて説明する。図1は実施例1に係る自然循環型沸騰水型原子炉の主要系統図である。図2は実施例1に係る自然循環型沸騰水型原子炉の横断面図である。図3および図4は実施例1に係るバイパス弁の開閉機構を示す模式図である。
<Example 1>
The ATWS countermeasure equipment of the present invention and the first embodiment of the natural circulation type boiling water reactor equipped with the same will be described with reference to FIGS. 1 to 4. FIG. 1 is a main system diagram of a naturally circulating boiling water reactor according to the first embodiment. FIG. 2 is a cross-sectional view of the naturally circulating boiling water reactor according to the first embodiment. 3 and 4 are schematic views showing an opening / closing mechanism of the bypass valve according to the first embodiment.

図1に示す自然循環型沸騰水型原子炉100では、複数の燃料集合体(図示の都合上省略)が格子状に装荷された炉心2が原子炉圧力容器1内に内包されている。この原子炉圧力容器1には、主蒸気配管15や給水配管(図示省略)が接続されている。 In the natural circulation type boiling water reactor 100 shown in FIG. 1, a core 2 in which a plurality of fuel assemblies (omitted for convenience of illustration) are loaded in a grid pattern is contained in the reactor pressure vessel 1. A main steam pipe 15 and a water supply pipe (not shown) are connected to the reactor pressure vessel 1.

本実施例の原子炉圧力容器1内では、炉心2に流入した冷却水が炉心2内の燃料集合体で生じる核分裂によって発生する熱によって水を沸騰させることで蒸気を発生させている。 In the reactor pressure vessel 1 of this embodiment, steam is generated by boiling the cooling water that has flowed into the core 2 by the heat generated by the nuclear fission generated in the fuel assembly in the core 2.

発生した蒸気は水と混じった二相流となり、炉心2の上部領域に形成されたチムニ7、スタンドパイプ16を通ってセパレータ17に流入する。セパレータ17では遠心力により水と蒸気を分離(気液分離)する。なお、設計によってはこのセパレータが無い炉型も存在するが、本発明はそのような炉型にも適用することができる。 The generated steam becomes a two-phase flow mixed with water and flows into the separator 17 through the chimni 7 and the stand pipe 16 formed in the upper region of the core 2. In the separator 17, water and steam are separated (gas-liquid separation) by centrifugal force. Depending on the design, there is a furnace type without this separator, but the present invention can be applied to such a furnace type.

セパレータ17で分離された水はシュラウド壁4と原子炉圧力容器1の間隙(ダウンカマ領域)を下方向へ流れ、途中で原子炉圧力容器1外から給水配管(図示省略)を介して供給される給水と混合される。その後、下部プレナム10を経由して再び炉心2に下方から流入する。 The water separated by the separator 17 flows downward through the gap (downside region) between the shroud wall 4 and the reactor pressure vessel 1, and is supplied from outside the reactor pressure vessel 1 via a water supply pipe (not shown) on the way. Mixed with water supply. After that, it flows into the core 2 again from below via the lower plenum 10.

このように、本実施例では、シュラウド壁4の内側を却水が鉛直方向上向きへ流れ、シュラウド壁4の外側を冷却水が鉛直方向下向きに流れることになる。 As described above, in this embodiment, the waste water flows upward in the vertical direction inside the shroud wall 4, and the cooling water flows downward in the vertical direction outside the shroud wall 4.

一方、セパレータ17で分離された微小液滴を随伴する蒸気は、ドライヤ9でほぼ全ての液滴を除去された後、主蒸気配管15を介してタービン(図示省略)に導かれ、発電が行われる。 On the other hand, the steam accompanied by the fine droplets separated by the separator 17 is guided to a turbine (not shown) via the main steam pipe 15 after removing almost all the droplets with the dryer 9, and power is generated. Will be.

ここで、図1に示す自然循環型沸騰水型原子炉100では、一般的な沸騰水型原子炉と異なり、炉心2に冷却水を供給するジェットポンプやインターナルポンプ(RIPとも呼ばれる)が存在しない。 Here, in the natural circulation type boiling water reactor 100 shown in FIG. 1, unlike a general boiling water reactor, there are a jet pump and an internal pump (also referred to as RIP) that supply cooling water to the core 2. do not do.

沸騰水型原子炉は、沸騰によって冷却水の平均密度が大きく変化するため、加圧水型原子炉と比較して自然循環による炉心の冷却が容易である、との利点を有している。シュラウド壁4より内側の領域の蒸気と水が混じった気液二相流の平均水密度はシュラウド壁4より外側のダウンカマ領域の単相の水の水密度より小さい。このため、シュラウド壁4の内外の水頭差を駆動力として、ポンプを使用することなく炉心2に冷却水を供給することができる。 Boiling water reactors have the advantage that the core is easier to cool by natural circulation than pressurized water reactors because the average density of cooling water changes significantly due to boiling. The average water density of the gas-liquid two-phase flow in which steam and water are mixed in the region inside the shroud wall 4 is smaller than the water density of the single-phase water in the down-kama region outside the shroud wall 4. Therefore, the cooling water can be supplied to the core 2 without using a pump by using the head difference between the inside and outside of the shroud wall 4 as a driving force.

このように自然循環力で炉心2に冷却水を供給できるが、その冷却水の流量は炉心2で発生する熱を十分に除去できる流量である必要がある。 In this way, the cooling water can be supplied to the core 2 by the natural circulation force, but the flow rate of the cooling water needs to be a flow rate capable of sufficiently removing the heat generated in the core 2.

ここで、炉心2に冷却水が流れる際には圧力損失が生じるが、炉心を流れる冷却水の流量である自然循環流量は、シュラウド壁4の内外の密度差によって生じる水頭差による駆動力と上述の圧力損失のバランスで決まる。一般的に、炉心高さ分の水頭差に起因する駆動力だけでは、十分な冷却水流量の確保が難しいことが知られている。 Here, a pressure loss occurs when the cooling water flows through the core 2, but the natural circulation flow rate, which is the flow rate of the cooling water flowing through the core, is the driving force due to the head difference caused by the density difference between the inside and outside of the shroud wall 4 and the above. It is determined by the balance of pressure loss. In general, it is known that it is difficult to secure a sufficient cooling water flow rate only by the driving force caused by the head difference corresponding to the core height.

そこで、自然循環型沸騰水型原子炉100では、一般的に、炉心2の除熱に必要となる流量を確保するため、炉心2およびシュラウド壁4の上部にチムニ7を設置することで対応している。 Therefore, in the natural circulation type boiling water reactor 100, in general, in order to secure the flow rate required for removing heat from the core 2, the chimni 7 is installed above the core 2 and the shroud wall 4. ing.

このようなチムニ7を設置することで、炉心高さ分のシュラウド壁4内外の密度差に加えて、チムニ7の高さの分だけチムニ7内部とチムニ7外部のダウンカマ領域との冷却水密度差も自然循環力として利用できるようになる。従って、冷却水流量が増加し、炉心2を十分に冷却することができる。 By installing such a chimni 7, in addition to the density difference between the inside and outside of the shroud wall 4 for the height of the core, the cooling water density between the inside of the chimni 7 and the down-kama area outside the chimni 7 by the height of the chimni 7. The difference can also be used as a natural circulation force. Therefore, the flow rate of the cooling water is increased, and the core 2 can be sufficiently cooled.

このような自然循環力を利用することで、冷却水供給のための再循環ポンプを不要とし、コストを低減できると共に、再循環ポンプの故障によってプラントに悪影響がおよぶ可能性も排除することができる。 By utilizing such natural circulation power, it is possible to eliminate the need for a recirculation pump for supplying cooling water, reduce costs, and eliminate the possibility that a failure of the recirculation pump will adversely affect the plant. ..

上述のような構造の自然循環型沸騰水型原子炉100における炉心2の出力は、原子炉圧力容器1の下方から制御棒5を挿入・引抜を行うことで調整する。 The output of the core 2 in the naturally circulating boiling water reactor 100 having the above structure is adjusted by inserting and pulling out the control rods 5 from below the reactor pressure vessel 1.

また、自然循環型沸騰水型原子炉100では、強い地震が生じた場合や、例えば外部から供給されている電源が失われた、配管が破断した、タービンに不具合が生じた、等のプラントに不具合が生じた場合も、制御棒5を急速に挿入することで原子炉を停止させる。またそのような事態が生じた場合は、放射性物質の外部への漏えいリスクを避けるために主蒸気隔離弁8を閉止し、原子炉格納容器12外へ放射性物質を含む蒸気が漏えいすることを防止する。 In addition, in the natural circulation type boiling water reactor 100, in the case of a strong earthquake, for example, the power supply supplied from the outside is lost, the piping is broken, the turbine has a problem, etc. Even if a problem occurs, the reactor is stopped by rapidly inserting the control rod 5. When such a situation occurs, the main steam isolation valve 8 is closed to avoid the risk of radioactive material leaking to the outside, and the steam containing radioactive material is prevented from leaking to the outside of the reactor containment vessel 12. To do.

しかし、制御棒5が挿入されて原子炉が停止した場合においても、炉心2では燃料の崩壊熱により蒸気が発生する。また、主蒸気隔離弁8が閉止しているため、原子炉圧力容器1の圧力が上昇する。 However, even when the control rod 5 is inserted and the reactor is shut down, steam is generated in the core 2 due to the decay heat of the fuel. Further, since the main steam isolation valve 8 is closed, the pressure in the reactor pressure vessel 1 rises.

このような場合には、原子炉圧力容器1の圧力上昇を検知して、非常用復水器起動弁20が開かれて原子炉圧力容器1の蒸気が非常用復水器18に流入し、非常用復水器プール水19によって蒸気は冷却され水に戻る。水に戻った後、重力によって原子炉圧力容器1内に戻り、再び炉心2の冷却に寄与すると共に、原子炉圧力容器1の圧力が低下する。 In such a case, the pressure rise of the reactor pressure vessel 1 is detected, the emergency condenser start valve 20 is opened, and the steam of the reactor pressure vessel 1 flows into the emergency condenser 18. The steam is cooled by the emergency condenser pool water 19 and returned to water. After returning to water, it returns to the inside of the reactor pressure vessel 1 by gravity, contributes to the cooling of the core 2 again, and the pressure of the reactor pressure vessel 1 decreases.

なお、非常用復水器18は、起動初期には非常用復水器プール水19の温度が低いため、非常用復水器プール水19が沸騰を開始するまでは冷却能力が限定的である。そのような場合において原子炉圧力容器1の圧力がさらに上昇した場合は、主蒸気逃がし安全弁21が開き、原子炉圧力容器1の蒸気を圧力抑制室23に導く。これにより、圧力抑制室23内の圧力抑制プール水13内にクエンチャ22を通して蒸気を放出し、凝縮させることで原子炉圧力容器1の圧力上昇を抑制する。 Since the temperature of the emergency condenser pool water 19 is low at the initial stage of starting the emergency condenser 18, the cooling capacity is limited until the emergency condenser pool water 19 starts boiling. .. In such a case, if the pressure of the reactor pressure vessel 1 rises further, the main steam relief safety valve 21 opens to guide the steam of the reactor pressure vessel 1 to the pressure suppression chamber 23. As a result, steam is released through the quencher 22 into the pressure suppression pool water 13 in the pressure suppression chamber 23 and condensed to suppress the pressure rise in the reactor pressure vessel 1.

一般的な設計では、プラントに不具合が発生した場合には、水圧によって制御棒5を急速に挿入する。しかし、発生確率は非常に低いものの、検出器の不具合や水圧による駆動機構のトラブルにより制御棒5の挿入に失敗する事象(ATWS)にも備える必要がある。 In a general design, when a failure occurs in the plant, the control rods 5 are rapidly inserted by water pressure. However, although the probability of occurrence is very low, it is necessary to prepare for an event (ATWS) in which the insertion of the control rod 5 fails due to a malfunction of the detector or a trouble of the drive mechanism due to water pressure.

そこで、そのような事象への備えとして、この制御棒5を電動で挿入する、もしくはホウ酸水を炉心に注入して反応を止める装置(ホウ酸水注入系、SLC:Standby Liquid Control Systemなどとも呼ばれる)などの備えがある。 Therefore, in preparation for such an event, the control rod 5 is electrically inserted, or boric acid water is injected into the core to stop the reaction (boric acid water injection system, SLC: Standby Liquid Control System, etc.). There are preparations such as).

しかし、これらの動作は水圧による制御棒の挿入と比較して時間が掛かるため、出力が高い状態がしばらくの間続き、原子炉圧力容器1の圧力も制御棒の挿入に成功した場合と比較してしばらくの間は高止まりする。 However, since these operations take longer than the insertion of control rods by water pressure, the high output continues for a while, and the pressure of the reactor pressure vessel 1 is also compared with the case where the control rods are successfully inserted. It stays high for a while.

従来のように再循環ポンプを備えた沸騰水型原子炉では、電動による制御棒の挿入やホウ酸水の注入と並行して再循環ポンプを停止させ、炉心を流れる冷却水の流量を減少させ、出力を減少させることができる。 In a boiling water reactor equipped with a recirculation pump as in the past, the recirculation pump is stopped in parallel with the insertion of electric control rods and the injection of boric acid water to reduce the flow rate of cooling water flowing through the core. , The output can be reduced.

しかし、自然循環型沸騰水型原子炉100は再循環ポンプを備えていないため、しばらく出力が高い状態が続くことによるプラントの損傷を防止するためにATWS対策設備を備えている。従来の自然循環型沸騰水型原子炉のATWS対策設備は、先述した非常用復水器の容量を強化する、原子炉圧力容器や原子炉格納容器の耐圧を高める対策を取るものであったが、これらの対策にはコストが掛かる、との課題があった。 However, since the natural circulation type boiling water reactor 100 is not equipped with a recirculation pump, it is equipped with ATWS countermeasure equipment in order to prevent damage to the plant due to the continuous high output for a while. The conventional ATWS countermeasure equipment for naturally circulating boiling water reactors has taken measures to increase the capacity of the above-mentioned emergency condenser and increase the pressure resistance of the reactor pressure vessel and reactor containment vessel. There was a problem that these measures were costly.

これに対し本実施例では、図1や図2に示すように、ATWS対策設備として、シュラウド壁4の内周側上方に位置するチムニ7の内側とチムニ7の外側(シュラウド壁4の外側)のダウンカマ領域とを連通させる連通流路6を設ける。この連通流路6は、図2に示すように、一部が原子炉圧力容器1の外側に配置されるものとする。 On the other hand, in this embodiment, as shown in FIGS. 1 and 2, as ATWS countermeasure equipment, the inside of the chimni 7 and the outside of the chimni 7 located above the inner peripheral side of the shroud wall 4 (outside of the shroud wall 4). A communication flow path 6 for communicating with the down-commercial region of As shown in FIG. 2, it is assumed that a part of the communication flow path 6 is arranged outside the reactor pressure vessel 1.

更に、連通流路6を流れる冷却水の流れを制御するバイパス弁24を、連通流路6のうち原子炉圧力容器1の外側の部分に配置する。 Further, a bypass valve 24 that controls the flow of cooling water flowing through the communication flow path 6 is arranged in the outer portion of the communication flow path 6 of the reactor pressure vessel 1.

なお、連通流路6は例えば図2のように原子炉圧力容器1を断面方向から見たときに複数配置することで、一本辺りの口径を小さくできると共に、冷却水の偏りを防止することもできる。なお連通流路6は少なくとも1本以上設けられていれば良い。 By arranging a plurality of communication flow paths 6 when the reactor pressure vessels 1 are viewed from the cross-sectional direction as shown in FIG. 2, the diameter of each communication flow path 6 can be reduced and the cooling water can be prevented from being biased. You can also. It is sufficient that at least one communication flow path 6 is provided.

このバイパス弁24は、自然循環型沸騰水型原子炉100の通常運転時は閉止させておき、ATWSが万が一発生した場合に開く構造とする。 The bypass valve 24 has a structure in which the naturally circulating boiling water reactor 100 is closed during normal operation and opened in the unlikely event that ATWS occurs.

バイパス弁24が開くと、連通流路6を通してチムニ7内外が均圧化し、チムニ7内外の水頭差がなくなるため、チムニ7による冷却水流量の増加効果が無くなる。それにより炉心2を流れる冷却水流量が減少し、出力を減少させることができる。 When the bypass valve 24 is opened, the pressure inside and outside the chimni 7 is equalized through the communication flow path 6, and the head difference between the inside and outside of the chimni 7 disappears, so that the effect of increasing the cooling water flow rate by the chimni 7 disappears. As a result, the flow rate of the cooling water flowing through the core 2 is reduced, and the output can be reduced.

このバイパス弁24の構造の詳細について図3および図4を用いて説明する。 Details of the structure of the bypass valve 24 will be described with reference to FIGS. 3 and 4.

図3に示すように、バイパス弁24の弁体26を弁バネ27によって弁座33に押し付け、連通流路6を閉止する。また、弁体26をピストン28と接続するとともに、ピストン28の片側に原子炉圧力容器1と連通する圧力伝送管25を接続し、ピストン28に原子炉圧力容器1の圧力が掛かる構造とする。なお、バイパス弁24のピストン28のうち、原子炉圧力容器1の圧力が掛かる側の反対側には、原子炉圧力容器1の外側の圧力が掛かるように開放しておくことが望ましい。 As shown in FIG. 3, the valve body 26 of the bypass valve 24 is pressed against the valve seat 33 by the valve spring 27 to close the communication flow path 6. Further, the valve body 26 is connected to the piston 28, and a pressure transmission pipe 25 communicating with the reactor pressure vessel 1 is connected to one side of the piston 28 so that the pressure of the reactor pressure vessel 1 is applied to the piston 28. It is desirable that the piston 28 of the bypass valve 24 be opened so that the pressure outside the reactor pressure vessel 1 is applied to the side opposite to the side where the pressure of the reactor pressure vessel 1 is applied.

これにより、万が一の確率でATWSが生じて原子炉圧力容器1の内側の圧力が上昇して弁バネ27による押しつけ力を上回ると、図4に示すように、ピストン28が移動してバイパス弁24の弁体26が弁座33から離れ、開弁させることができる。 As a result, if ATWS occurs with a probability and the pressure inside the reactor pressure vessel 1 rises and exceeds the pressing force by the valve spring 27, the piston 28 moves and the bypass valve 24 moves as shown in FIG. The valve body 26 is separated from the valve seat 33 and can be opened.

なお、原子炉圧力容器1を貫通する配管には、その配管が破断した場合に冷却水が原子炉圧力容器1から系外へ流出することを防止するために、隔離弁を備える必要がある。 The pipe penetrating the reactor pressure vessel 1 needs to be provided with an isolation valve in order to prevent the cooling water from flowing out of the system from the reactor pressure vessel 1 when the pipe breaks.

そのため、連通流路6のうち、原子炉圧力容器1に近い部分のすべての箇所に隔離弁35を設置する。この隔離弁35は、万が一の配管破断時に動作することができるよう信頼性の高い弁を準備する必要があり、またメンテナンスなども十分に行う必要があるものである。 Therefore, isolation valves 35 are installed at all points in the communication flow path 6 near the reactor pressure vessel 1. The isolation valve 35 needs to be prepared with a highly reliable valve so that it can operate in the unlikely event of a pipe breakage, and it is also necessary to perform sufficient maintenance and the like.

次に、本実施例の効果について説明する。 Next, the effect of this embodiment will be described.

上述した本発明の実施例1の自然循環型沸騰水型原子炉100は、燃料集合体が装荷された炉心2と、燃料集合体における核分裂反応によって発熱している炉心2の上部に配置され、その内側を冷却水が鉛直方向上向きへ流れるとともに、その外側を冷却水が鉛直方向下向きに流れるシュラウド壁4と、炉心2の上部領域に形成されたチムニ7と、炉心2を内包する原子炉圧力容器1と、ATWS対策設備とを備えている。このうち、ATWS対策設備は、一部が原子炉圧力容器1の外側に配置されており、チムニ7の内側とシュラウド壁4の外側とを連通する連通流路6と、連通流路6のうち原子炉圧力容器1の外側の部分に配置され、連通流路6を流れる冷却水の流れを制御するバイパス弁24と、を備えている。 The above-mentioned natural circulation type boiling water reactor 100 of the first embodiment of the present invention is arranged above the core 2 loaded with the fuel assembly and the core 2 generating heat due to the nuclear split reaction in the fuel assembly. A shroud wall 4 in which cooling water flows upward in the vertical direction and downward in the vertical direction on the outside, a chimni 7 formed in the upper region of the core 2, and a reactor pressure containing the core 2. It is equipped with a container 1 and ATWS countermeasure equipment. Of these, the ATWS countermeasure equipment is partly arranged outside the reactor pressure vessel 1, and of the communication flow path 6 communicating between the inside of the chimni 7 and the outside of the shroud wall 4, and the communication flow path 6. It is provided with a bypass valve 24 which is arranged in an outer portion of the reactor pressure vessel 1 and controls the flow of cooling water flowing through the communication flow path 6.

以上のような構造をとることにより、自然循環型沸騰水型原子炉においても、制御棒の挿入に失敗するATWSが発生した場合においても、現象発生に伴ってバイパス弁24が開弁し、受動的に冷却水流量を減少させることができる。このため、自動的に全燃料集合体の出力を減少させることができ、安全性を向上させることができる。これに加えて、ATWSに備えるための安全系の強化や原子炉圧力容器や原子炉格納容器の高耐圧化を不要とし、低コスト化が可能である。 By adopting the above structure, the bypass valve 24 is opened and passive as the phenomenon occurs, even in the natural circulation type boiling water reactor and in the case of ATWS where the control rod insertion fails. The cooling water flow rate can be reduced. Therefore, the output of the entire fuel assembly can be automatically reduced, and the safety can be improved. In addition to this, it is not necessary to strengthen the safety system for preparing for ATWS and to increase the pressure resistance of the reactor pressure vessel and the reactor containment vessel, and it is possible to reduce the cost.

また、上述した特許文献1では、原子炉圧力容器内蔵弁が原子炉圧力容器内に設置されているが、本発明のようにバイパス弁24が連通流路6のうち原子炉圧力容器1の外側の部分に配置されていることにより、冷却水から弁を保護する必要がないとともに、冷却水の流れを阻害しないように何かしら別個の対処を取る必要もないことから、信頼性向上に多くの対策を施す必要がない、との効果が得られる。 Further, in Patent Document 1 described above, the valve with a built-in reactor pressure vessel is installed inside the reactor pressure vessel, but as in the present invention, the bypass valve 24 is outside the reactor pressure vessel 1 in the communication flow path 6. Many measures to improve reliability because it is not necessary to protect the valve from the cooling water and it is not necessary to take any separate measures so as not to obstruct the flow of the cooling water because it is placed in the part of. The effect is that there is no need to apply.

また、バイパス弁24は、通常運転時は閉止しており、原子炉圧力容器1の内側の圧力の上昇に応じて開放するように構成されているため、運転員の操作など無しで受動的にATWS時に弁が開き、流量を減少させて出力を減少させることができ、より安全性を高めることができる。 Further, since the bypass valve 24 is closed during normal operation and is configured to be opened in response to an increase in pressure inside the reactor pressure vessel 1, it is passively operated without any operator operation. The valve opens during ATWS, and the flow rate can be reduced to reduce the output, which can further improve safety.

<実施例2>
上述の目的を達成するために好適な実施例の一つである本発明の実施例2のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉について図5を用いて説明する。図5は実施例2に係る自然循環型沸騰水型原子炉の横断面図である。
<Example 2>
The ATWS countermeasure equipment of Example 2 of the present invention, which is one of the preferred examples for achieving the above-mentioned object, and the naturally circulating boiling water reactor equipped with the equipment will be described with reference to FIG. FIG. 5 is a cross-sectional view of the naturally circulating boiling water reactor according to the second embodiment.

なお、実施例2においても、プラント全体の構成やバイパス弁24の開閉機構などは実施例1と同様であり、ここでは実施例1との違いのみを説明する。以下の実施例においても同様とする。 Also in the second embodiment, the configuration of the entire plant, the opening / closing mechanism of the bypass valve 24, and the like are the same as those in the first embodiment, and only the differences from the first embodiment will be described here. The same shall apply in the following examples.

図5に示すように、本実施例の自然循環型沸騰水型原子炉では、連通流路6Aのうち、チムニ7内部側の端部にチムニ側ヘッダ29を、シュラウド壁4の外側の端部となるダウンカマ領域14内部にダウンカマ側ヘッダ30を設ける。 As shown in FIG. 5, in the natural circulation type boiling water reactor of this embodiment, the chimni side header 29 is provided at the inner end of the chimni 7 and the outer end of the shroud wall 4 in the communication flow path 6A. A down-kama side header 30 is provided inside the down-kama area 14.

また、この両ヘッダをつなぐ連通流路6Aにバイパス弁24を設ける。 Further, a bypass valve 24 is provided in the communication flow path 6A connecting both headers.

なお、ヘッダ29,30は連通流路6Aのチムニ7側の端部、連通流路6Aのシュラウド壁4の外側の端部の両側に設ける場合に限られず、連通流路6Aのチムニ7側の端部と連通流路6Aのシュラウド壁4の外側の端部とのいずれか一方に設けることができる。 The headers 29 and 30 are not limited to the cases where the headers 29 and 30 are provided on both sides of the end of the communication flow path 6A on the chimni 7 side and the outer end of the communication flow path 6A on the shroud wall 4, but on the chimni 7 side of the communication flow path 6A. It can be provided at either the end portion or the outer end portion of the shroud wall 4 of the communication flow path 6A.

その他の構成・動作は前述した実施例1のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉と略同じ構成・動作であり、詳細は省略する。 Other configurations and operations are substantially the same as those of the ATWS countermeasure equipment of Example 1 described above and the naturally circulating boiling water reactor equipped with the equipment, and details thereof will be omitted.

本発明の実施例2のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉においても、前述した実施例1のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉とほぼ同様な効果が得られる。 The ATWS countermeasure equipment of Example 2 of the present invention and the naturally circulating boiling water reactor provided with the same are almost the same as the ATWS countermeasure equipment of Example 1 and the naturally circulating boiling water reactor provided with the same. A similar effect can be obtained.

また、連通流路6Aのチムニ7側の端部、連通流路6Aのシュラウド壁4の外側の端部、のうち少なくともいずれか一方にヘッダ29,30を更に備えたことにより、冷却水流量の偏りを防止すると共に、原子炉圧力容器1の壁面を貫通する連通流路6Aを実施例1に比べて最小限とすることができる。このため、隔離弁35の数を減らすことができて、更なるコスト削減を図るとともに、貫通配管の数自体が減ることで、破断が発生する可能性を更に低減することができる。 Further, the headers 29 and 30 are further provided on at least one of the end of the communication flow path 6A on the chimni 7 side and the outer end of the shroud wall 4 of the communication flow path 6A, so that the cooling water flow rate can be increased. While preventing bias, the communication flow path 6A penetrating the wall surface of the reactor pressure vessel 1 can be minimized as compared with the first embodiment. Therefore, the number of isolation valves 35 can be reduced to further reduce costs, and the number of through pipes themselves can be reduced to further reduce the possibility of breakage.

<実施例3>
上述の目的を達成するために好適な実施例の一つである本発明の実施例3のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉について図6を用いて説明する。図6は実施例3に係る自然循環型沸騰水型原子炉の横断面図である。
<Example 3>
The ATWS countermeasure equipment of Example 3 of the present invention, which is one of the preferred examples for achieving the above-mentioned object, and the naturally circulating boiling water reactor equipped with the equipment will be described with reference to FIG. FIG. 6 is a cross-sectional view of the naturally circulating boiling water reactor according to the third embodiment.

図6に示すように、本実施例の自然循環型沸騰水型原子炉では、実施例1におけるチムニ7の壁面を省略して、シュラウド壁4B自体を炉心2上方に延長させることでチムニ7Bとして利用する構造とする。 As shown in FIG. 6, in the natural circulation type boiling water reactor of this embodiment, the wall surface of the chimni 7 in the first embodiment is omitted, and the shroud wall 4B itself is extended above the core 2 to form the chimni 7B. The structure will be used.

その他の構成・動作は前述した実施例1のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉と略同じ構成・動作であり、詳細は省略する。 Other configurations and operations are substantially the same as those of the ATWS countermeasure equipment of Example 1 described above and the naturally circulating boiling water reactor equipped with the equipment, and details thereof will be omitted.

本発明の実施例3のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉においても、前述した実施例1のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉とほぼ同様な効果が得られる。 The ATWS countermeasure equipment of Example 3 of the present invention and the naturally circulating boiling water reactor provided with the same are almost the same as the ATWS countermeasure equipment of Example 1 and the naturally circulating boiling water reactor provided with the same. A similar effect can be obtained.

また、シュラウド壁4Bが炉心2の上方側に延長しており、チムニ7Bを形成していることにより、原子炉圧力容器1内に配置する構造物を減少させることができ、更なるコスト低減を図ることができる。 Further, since the shroud wall 4B extends to the upper side of the core 2 and forms the chimni 7B, the number of structures arranged in the reactor pressure vessel 1 can be reduced, further cost reduction. Can be planned.

なお、本実施例においても、上述の実施例2のようにヘッダを持った構造とすることができる。 In this embodiment as well, a structure having a header can be used as in the second embodiment described above.

<実施例4>
上述の目的を達成するために好適な実施例の一つである本発明の実施例4のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉について図7を用いて説明する。図7は実施例4に係る自然循環型沸騰水型原子炉の横断面図である。
<Example 4>
The ATWS countermeasure equipment of Example 4 of the present invention, which is one of the preferred examples for achieving the above-mentioned object, and the naturally circulating boiling water reactor equipped with the equipment will be described with reference to FIG. FIG. 7 is a cross-sectional view of the naturally circulating boiling water reactor according to the fourth embodiment.

図7に示すように、本実施例の自然循環型沸騰水型原子炉では、チムニ7C内部にチムニ分割板31が配置されていることで複数の区画に分割されている。また、分割されたいずれの区画のチムニ7Cも連通流路6Cによりシュラウド壁4の外側に連通されている。 As shown in FIG. 7, in the natural circulation type boiling water reactor of this embodiment, the chimni dividing plate 31 is arranged inside the chimni 7C, so that the reactor is divided into a plurality of sections. Further, the chimuni 7C of any of the divided sections is communicated to the outside of the shroud wall 4 by the communication flow path 6C.

また、チムニ7Cの分割方法は、図7に示すように、シュラウド壁4により分割区域の外周壁の一部が形成される、すなわち、分割された区域がシュラウド壁4を介してシュラウド壁4の外周部に隣接しない区画が存在しないように分割している。 Further, in the method of dividing the chimni 7C, as shown in FIG. 7, a part of the outer peripheral wall of the divided area is formed by the shroud wall 4, that is, the divided area is formed of the shroud wall 4 via the shroud wall 4. It is divided so that there are no sections that are not adjacent to the outer circumference.

その他の構成・動作は前述した実施例1のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉と略同じ構成・動作であり、詳細は省略する。 Other configurations and operations are substantially the same as those of the ATWS countermeasure equipment of Example 1 described above and the naturally circulating boiling water reactor equipped with the equipment, and details thereof will be omitted.

本発明の実施例4のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉においても、前述した実施例1のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉とほぼ同様な効果が得られる。 The ATWS countermeasure equipment of Example 4 of the present invention and the naturally circulating boiling water reactor provided with the same are almost the same as the ATWS countermeasure equipment of Example 1 and the naturally circulating boiling water reactor provided with the same. A similar effect can be obtained.

また、チムニ7Cは複数の区画に分割されており、分割されたいずれの区画のチムニ7Cも連通流路6Cによりシュラウド壁4の外側に連通されていることにより、通常運転時におけるチムニ7C内部の気泡の体積割合(ボイド率と呼ばれる)を増加させることができる。このため、チムニ7C内部のボイド率が増加した場合、チムニ7C内外の密度差が大きくなり、冷却水流量が増加することから、効果的に出力を減少させることができる。 Further, the chimni 7C is divided into a plurality of sections, and the chimni 7C in any of the divided sections is communicated to the outside of the shroud wall 4 by the communication flow path 6C, so that the inside of the chimni 7C during normal operation is used. The volume ratio of bubbles (called the void ratio) can be increased. Therefore, when the void ratio inside the chimni 7C increases, the density difference between the inside and outside of the chimni 7C becomes large, and the flow rate of the cooling water increases, so that the output can be effectively reduced.

すなわち、チムニ7C長さ当たりの冷却水流量の増加幅が大きくなるため、チムニ7C長さを低減でき、チムニ7Cを格納している原子炉圧力容器1の高さも小さくできる。このことにより更なるコスト削減を図ることができる。 That is, since the increase in the cooling water flow rate per the length of the chimni 7C is large, the length of the chimni 7C can be reduced, and the height of the reactor pressure vessel 1 containing the chimni 7C can also be reduced. As a result, further cost reduction can be achieved.

なお、上述の特許文献1では、チムニが制御棒案内筒を兼ねているため、炉心に装荷されている燃料集合体とほぼ同数のチムニが必要であり、またチムニ7間を制御棒が通る必要があった。このため、チムニ内の冷却水をバイパスしてチムニ設置空間の外側であるダウンカマ領域に流すことができるのは最外周部に設置しているチムニのみであり、他のチムニについてはこの効果が得られず、冷却水流量の減少効果は限定的である、との課題があった。 In Patent Document 1 described above, since the chimni also serves as a control rod guide tube, almost the same number of chimni as the fuel assembly loaded in the core is required, and the control rods need to pass between the chimni 7. was there. Therefore, only the chimni installed on the outermost circumference can bypass the cooling water in the chimni and flow to the down-kama area outside the chimni installation space, and this effect can be obtained for other chimni. There was a problem that the effect of reducing the cooling water flow rate was limited.

更には、特許文献1では、そのチムニと燃料集合体が一対一で対応していた場合、バイパスしたチムニに対応する燃料集合体のみの出力が減少し、他の燃料集合体の出力減少が十分に行われない可能性があった。 Further, in Patent Document 1, when the chimni and the fuel assembly have a one-to-one correspondence, the output of only the fuel assembly corresponding to the bypassed chimni is reduced, and the output reduction of the other fuel assemblies is sufficient. There was a possibility that it would not be done.

これに対し、本実施例のように、分割されたいずれの区画のチムニ7Cも、分割された区画の外周壁の一部がシュラウド壁4により形成されていることで、いずれの区画からも連通流路6を引き出すことができ、安定してATWS発生時に冷却水流量を低下させることができるような構造を取ることができる。 On the other hand, as in the present embodiment, the chimni 7C of each of the divided sections is communicated from any of the sections because a part of the outer peripheral wall of the divided sections is formed by the shroud wall 4. A structure can be adopted in which the flow path 6 can be pulled out and the flow rate of the cooling water can be stably reduced when ATWS occurs.

なお、本実施例では、チムニ分割板31をシュラウド壁4の内壁に直接結合することができる。また、分割されたいずれの区画のチムニ7Cも、分割された区画の全てを各々専用の連通流路6により外周側と接続する場合に限られず、実施例2のようにそれぞれの区画をヘッダで接続して連通流路を1本とすることができる。更には、実施例3のようにシュラウド壁4を上方側まで延長させてチムニ7の壁面として利用することができる。 In this embodiment, the chimni dividing plate 31 can be directly connected to the inner wall of the shroud wall 4. Further, the chimni 7C of any of the divided sections is not limited to the case where all of the divided sections are connected to the outer peripheral side by the dedicated communication flow path 6, and each section is connected with a header as in the second embodiment. It can be connected to form one communication flow path. Further, as in the third embodiment, the shroud wall 4 can be extended to the upper side and used as the wall surface of the chimni 7.

<実施例5>
上述の目的を達成するために好適な実施例の一つである本発明の実施例5のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉について図8を用いて説明する。図8は実施例5に係る自然循環型沸騰水型原子炉の横断面図である。
<Example 5>
The ATWS countermeasure equipment of Example 5 of the present invention, which is one of the preferred examples for achieving the above-mentioned object, and the naturally circulating boiling water reactor equipped with the equipment will be described with reference to FIG. FIG. 8 is a cross-sectional view of the naturally circulating boiling water reactor according to the fifth embodiment.

図8に示すように、本実施例の自然循環型沸騰水型原子炉では、連通流路6Dのうち、バイパス弁24に対して並列する位置に、連通流路6Dを流れる冷却水の流量を制御する流量制御弁32を設置している。 As shown in FIG. 8, in the natural circulation type boiling water reactor of this embodiment, the flow rate of the cooling water flowing through the communication flow path 6D is set at a position parallel to the bypass valve 24 in the communication flow path 6D. A flow control valve 32 for controlling is installed.

流量制御弁32は、電動駆動などにより、ATWS発生を検知した場合は運転員の操作により開放できるような構造とする。また、通常運転時においても、運転員がこの流量制御弁32を開閉操作することで、冷却水の流量を自由にコントロールできる構造とする。 The flow rate control valve 32 has a structure that can be opened by an operator's operation when the occurrence of ATWS is detected by electric drive or the like. Further, even during normal operation, the operator can freely control the flow rate of the cooling water by opening and closing the flow rate control valve 32.

その他の構成・動作は前述した実施例1のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉と略同じ構成・動作であり、詳細は省略する。 Other configurations and operations are substantially the same as those of the ATWS countermeasure equipment of Example 1 described above and the naturally circulating boiling water reactor equipped with the equipment, and details thereof will be omitted.

本発明の実施例5のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉においても、前述した実施例1のATWS対策設備やそれを備えた自然循環型沸騰水型原子炉とほぼ同様な効果が得られる。 The ATWS countermeasure equipment of Example 5 of the present invention and the naturally circulating boiling water reactor provided with the same are almost the same as the ATWS countermeasure equipment of Example 1 and the naturally circulating boiling water reactor provided with the same. A similar effect can be obtained.

一般的に、沸騰水型原子炉では冷却水流量をコントロールすることで出力を調整することができる。それにより電力需要の変化に応じて電力の供給量をコントロールすることができる。 Generally, in a boiling water reactor, the output can be adjusted by controlling the flow rate of cooling water. As a result, the amount of power supplied can be controlled according to changes in power demand.

これに対し、自然循環型沸騰水型原子炉では冷却水の流量を制御することはできないため、流量を用いた出力の調整は困難である。 On the other hand, in a naturally circulating boiling water reactor, the flow rate of cooling water cannot be controlled, so it is difficult to adjust the output using the flow rate.

しかしながら、本実施例のように、連通流路6Dのうちバイパス弁24に対して並列して配置され、連通流路6Dを流れる冷却水の流量を制御する流量制御弁32を更に備えたことにより、通常運転時においても出力の調整が可能となる。またバイパス弁24を備えることにより、ATWS発生時に万が一運転員が流量制御弁32を操作しなかった場合においても、バイパス弁24が受動的に開くことにより、冷却水流量が減少し、出力を減少させることができる、との効果が得られる。 However, as in this embodiment, the flow control valve 32 which is arranged in parallel with the bypass valve 24 in the communication flow path 6D and controls the flow rate of the cooling water flowing through the communication flow path 6D is further provided. , The output can be adjusted even during normal operation. Further, by providing the bypass valve 24, even if the operator does not operate the flow rate control valve 32 when ATWS occurs, the bypass valve 24 passively opens, so that the cooling water flow rate is reduced and the output is reduced. The effect that it can be made is obtained.

なお、本実施例のような流量制御弁32を設ける形態は、実施例2乃至実施例4のうち何れか1つの自然循環型沸騰水型原子炉においても採用することができる。 The mode in which the flow rate control valve 32 is provided as in this embodiment can also be adopted in any one of the natural circulation type boiling water reactors of Examples 2 to 4.

<その他>
なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
<Others>
The present invention is not limited to the above examples, and includes various modifications. The above-mentioned examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.

1:原子炉圧力容器
2:炉心
4,4B:シュラウド壁
5:制御棒
6,6A,6C,6D:連通流路
7,7B,7C:チムニ
8:主蒸気隔離弁
9:ドライヤ
10:下部プレナム
12:原子炉格納容器
13:圧力抑制プール水
14:ダウンカマ領域
15:主蒸気配管
16:スタンドパイプ
17:セパレータ
18:非常用復水器
19:非常用復水器プール水
20:非常用復水器起動弁
21:主蒸気逃がし安全弁
22:クエンチャ
23:圧力抑制室
24:バイパス弁
25:圧力伝送管
26:弁体
27:弁バネ
28:ピストン
29:チムニ側ヘッダ
30:ダウンカマ側ヘッダ
31:チムニ分割板
32:流量制御弁
33:弁座
35:隔離弁
100:自然循環型沸騰水型原子炉
1: Reactor pressure vessel 2: Core 4, 4B: Shroud wall 5: Control rods 6, 6A, 6C, 6D: Communication flow paths 7, 7B, 7C: Chimni 8: Main steam isolation valve 9: Dryer 10: Lower plenum 12: Reactor vessel 13: Pressure suppression pool water 14: Downside area 15: Main steam pipe 16: Stand pipe 17: Separator 18: Emergency condenser 19: Emergency condenser Pool water 20: Emergency condenser Condenser start valve 21: Main steam relief safety valve 22: Quencher 23: Pressure suppression chamber 24: Bypass valve 25: Pressure transmission pipe 26: Valve body 27: Valve spring 28: Piston 29: Chimuni side header 30: Down cami side header 31: Chimuni Dividing plate 32: Flow control valve 33: Valve seat 35: Isolation valve 100: Natural circulation type boiling water reactor

Claims (8)

燃料集合体が装荷された炉心と、
前記燃料集合体における核分裂反応によって発熱している前記炉心の上部に配置され、その内側を冷却水が鉛直方向上向きへ流れるとともに、その外側を前記冷却水が鉛直方向下向きに流れるシュラウド壁と、
前記炉心の上部領域に形成されたチムニと、
前記炉心を内包する原子炉圧力容器と、を備えた自然循環型沸騰水型原子炉におけるATWS対策設備であって、
一部が前記原子炉圧力容器の外側に配置されており、前記チムニの内側と前記シュラウド壁の外側とを連通する連通流路と、
前記連通流路のうち前記原子炉圧力容器の外側の部分に配置され、前記連通流路を流れる冷却水の流れを制御するバイパス弁と、を備えた
ことを特徴とする自然循環型沸騰水型原子炉におけるATWS対策設備。
The core loaded with the fuel assembly and
A shroud wall located above the core that is generating heat due to the fission reaction in the fuel assembly, and inside which the cooling water flows upward in the vertical direction and outside the shroud wall in which the cooling water flows downward in the vertical direction.
Chimuni formed in the upper region of the core and
It is an ATWS countermeasure facility in a natural circulation type boiling water reactor equipped with a reactor pressure vessel containing the core.
A communication flow path that is partially arranged outside the reactor pressure vessel and communicates between the inside of the chimni and the outside of the shroud wall.
A naturally circulating boiling water reactor, which is arranged in an outer portion of the communication flow path and controls the flow of cooling water flowing through the communication flow path, and is provided with a bypass valve. ATWS countermeasure equipment in a nuclear reactor.
請求項1に記載のATWS対策設備において、
前記バイパス弁は、通常運転時は閉止しており、前記原子炉圧力容器の内側の圧力の上昇に応じて開放するように構成されている
ことを特徴とするATWS対策設備。
In the ATWS countermeasure equipment according to claim 1,
The ATWS countermeasure facility is characterized in that the bypass valve is closed during normal operation and is configured to be opened in response to an increase in pressure inside the reactor pressure vessel.
請求項1に記載のATWS対策設備において、
前記連通流路の前記チムニの内側の端部、前記連通流路の前記シュラウド壁の外側の端部、のうち少なくともいずれか一方にヘッダを更に備えた
ことを特徴とするATWS対策設備。
In the ATWS countermeasure equipment according to claim 1,
An ATWS countermeasure facility characterized in that a header is further provided at at least one of the inner end of the chimni of the communication flow path and the outer end of the shroud wall of the communication flow path.
請求項1に記載のATWS対策設備において、
前記シュラウド壁が前記炉心の上方側に延長しており、前記チムニを形成している
ことを特徴とするATWS対策設備。
In the ATWS countermeasure equipment according to claim 1,
An ATWS countermeasure facility characterized in that the shroud wall extends above the core and forms the chimni.
請求項1に記載のATWS対策設備において、
前記チムニは複数の区画に分割されており、
分割されたいずれの区画のチムニの内側も前記連通流路により前記シュラウド壁の外側に連通されている
ことを特徴とするATWS対策設備。
In the ATWS countermeasure equipment according to claim 1,
The chimni is divided into a plurality of sections.
ATWS countermeasure equipment characterized in that the inside of the chimni of any of the divided sections is communicated to the outside of the shroud wall by the communication flow path.
請求項5に記載のATWS対策設備において、
分割されたいずれの区画の前記チムニも、分割された区画の外周壁の一部が前記シュラウド壁により形成されている
ことを特徴とするATWS対策設備。
In the ATWS countermeasure equipment according to claim 5,
The ATWS countermeasure facility for each of the divided compartments is characterized in that a part of the outer peripheral wall of the divided compartment is formed by the shroud wall.
請求項1に記載のATWS対策設備において、
前記連通流路のうち前記バイパス弁に対して並列して配置され、前記連通流路を流れる冷却水の流量を制御する流量制御弁を更に備えた
ことを特徴とするATWS対策設備。
In the ATWS countermeasure equipment according to claim 1,
An ATWS countermeasure facility comprising a flow rate control valve which is arranged in parallel with the bypass valve in the communication flow path and controls the flow rate of cooling water flowing through the communication flow path.
請求項1乃至7のいずれか1項に記載されたATWS対策設備を備えたことを特徴とする自然循環型沸騰水型原子炉。 A naturally circulating boiling water reactor provided with the ATWS countermeasure equipment according to any one of claims 1 to 7.
JP2019063392A 2019-03-28 2019-03-28 ATWS countermeasure equipment and natural circulation boiling water reactor equipped with it Active JP7105719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019063392A JP7105719B2 (en) 2019-03-28 2019-03-28 ATWS countermeasure equipment and natural circulation boiling water reactor equipped with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019063392A JP7105719B2 (en) 2019-03-28 2019-03-28 ATWS countermeasure equipment and natural circulation boiling water reactor equipped with it

Publications (2)

Publication Number Publication Date
JP2020165660A true JP2020165660A (en) 2020-10-08
JP7105719B2 JP7105719B2 (en) 2022-07-25

Family

ID=72715229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019063392A Active JP7105719B2 (en) 2019-03-28 2019-03-28 ATWS countermeasure equipment and natural circulation boiling water reactor equipped with it

Country Status (1)

Country Link
JP (1) JP7105719B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7443394B2 (en) 2019-04-11 2024-03-05 ジーイー-ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシー Use of emergency condensers and/or feed water to limit core flow, core power, and pressure in boiling water reactors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405981A2 (en) * 1989-06-29 1991-01-02 General Electric Company Method for obtaining load-following and/or spectral shift capability in boiling water reactors
JPH03220497A (en) * 1990-01-25 1991-09-27 Toshiba Corp Natural circulation typed boiling water nuclear reactor
JP2002122686A (en) * 2000-10-17 2002-04-26 Toshiba Corp Boiling water type nuclear power plant, and construction method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405981A2 (en) * 1989-06-29 1991-01-02 General Electric Company Method for obtaining load-following and/or spectral shift capability in boiling water reactors
JPH03103798A (en) * 1989-06-29 1991-04-30 General Electric Co <Ge> System for giving natural circulating boiling water reactor with load following/ spectral shift faculty
JPH03220497A (en) * 1990-01-25 1991-09-27 Toshiba Corp Natural circulation typed boiling water nuclear reactor
JP2002122686A (en) * 2000-10-17 2002-04-26 Toshiba Corp Boiling water type nuclear power plant, and construction method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7443394B2 (en) 2019-04-11 2024-03-05 ジーイー-ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシー Use of emergency condensers and/or feed water to limit core flow, core power, and pressure in boiling water reactors
US11955248B2 (en) 2019-04-11 2024-04-09 Ge-Hitachi Nuclear Energy Americas Llc Use of isolation condenser and/or feedwater to limit core flow, core power, and pressure in a boiling water reactor

Also Published As

Publication number Publication date
JP7105719B2 (en) 2022-07-25

Similar Documents

Publication Publication Date Title
EP2862176B1 (en) Small modular reactor safety systems
US6718001B2 (en) Nuclear reactor
US5102616A (en) Full pressure passive emergency core cooling and residual heat removal system for water cooled nuclear reactors
US7154982B2 (en) Compact pressurized water nuclear reactor
KR100813939B1 (en) Passive type emergency core cooling system for an integral reactor with a safeguard vessel
JP2014510897A (en) Small nuclear reactor with integrated steam generator
JP2010085282A (en) Nuclear power plant of pressurized water type
US4064002A (en) Emergency core cooling system for a nuclear reactor
CZ124293A3 (en) Pressurized-water reactor and method of moderating effects of leakages
US11043310B2 (en) Valve assembly with isolation valve vessel
KR20100016314A (en) Nuclear reactor downcomer flow deflector
US9583221B2 (en) Integrated emergency core cooling system condenser for pressurized water reactor
KR101250479B1 (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof
US20140241484A1 (en) Pressurized water reactor depressurization system
CN108470588A (en) Monoblock type reactor pressure vessel tube sheet
KR101364646B1 (en) Passive safety system using small safe guard vessel and integral reactor having the same
KR101463441B1 (en) High concentration boron injection system and safety injection system having the same
KR20150131196A (en) Rwst passive emergency core flow
JP7105719B2 (en) ATWS countermeasure equipment and natural circulation boiling water reactor equipped with it
JP4761988B2 (en) Boiling water nuclear power plant
KR20220098791A (en) Integral Reactor (Example)
KR101456575B1 (en) In vessel boron injection system
GB1582107A (en) Nuclear reactor
JP4991598B2 (en) Automatic decompression system for nuclear power generation facilities
JP2022032025A (en) Integrated type fast neutron reactor including exclusive safety device for reducing core meltdown accident

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220712

R150 Certificate of patent or registration of utility model

Ref document number: 7105719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150