JP4761988B2 - Boiling water nuclear power plant - Google Patents

Boiling water nuclear power plant Download PDF

Info

Publication number
JP4761988B2
JP4761988B2 JP2006025717A JP2006025717A JP4761988B2 JP 4761988 B2 JP4761988 B2 JP 4761988B2 JP 2006025717 A JP2006025717 A JP 2006025717A JP 2006025717 A JP2006025717 A JP 2006025717A JP 4761988 B2 JP4761988 B2 JP 4761988B2
Authority
JP
Japan
Prior art keywords
reactor
water
pressure vessel
pipe
emergency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006025717A
Other languages
Japanese (ja)
Other versions
JP2007205923A (en
Inventor
幹英 中丸
良洋 小島
健司 新井
政彦 黒木
克征 星野
貴司 保志
和弘 大高
秀明 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Japan Atomic Power Co Ltd
Original Assignee
Toshiba Corp
Japan Atomic Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Japan Atomic Power Co Ltd filed Critical Toshiba Corp
Priority to JP2006025717A priority Critical patent/JP4761988B2/en
Publication of JP2007205923A publication Critical patent/JP2007205923A/en
Application granted granted Critical
Publication of JP4761988B2 publication Critical patent/JP4761988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

本発明は、配管破断事故時等に原子炉炉心及び原子炉格納容器を長期に渡って冷却することが可能で、かつ、原子炉緊急停止失敗事象(ATWS事象)発生時に原子炉格納容器内の急激な圧力上昇を防止することが可能な沸騰水型原子力発電設備に関する。   The present invention is capable of cooling the reactor core and the containment vessel for a long period of time in the event of a pipe breakage accident, etc., and in the reactor containment vessel when a reactor emergency shutdown failure event (ATWS event) occurs. The present invention relates to a boiling water nuclear power generation facility capable of preventing a rapid pressure increase.

高耐圧型の原子炉格納容器を備えた沸騰水型原子力発電設備において、非特許文献1及び2に記載されるように、原子炉格納容器内部で原子炉圧力容器に接続される配管が破断するような事故が発生した際に、原子炉圧力容器から破断口を介して流出する蒸気を原子炉格納容器内部に閉じ込めるとともに、原子炉圧力容器と原子炉格納容器とを比較的高圧で均圧させ、蒸気の流出を停止させる。   In a boiling water nuclear power generation facility equipped with a high pressure resistant reactor containment vessel, as described in Non-Patent Documents 1 and 2, piping connected to the reactor pressure vessel is broken inside the reactor containment vessel. When such an accident occurs, the steam flowing out from the reactor pressure vessel through the fracture port is confined inside the reactor containment vessel, and the reactor pressure vessel and the containment vessel are equalized at a relatively high pressure. Stop the outflow of steam.

この蒸気の流出を停止させた状態で、原子炉炉心の崩壊熱によって発生する蒸気を非常用復水器へ導き、非常用復水器の伝熱管内部を蒸気が通過する過程で予め蓄えられた水と熱交換させて凝縮させ、原子炉圧力容器に戻す。   With the steam outflow stopped, the steam generated by the decay heat of the reactor core is led to the emergency condenser, and the steam is stored in advance in the process of passing the steam through the heat transfer pipe of the emergency condenser. Heat exchange with water to condense and return to reactor pressure vessel.

そして、予め原子炉圧力容器内部に冷却水として保有していた自己保有水による冠水維持によって原子炉炉心が冷却される。   Then, the reactor core is cooled by maintaining the flooding with the self-holding water previously held as cooling water in the reactor pressure vessel.

さらに、原子炉炉心の冠水維持を長期的に継続するために、原子炉圧力容器から流出した冷却水(自己保有水)により原子炉格納容器の下部を冠水させた上で、原子炉圧力容器を減圧させて原子炉格納容器と均圧させ、かつ原子炉炉心より上部に配置した配管によって高耐圧型原子炉格納容器に流出した冷却水を重力差により再び原子炉圧力容器に還流させる。
H. Heki, et al., "DEVELOPMENT OF STATU OF CONTAINMENT BWR", Proceedings of ICONE13, 13th International Conference on Nuclear Engineering, Beijing, China, May 15-19, 2005 H. Heki, et al., "DEVELOPMENT OF SIMPLIFIED COMPACT CONTAINMENT BWR PLANT", Proceedings of ICONE12, 12th International Conference on Nuclear Engineering, April 25-29, 2004, Arlington, Viginia USA
Furthermore, in order to maintain the flooding of the reactor core in the long term, the lower part of the reactor containment vessel is flooded with cooling water (self-holding water) that has flowed out of the reactor pressure vessel, and then the reactor pressure vessel is The pressure is reduced and the pressure is equalized with the reactor containment vessel, and the cooling water flowing out to the high pressure reactor containment vessel is returned to the reactor pressure vessel again due to the gravity difference by the piping arranged above the reactor core.
H. Heki, et al., "DEVELOPMENT OF STATU OF CONTAINMENT BWR", Proceedings of ICONE13, 13th International Conference on Nuclear Engineering, Beijing, China, May 15-19, 2005 H. Heki, et al., "DEVELOPMENT OF SIMPLIFIED COMPACT CONTAINMENT BWR PLANT", Proceedings of ICONE12, 12th International Conference on Nuclear Engineering, April 25-29, 2004, Arlington, Viginia USA

高耐圧型の原子炉格納容器を備えた沸騰水型原子力発電設備において、均圧注入配管の高さまでの原子炉格納容器の冠水を原子炉圧力容器の自己保有水のみで達成しようとすると、原子炉圧力容器が非現実的に大きくなってしまう。   In a boiling water nuclear power plant equipped with a high pressure resistant reactor containment vessel, if the flooding of the reactor containment vessel up to the level of the pressure equalization injection pipe is achieved only with the self-retained water in the reactor pressure vessel, The furnace pressure vessel becomes unrealistically large.

このため、予め水を蓄えた外部タンクを設置して、この外部タンクを原子炉圧力容器及び原子炉格納容器と均圧させて、外部タンク内の水を原子炉圧力容器及び高耐圧型原子炉格納容器へ補給する必要があった。   For this reason, an external tank in which water is stored in advance is installed, the external tank is pressure-equalized with the reactor pressure vessel and the reactor containment vessel, and the water in the external tank is supplied to the reactor pressure vessel and the high pressure reactor. It was necessary to replenish the containment vessel.

また、原子炉格納容器の内部に封入された窒素等の非凝縮性ガスが、配管破断事故時等に破断口を介して非常用復水器の伝熱管内部に流入して蓄積した場合に、非常用復水器の除熱性能が大幅に劣化してしまう。   In addition, when non-condensable gas such as nitrogen sealed inside the reactor containment vessel flows into the heat exchanger tube of the emergency condenser through the breakage port and accumulates at the time of a pipe breakage accident, etc. The heat removal performance of the emergency condenser will be significantly degraded.

非常用復水器の除熱性能劣化を回避するために、原子炉格納容器の外部にガス排出(ベント)のための外部タンクを設置して、非常用復水器からの非凝縮性ガスのベントを継続的に行うことが考えられる。   In order to avoid the deterioration of the heat removal performance of the emergency condenser, an external tank for gas discharge (vent) is installed outside the reactor containment vessel, and the noncondensable gas from the emergency condenser is installed. It is conceivable to perform venting continuously.

しかし、原子炉圧力容器及び原子炉格納容器からタンク側への一方的なベントでは、外部タンクが原子炉圧力容器と一旦均圧すると、それ以上はガスのベントができなくなり、事故発生から数日後以降に及ぶ長期の冷却ができなくなる。   However, in the unilateral venting from the reactor pressure vessel and the containment vessel to the tank side, once the external tank is equalized with the reactor pressure vessel, the gas cannot be vented any further, and several days after the accident occurred. Long-term cooling that lasts is impossible.

このため、非常用復水器からの継続的かつ長期的な非凝縮ガスのベント機構の確立が必要となっていた。   For this reason, it was necessary to establish a continuous and long-term vent mechanism for non-condensable gas from the emergency condenser.

さらに、異常事態が発生した場合の原子炉緊急停止(スクラム)失敗事象、いわゆるATWS(Anticipated Transient Without Scram)事象が発生した際に、原子炉炉心で発生した蒸気を放出する場所がなく、この蒸気によって原子炉格納容器内部の圧力が急激に上昇して、許容圧力を超えてしまうことを防止する必要があった。   Further, when an emergency nuclear reactor emergency stop (scrum) failure event occurs, a so-called ATWS (Anti-Transient Transient Without Scram) event occurs, there is no place to release the steam generated in the reactor core. Therefore, it was necessary to prevent the pressure inside the reactor containment vessel from rapidly increasing and exceeding the allowable pressure.

本発明は、上記課題を鑑みなされたものであり、高耐圧型の原子炉格納容器を有する沸騰水型原子力発電設備において、配管破断事故時等に長期の原子炉炉心及び原子炉格納容器の冷却を達成するための外部から原子炉炉心及び原子炉格納容器への冷却水の補給系を有し、かつ非常用復水器の非凝縮性ガスによる除熱性能劣化を最小限に抑えるための継続的かつ長期的な非凝縮性ガスのベント機構を有し、さらにATWS事象発生時の原子炉格納容器内部の急激な圧力上昇を抑制する手段を備えた沸騰水型原子力発電設備を提供することを目的とする。   The present invention has been made in view of the above problems, and in a boiling water nuclear power generation facility having a high pressure resistant reactor containment vessel, cooling of the reactor core and the reactor containment vessel for a long period of time when a pipe breakage accident occurs, etc. Continuing to have a cooling water replenishment system to the reactor core and reactor containment vessel from the outside in order to achieve the above, and to minimize heat removal performance degradation due to noncondensable gas in the emergency condenser To provide a boiling water nuclear power generation facility having a mechanical and long-term non-condensable gas vent mechanism and means for suppressing a rapid pressure rise inside the containment vessel when an ATWS event occurs Objective.

上記課題を解決するために、本発明に係る沸騰水型原子力発電設備は、請求項1に記載したように、過圧防護用の安全弁を有する原子炉圧力容器を収納した原子炉格納容器と、前記原子炉圧力容器内で発生した蒸気を蒸気タービンに送り込む主蒸気系と、蒸気タービンからの蒸気を復水器により凝縮する原子炉復水系と、この原子炉復水系で凝縮された復水を前記原子炉圧力容器に戻す原子炉給水系とを備えた沸騰水型原子力発電設備において、前記原子炉圧力容器からの蒸気を凝縮して再び前記原子炉圧力容器に戻す非常用復水系と、前記非常用復水系からの復水を貯蔵する外部貯蔵系とを備え、前記外部貯蔵系は、前記非常用復水系からの復水を貯蔵する外部タンクと、この外部タンク内の水を前記原子炉圧力容器へ注水する原子炉冷却用補給水配管と、前記外部タンク内の水を前記原子炉格納容器へ注水する原子炉格納容器冠水用配管とを有し、前記原子炉冷却用補給水配管が前記原子炉圧力容器及び外部タンクに接続される高さは、前記原子炉格納容器冠水用配管が前記原子炉格納容器及び外部タンクに接続される高さに対して異なるように設定されて、前記原子炉圧力容器への注水量と注水開始タイミング、及び、前記原子炉格納容器への注水量と注水開始タイミングが、それぞれ重力により駆動制御されることを特徴とする。   In order to solve the above problems, a boiling water nuclear power generation facility according to the present invention includes a reactor containment vessel containing a reactor pressure vessel having a safety valve for overpressure protection, as described in claim 1; A main steam system that sends steam generated in the reactor pressure vessel to a steam turbine, a reactor condensate system that condenses steam from the steam turbine by a condenser, and condensate condensed in the reactor condensate system. In a boiling water nuclear power plant equipped with a reactor water supply system that returns to the reactor pressure vessel, an emergency condensate system that condenses the steam from the reactor pressure vessel and returns it to the reactor pressure vessel again, and An external storage system for storing condensate from an emergency condensate system, the external storage system storing an external tank for storing condensate from the emergency condensate system, and water in the external tank to the reactor Reactor cooling with water injection into the pressure vessel A supplementary water pipe and a reactor containment submersion pipe for injecting water in the external tank into the reactor containment vessel, and the reactor cooling makeup water pipe is connected to the reactor pressure vessel and the external tank. The connected height is set to be different from the height at which the reactor containment submergence piping is connected to the reactor containment vessel and the external tank, and the amount of water injected into the reactor pressure vessel The water injection start timing, the water injection amount to the reactor containment vessel, and the water injection start timing are each driven and controlled by gravity.

本発明に係る沸騰水型原子力発電設備によると、配管破断事故時等に原子炉炉心及び原子炉格納容器の冷却を長期的に維持でき、かつ、ATWS事象発生時の原子炉格納容器内部の急激な圧力上昇を抑制することが可能となる。   According to the boiling water nuclear power generation facility according to the present invention, cooling of the reactor core and the containment vessel can be maintained for a long time in the event of a pipe breakage accident, and a sudden increase in the inside of the containment vessel when an ATWS event occurs. It is possible to suppress an increase in pressure.

本発明に係る沸騰水型原子力発電設備の実施形態について、添付図面に基づいて説明する。   An embodiment of a boiling water nuclear power generation facility according to the present invention will be described with reference to the accompanying drawings.

〔第1実施形態〕
図1に、本発明に係る沸騰水型原子力発電設備の第1実施形態の構成図を示す。
[First Embodiment]
FIG. 1 shows a configuration diagram of a first embodiment of a boiling water nuclear power generation facility according to the present invention.

沸騰水型原子力発電設備1は、小型(例えば300〜500MWe級)でドライコンテナ方式の沸騰水型原子力発電設備であり、図1に示すように、密閉された高耐圧の原子炉格納容器2を備えるとともに、原子炉格納容器2には原子炉圧力容器3が収納される。   The boiling water nuclear power generation facility 1 is a small (for example, 300 to 500 MWe class) dry container type boiling water nuclear power generation facility, and as shown in FIG. In addition, the reactor containment vessel 2 accommodates the reactor pressure vessel 3.

この時、原子炉格納容器2は、原子炉建屋の床面に固定された台座である格納容器支持ペデスタル4に支持され固定されるとともに、原子炉圧力容器3は、原子炉格納容器2内で固定された台座である圧力容器支持ペデスタル5に支持される。   At this time, the reactor containment vessel 2 is supported and fixed by the containment vessel support pedestal 4 which is a pedestal fixed to the floor of the reactor building, and the reactor pressure vessel 3 is contained in the reactor containment vessel 2. It is supported by the pressure vessel support pedestal 5 which is a fixed base.

また、沸騰水型原子力発電設備1は、原子炉圧力容器3内で発生した蒸気を、発電を行う蒸気タービン(図示せず)に送り込む例えば2系統の主蒸気系6と、蒸気タービンからの蒸気を復水器(図示せず)により凝縮する原子炉復水系(図示せず)と、原子炉復水系で凝縮された復水を給水ポンプ7aを介して原子炉圧力容器3に戻す原子炉給水系7と、配管破断事故時等やATWS事象発生時に安全を確保する安全系システム8とを備える。   In addition, the boiling water nuclear power generation facility 1 includes, for example, two main steam systems 6 that send steam generated in the reactor pressure vessel 3 to a steam turbine (not shown) that generates power, and steam from the steam turbine. A reactor condensate system (not shown) for condensing the water with a condenser (not shown), and a reactor water supply for returning the condensate condensed in the reactor condensate system to the reactor pressure vessel 3 via a feed water pump 7a A system 7 and a safety system 8 that ensures safety when a pipe breakage accident occurs or when an ATWS event occurs are provided.

原子炉圧力容器3は下部に原子炉炉心9を備え、この原子炉炉心9は炉心シュラウド10で囲まれる。原子炉給水系7から原子炉圧力容器3内に戻された給水は炉水となり、ダウンカマー11を通って炉心下部プレナム12に案内され、この炉心下部プレナム12で反転して原子炉炉心9を通り上昇する。   The reactor pressure vessel 3 includes a reactor core 9 in the lower part, and the reactor core 9 is surrounded by a core shroud 10. The feed water returned from the reactor feed water system 7 into the reactor pressure vessel 3 becomes reactor water, is guided to the lower core plenum 12 through the downcomer 11, and is inverted by the lower core plenum 12 so that the reactor core 9 is Ascend the street.

この炉水は、原子炉炉心9を上昇する際に核反応熱を受けて蒸発し、気液二相流となり、原子炉炉心9の上方へ流され、気水分離器13によって蒸気と水とに分離される。   The reactor water is evaporated upon receiving the nuclear reaction heat when it rises in the reactor core 9, becomes a gas-liquid two-phase flow, is flowed above the reactor core 9, and is supplied with steam and water by the steam-water separator 13. Separated.

気水分離器13で分離された蒸気は、トーラス状あるいはスリーブ状の蒸気乾燥器14によってさらに湿分が除去され、主蒸気隔離弁15を介して主蒸気系6に案内される。また、気水分離器13で分離された水は、炉心シュラウド10と原子炉圧力容器との間の環状領域であるダウンカマー11を流下して再び原子炉炉心9に戻される。   The steam separated by the steam separator 13 is further dehumidified by a torus-shaped or sleeve-shaped steam dryer 14 and guided to the main steam system 6 via the main steam isolation valve 15. Further, the water separated by the steam separator 13 flows down the downcomer 11, which is an annular region between the core shroud 10 and the reactor pressure vessel, and is returned to the reactor core 9 again.

原子炉格納容器2の形状は、原子炉圧力容器3廻りの冠水量を最小限に抑えることを目的として、原子炉圧力容器3の下部を近接状態で覆っている。原子炉圧力容器3の下部に原子炉炉心9が備えられ、原子炉格納容器2において原子炉炉心9の周囲は円筒状に設計される。原子炉格納容器2の高さ方向中央部には、原子炉圧力容器3からの配管や弁が配置されるため、原子炉格納容器2の中央領域は、原子炉圧力容器3から外周方向に大きく膨出する膨出球状に、例えば球状に設計され、さらに原子炉格納容器2の高さ方向上部の領域は半球状に設計される。   The shape of the reactor containment vessel 2 covers the lower portion of the reactor pressure vessel 3 in a close proximity for the purpose of minimizing the amount of flooding around the reactor pressure vessel 3. A reactor core 9 is provided in the lower part of the reactor pressure vessel 3, and the periphery of the reactor core 9 in the reactor containment vessel 2 is designed in a cylindrical shape. Since pipes and valves from the reactor pressure vessel 3 are arranged in the central portion of the reactor containment vessel 2 in the height direction, the central region of the reactor containment vessel 2 is larger from the reactor pressure vessel 3 in the outer circumferential direction. The bulging sphere that bulges is designed, for example, in a spherical shape, and the upper region of the reactor containment vessel 2 in the height direction is designed in a hemispherical shape.

原子炉圧力容器3の上部には制御棒駆動装置16が設けられ、この制御棒駆動装置16は、原子炉炉心9の上部の制御棒収納スペース17に収納された制御棒18を、原子炉炉心9に対して上部から挿入するように駆動制御される。   A control rod driving device 16 is provided on the upper portion of the reactor pressure vessel 3, and the control rod driving device 16 converts the control rod 18 stored in the control rod storage space 17 above the reactor core 9 into the reactor core. 9 is controlled to be inserted from above.

制御棒18を原子炉炉心9の上部から挿入することにより、重力を利用して早急に制御棒18を原子炉炉心9内に挿入することが可能となる。   By inserting the control rod 18 from the upper part of the reactor core 9, it is possible to insert the control rod 18 into the reactor core 9 quickly using gravity.

次に、沸騰水型原子力発電設備1に備えられる安全系システム8について説明する。   Next, the safety system 8 provided in the boiling water nuclear power generation facility 1 will be described.

安全系システム8は、非常時に原子炉圧力容器3からの蒸気を凝縮して再び原子炉圧力容器3に戻す非常用復水系19と、非常用復水系19からの復水を貯蔵する外部貯蔵系20と、原子炉圧力容器3にホウ酸水等のポイズンを注入するポイズン注入系21とを備える。   The safety system 8 includes an emergency condensate system 19 that condenses steam from the reactor pressure vessel 3 and returns it to the reactor pressure vessel 3 in an emergency, and an external storage system that stores the condensate from the emergency condensate system 19. 20 and a poison injection system 21 for injecting a poison such as boric acid water into the reactor pressure vessel 3.

原子炉圧力容器3の上部には、原子炉圧力容器3内が異常高圧になった際に、内部の蒸気を原子炉格納容器2内に放出する安全弁22が備えられる。この安全弁22を介して高圧の蒸気が原子炉格納容器2内に放出されるため、原子炉格納容器2は高耐圧設計に構成される。   A safety valve 22 is provided above the reactor pressure vessel 3 to release the internal steam into the reactor containment vessel 2 when the pressure inside the reactor pressure vessel 3 becomes abnormally high. Since high-pressure steam is released into the reactor containment vessel 2 through the safety valve 22, the reactor containment vessel 2 is configured to have a high pressure resistance design.

また、原子炉格納容器2及び原子炉圧力容器3には、原子炉格納容器2及び原子炉圧力容器3が同圧になった際の水位の高低差(重力差)を利用して原子炉格納容器2から原子炉圧力容器3へ冷却水を補給する連通配管23が備えられる。   Moreover, the reactor containment vessel 2 and the reactor pressure vessel 3 are stored in the reactor using the difference in water level (gravity difference) when the reactor containment vessel 2 and the reactor pressure vessel 3 become the same pressure. A communication pipe 23 for supplying cooling water from the vessel 2 to the reactor pressure vessel 3 is provided.

なお、原子炉圧力容器3には、原子炉炉心9の上端より下方に配管等のノズルを設けないようにする。   The reactor pressure vessel 3 is not provided with a nozzle such as a pipe below the upper end of the reactor core 9.

非常用復水系19は、熱を吸収する非常用復水器プール24を有し、この非常用復水器プール24の内部には、蒸気を凝縮する非常用復水器25が備えられる。この非常用復水器25は、原子炉圧力容器3からの蒸気が流入する入口水室26、蒸気と接触して蒸気から熱を奪う伝熱管、伝熱管から復水が流入する出口水室27を備える。   The emergency condensate system 19 has an emergency condenser pool 24 that absorbs heat, and an emergency condenser 25 that condenses steam is provided inside the emergency condenser pool 24. The emergency condenser 25 includes an inlet water chamber 26 into which steam from the reactor pressure vessel 3 flows, a heat transfer tube that contacts the steam and takes heat from the steam, and an outlet water chamber 27 into which condensate flows from the heat transfer tube. Is provided.

また、非常用復水器25には、原子炉圧力容器3内の蒸気を吸い込む非常用復水器蒸気吸込み配管28、非常用復水器25により凝縮された冷却水を原子炉圧力容器3に注入する非常用復水器凝縮水戻り配管29が設置される。   Further, the emergency condenser 25 contains the emergency condenser steam suction pipe 28 for sucking the steam in the reactor pressure vessel 3 and the cooling water condensed by the emergency condenser 25 to the reactor pressure vessel 3. An emergency condenser condensate return pipe 29 to be injected is installed.

非常用復水器25には、非常用復水系19からの復水とともに流入する非凝縮性ガスが伝熱管に蓄積して除熱性能を劣化させることを防止するために非凝縮性ガスを排出する非常用復水器ガスベント配管30と、非常用復水系19からの復水を外部貯蔵系20に排出する非常用復水器主ベント配管31とが設けられる。   The emergency condenser 25 discharges the non-condensable gas to prevent the non-condensable gas flowing in with the condensate from the emergency condensate system 19 from accumulating in the heat transfer tube and degrading the heat removal performance. An emergency condenser gas vent pipe 30 and an emergency condenser main vent pipe 31 for discharging the condensate from the emergency condensate system 19 to the external storage system 20 are provided.

なお、非常用復水器主ベント配管31は、原子炉格納容器2の圧力が瞬時に上昇するのを防ぐため、非常用復水器ガスベント配管30より大口径に設定される。すなわち、非常用復水器25から外部タンク34に注水する非常用復水器ベント配管として、口径の異なる配管が複数並列に設置される。   The emergency condenser main vent pipe 31 is set to have a larger diameter than the emergency condenser gas vent pipe 30 in order to prevent the pressure in the reactor containment vessel 2 from rising instantaneously. That is, a plurality of pipes with different diameters are installed in parallel as emergency condenser vent pipes for pouring water from the emergency condenser 25 to the external tank 34.

非常用復水器ガスベント配管30には、管内を流れる非凝縮性ガスの流量を制御する絞りである非常用復水器ガスベント流量制限オリフィス32が設けられ、非常用復水器主ベント配管31の一端には、非常用復水器主ベント配管用スパージャ33が設けられる。非常用復水器主ベント配管31からの外部タンク34の貯留水への吐き出し口をスパージャ構造にすることにより、蒸気の凝縮効果が高まるからである。   The emergency condenser gas vent pipe 30 is provided with an emergency condenser gas vent flow restriction orifice 32 which is a throttle for controlling the flow rate of the non-condensable gas flowing in the pipe. At one end, an emergency condenser main vent pipe sparger 33 is provided. This is because the steam condensing effect is enhanced by providing a sparger structure for the outlet from the emergency condenser main vent pipe 31 to the stored water in the external tank 34.

また、非常用復水器主ベント配管31の外部貯蔵系20側となる吐き出し口の高さは、非常用復水系19側となる吸込み口の高さより下方に設定される。   Further, the height of the discharge port on the external storage system 20 side of the emergency condenser main vent pipe 31 is set lower than the height of the suction port on the emergency condensate system 19 side.

外部貯蔵系20は、予め蓄えられた冷却水、非常用復水器主ベント配管31から流出する復水、及び非凝縮ガスを貯蔵する外部タンク34を備える。外部タンク34内には冷却水が蓄えられ、冷却水は、外部タンク34の上方から原子炉冷却用補給水A、原子炉格納容器冠水用水B、ベント蒸気凝縮用水Cとして使用される。   The external storage system 20 includes a cooling water stored in advance, condensate flowing out from the emergency condenser main vent pipe 31, and an external tank 34 for storing non-condensable gas. Cooling water is stored in the external tank 34, and the cooling water is used from above the external tank 34 as reactor cooling replenishment water A, reactor containment submerged water B, and vent steam condensation water C.

外部タンク34は、原子炉圧力容器3に原子炉冷却用補給水Aを注入する原子炉冷却用補給水配管35と、原子炉格納容器2に原子炉格納容器冠水用水Bを注入する原子炉格納容器冠水用配管36とを備える。   The external tank 34 includes a reactor cooling makeup water pipe 35 that injects reactor cooling makeup water A into the reactor pressure vessel 3, and a reactor containment that injects reactor containment submersion water B into the reactor containment vessel 2. And a container submergence pipe 36.

すなわち、外部タンク34内において、重力駆動により、原子炉冷却用補給水配管35より上部に蓄えられた冷却水が原子炉冷却用補給水Aとして使用されるとともに、原子炉格納容器冠水用配管36より上部の冷却水が原子炉格納容器冠水用水Bとして、原子炉格納容器冠水用配管36より下部の冷却水がベント蒸気凝縮用水Cとして使用される。   That is, in the external tank 34, the coolant stored above the reactor cooling makeup water pipe 35 by gravity driving is used as the reactor cooling makeup water A and the reactor containment vessel flooding pipe 36. The cooling water in the upper part is used as the reactor containment vessel submersion water B, and the cooling water in the lower part of the reactor containment vessel submergence pipe 36 is used as the vent steam condensation water C.

また、外部タンク34は、この外部タンク34内の冷却水を残留熱除去系配管37を通して吸い上げる残留熱除去系ポンプ38と、残留熱除去系ポンプ38が吸い上げた冷却水から残留熱を奪う残留熱除去系熱交換器39と、残留熱除去系ポンプ38が吸い上げた冷却水を分散する外部タンクスプレイスパージャ40とからなる冷却配管を備える。   Further, the external tank 34 sucks the cooling water in the external tank 34 through the residual heat removal system pipe 37 and the residual heat that takes away the residual heat from the cooling water sucked up by the residual heat removal system pump 38. There is provided a cooling pipe comprising a removal system heat exchanger 39 and an external tank place purger 40 that disperses the cooling water sucked up by the residual heat removal system pump 38.

さらに、外部タンク34から原子炉圧力容器3へ注水する高圧補給水配管41には高圧補給水ポンプ42が備えられ、この高圧補給水配管41の冷却水の出口部分は原子炉給水系7に接続される。   Further, the high pressure makeup water pipe 41 for injecting water from the external tank 34 to the reactor pressure vessel 3 is provided with a high pressure makeup water pump 42, and the outlet portion of the cooling water of the high pressure makeup water pipe 41 is connected to the reactor water system 7. Is done.

ポイズン注入系21は、緊急時に原子炉圧力容器3に注入するためのホウ酸水等のポイズンを貯蔵するポイズン注入系蓄圧貯蔵タンク43と、ポイズンを原子炉圧力容器3に注入するポイズン注入系ポイズン注入配管44とから構成される。   The poison injection system 21 includes a poison injection system accumulating storage tank 43 for storing a poison such as boric acid water to be injected into the reactor pressure vessel 3 in an emergency, and a poison injection system poison for injecting the poison into the reactor pressure vessel 3. And an injection pipe 44.

次に、本発明に係る沸騰水型原子力発電設備1の実施例1について、図2〜図6に基づいて説明する。   Next, Example 1 of the boiling water nuclear power generation facility 1 according to the present invention will be described with reference to FIGS.

実施例1では、原子炉格納容器2の内部で原子炉圧力容器3に接続される配管等が破断するような事故が発生した場合等により生じる冷却材喪失事故時の事象について説明する。   In the first embodiment, an explanation will be given of an event at the time of a coolant loss accident that occurs when an accident occurs in which a pipe or the like connected to the reactor pressure vessel 3 is broken inside the reactor containment vessel 2.

図2〜図4に、原子炉冷却材喪失時における沸騰水型原子力発電設備1の事象推移の状態を、時間軸に沿って示す。また、図5及び図6に、原子炉冷却材喪失時の原子炉圧力容器内の水位L1等の主要パラメータの変動を示すグラフを示す。   2 to 4 show the event transition state of the boiling water nuclear power generation facility 1 when the reactor coolant is lost along the time axis. 5 and 6 are graphs showing fluctuations in main parameters such as the water level L1 in the reactor pressure vessel when the reactor coolant is lost.

沸騰水型原子力発電設備1において、通常、原子炉圧力容器3内で発生した蒸気は主蒸気系6を経由して蒸気タービンに到達し、発電に利用される。そして、蒸気タービンから出てきた蒸気は原子炉復水系により凝縮されて復水となり、この復水が原子炉給水系7により再び原子炉圧力容器3に給水として戻される。   In the boiling water nuclear power generation facility 1, steam generated in the reactor pressure vessel 3 normally reaches the steam turbine via the main steam system 6 and is used for power generation. Then, the steam coming out of the steam turbine is condensed by the reactor condensate system to become condensate, and this condensate is returned again to the reactor pressure vessel 3 as feed water by the reactor feed water system 7.

しかしながら、原子炉圧力容器3に接続された配管等に破断事故が発生した場合には、破断口45を介して原子炉圧力容器3から原子炉格納容器2に蒸気が流出し、この蒸気が原子炉格納容器2の内部に閉じ込められる。   However, when a rupture accident occurs in a pipe connected to the reactor pressure vessel 3, steam flows out from the reactor pressure vessel 3 to the reactor containment vessel 2 through the rupture port 45, and this steam is atomized. It is confined inside the furnace containment vessel 2.

この時、図2に示すように、原子炉圧力容器3内の水位が低下するとともに、原子炉格納容器2内の圧力や温度、及び原子炉格納容器2の容器壁の温度が上昇する。また、原子炉格納容器2内に流出した蒸気の一部は凝縮して原子炉格納容器2の底部に蓄積し、原子炉格納容器2内の冷却水の水位が上昇する。   At this time, as shown in FIG. 2, while the water level in the reactor pressure vessel 3 falls, the pressure and temperature in the reactor containment vessel 2 and the temperature of the vessel wall of the reactor containment vessel 2 rise. Further, a part of the steam that has flowed into the reactor containment vessel 2 is condensed and accumulated at the bottom of the reactor containment vessel 2, and the coolant level in the reactor containment vessel 2 rises.

原子炉圧力容器3内の蒸気が原子炉格納容器2内に流出した結果、原子炉圧力容器3と原子炉格納容器2の圧力は速やかに均圧して、破断口45からの蒸気の流出は停止する。   As a result of the steam in the reactor pressure vessel 3 flowing out into the reactor containment vessel 2, the pressure in the reactor pressure vessel 3 and the reactor containment vessel 2 is quickly equalized, and the outflow of steam from the fracture port 45 is stopped. To do.

蒸気を原子炉格納容器2に閉じ込めた状態で、原子炉炉心9の崩壊熱によって発生する蒸気を非常用復水器蒸気吸込み配管28を介して非常用復水器25へ導き、非常用復水器25の伝熱管内部を蒸気が通過する過程で非常用復水器プール24に蓄えられた水との熱交換によって凝縮させ、非常用復水器凝縮水戻り配管29から原子炉圧力容器3に戻す。   In a state where the steam is confined in the reactor containment vessel 2, the steam generated by the decay heat of the reactor core 9 is led to the emergency condenser 25 via the emergency condenser steam suction pipe 28, and the emergency condensate In the process of passing steam through the heat transfer pipe of the condenser 25, the steam is condensed by exchanging heat with the water stored in the emergency condenser pool 24, and from the emergency condenser condensed water return pipe 29 to the reactor pressure vessel 3. return.

このように、事故発生直後、すなわち事故発生後の比較的早期においては、原子炉炉心9の冷却は、原子炉格納容器2及び原子炉圧力容器3を減圧冷却し、事故発生前に原子炉圧力容器3の内部に冷却水として保有していた自己保有水により冠水維持することによって達成される。   As described above, immediately after the accident occurs, that is, relatively early after the accident occurs, the reactor core 9 is cooled by reducing the pressure in the reactor containment vessel 2 and the reactor pressure vessel 3, and the reactor pressure before the accident occurs. This is achieved by maintaining submergence with self-retained water retained as cooling water inside the container 3.

この時、非常用復水器25の除熱能力が原子炉格納容器2から外部への放熱量に勝るため、原子炉圧力容器3の圧力の低下の方が原子炉格納容器2の圧力低下よりも早く、事故発生前に原子炉格納容器2の内部に封入されていた窒素ガスが破断口45を通じて原子炉圧力容器3へ流れ込む。   At this time, since the heat removal capability of the emergency condenser 25 is superior to the amount of heat released from the reactor containment vessel 2, the pressure drop in the reactor pressure vessel 3 is lower than the pressure drop in the reactor containment vessel 2. As soon as possible, the nitrogen gas enclosed in the reactor containment vessel 2 before the accident occurs flows into the reactor pressure vessel 3 through the fracture opening 45.

この窒素ガスは、非常用復水器蒸気吸込み配管28を介して非常用復水器25に蒸気とともに吸込まれ、非常用復水器ガスベント配管30を通じて外部タンク34へ排出(ベント)されるとともに、非常用復水器25により凝縮された復水の流れに随伴して原子炉圧力容器3へ再循環される(図5の(I)の状態)。   The nitrogen gas is sucked into the emergency condenser 25 through the emergency condenser steam suction pipe 28 together with the steam, and discharged (vented) to the external tank 34 through the emergency condenser gas vent pipe 30. Along with the flow of condensate condensed by the emergency condenser 25, it is recirculated to the reactor pressure vessel 3 (state (I) in FIG. 5).

一方、非常用復水器25に流入した蒸気や窒素ガス等の非凝縮性ガスの混合流体が非常用復水器25の伝熱管内を流れる際に、混合気体のうちの蒸気が凝縮して非凝縮性ガスの分圧が上昇するため、非常用復水器25の除熱性能は伝熱管下流に行くに従って劣化する。   On the other hand, when the mixed fluid of non-condensable gas such as steam and nitrogen gas flowing into the emergency condenser 25 flows through the heat transfer pipe of the emergency condenser 25, the vapor of the mixed gas is condensed. Since the partial pressure of the non-condensable gas increases, the heat removal performance of the emergency condenser 25 deteriorates as it goes downstream of the heat transfer tube.

非常用復水器25の伝熱管の出口で非凝縮性ガスの分圧は最大となって、出口水室27に残りの蒸気と凝縮水とともに吐き出される。この非凝縮性ガス分圧の高い混合流体を外部タンク34へ選択的にベントすることで、外部タンク34内の貯留水の加熱を最小限に抑えた上で、その気相部圧力を徐々に増加させ、事故発生後数時間から1日程度をかけて最終的に原子炉格納容器2及び原子炉圧力容器3を均圧させる。   The partial pressure of the non-condensable gas is maximized at the outlet of the heat transfer tube of the emergency condenser 25 and is discharged into the outlet water chamber 27 together with the remaining steam and condensed water. By selectively venting the mixed fluid having a high non-condensable gas partial pressure to the external tank 34, the heating of the stored water in the external tank 34 is minimized, and the gas phase pressure is gradually increased. The reactor containment vessel 2 and the reactor pressure vessel 3 are finally equalized over several hours to about a day after the accident.

事故発生から長時間が経過すると、図3に示すように、蒸気流出によって、原子炉圧力容器3内の水位L1は徐々に低下して、原子炉炉心9の上端にまで近付く。原子炉圧力容器3内の水位L1を回復させるために、原子炉圧力容器3と均圧した外部タンク34から原子炉冷却用補給水配管35を介して重力差によって原子炉圧力容器3に注水させる(図5の(II)の状態)。   When a long time has passed since the occurrence of the accident, as shown in FIG. 3, the water level L <b> 1 in the reactor pressure vessel 3 gradually decreases due to the outflow of steam and approaches the upper end of the reactor core 9. In order to recover the water level L1 in the reactor pressure vessel 3, the reactor pressure vessel 3 is poured into the reactor pressure vessel 3 by a gravity difference from the external pressure tank 3 and the external pressure tank 34 through the reactor cooling make-up water pipe 35. (State (II) in FIG. 5).

なお、この原子炉冷却用補給水配管35の吸込みは、必要な量が補給できるように外部タンク34の所定の高さに開口しており、場合によっては原子炉圧力容器3への注水が行われないこともある。図6に、外部タンク34から原子炉炉心9への注水が行われなかった場合の、原子炉冷却材喪失時の主要パラメータの変動を表したグラフを示す。   The suction of the reactor cooling makeup water pipe 35 opens to a predetermined height of the external tank 34 so that a necessary amount can be replenished. In some cases, water is injected into the reactor pressure vessel 3. There are times when it is not. FIG. 6 is a graph showing fluctuations in main parameters when the reactor coolant is lost when water injection from the external tank 34 to the reactor core 9 is not performed.

外部タンク34から原子炉圧力容器3への注水の後、さらに長時間が経過すると、原子炉格納容器2の外部への放熱が継続するため、このまま放置すると原子炉圧力容器3内の水位L1は徐々に低下し続け、何らかの手段をとらなければ原子炉炉心9の露出に至る可能性がある。   If a further long time elapses after water injection from the external tank 34 to the reactor pressure vessel 3, heat radiation to the outside of the reactor containment vessel 2 continues, so if left as it is, the water level L1 in the reactor pressure vessel 3 is There is a possibility that the reactor core 9 will be exposed unless it is lowered gradually and some measures are taken.

そこで、原子炉炉心9を安定な冷却状態へ移行させるため、図4に示すように、外部タンク34から原子炉格納容器冠水用配管36を介して原子炉格納容器2を重力差によって原子炉圧力容器3と非常用復水器凝縮水戻り配管29との接続高さよりも上まで冠水させる。   Therefore, in order to shift the reactor core 9 to a stable cooling state, as shown in FIG. 4, the reactor containment vessel 2 is moved from the external tank 34 through the reactor containment vessel submerged piping 36 by the difference in gravity. The container 3 and the emergency condenser condensate return pipe 29 are submerged above the connection height.

原子炉格納容器2から連通配管23を介して重力差により原子炉圧力容器3へ補給することで、原子炉圧力容器内の水位L1を原子炉炉心9より上に維持させる。   The water level L1 in the reactor pressure vessel is maintained above the reactor core 9 by replenishing the reactor pressure vessel 3 from the reactor containment vessel 2 through the communication pipe 23 to the reactor pressure vessel 3 by gravity difference.

この原子炉格納容器冠水用配管36の吸込みは、必要な量が補給できるように、外部タンク34の原子炉冷却用補給水配管35より下方の所定の高さに開口している。   The suction of the reactor containment submerged pipe 36 opens to a predetermined height below the reactor cooling supply water pipe 35 of the external tank 34 so that a necessary amount can be supplied.

連通配管23を介した冷却循環経路が一旦形成されると、非常用復水器25内の滞留ガスの定常的な排出により、その所定の除熱が行われる限り、これらの系統以外からの水を補給することなしに、原子炉炉心9を継続的に冷却することが可能となる(図5の(III)の状態)。   Once the cooling circulation path through the communication pipe 23 is formed, water from other than these systems can be used as long as the predetermined heat removal is performed by the steady discharge of the accumulated gas in the emergency condenser 25. The reactor core 9 can be continuously cooled without replenishing (state (III) in FIG. 5).

また、連通配管23は、原子炉格納容器2の外部に配置されるため、事故時に高温あるいは高圧となる原子炉格納容器2内の雰囲気条件を考慮せずに設計することができ、高い信頼性を持ってこの開動作が実現される。   Further, since the communication pipe 23 is arranged outside the reactor containment vessel 2, it can be designed without considering the atmospheric conditions in the reactor containment vessel 2 that become high temperature or high pressure in the event of an accident, and has high reliability. This opening operation is realized with

非常用復水器25内に滞留する非凝縮性ガスを凝縮水に随伴させて原子炉圧力容器3へ戻すことは、非常用復水器凝縮水戻り配管29の配管サイジングと原子炉圧力容器3との接続部手前のUシール(U字配管)の高さ設定を適切に行うことで可能となる。   Returning the non-condensable gas staying in the emergency condenser 25 to the reactor pressure vessel 3 along with the condensed water results in the piping sizing of the emergency condenser condensate return pipe 29 and the reactor pressure vessel 3. It becomes possible by appropriately setting the height of the U-seal (U-shaped pipe) in front of the connecting part.

一般に、凝縮水の流速が高速である程随伴される非凝縮性ガスは排出されやすくなるが、一方、水及びガスの流速が早い程、非常用復水器凝縮水戻り配管29での圧力損失が大きくなる。   In general, the higher the condensate flow rate, the easier the accompanying non-condensable gas will be discharged, while the faster the water and gas flow rate, the greater the pressure loss in the emergency condenser condensate return pipe 29. Becomes larger.

非常用復水器25に流入する蒸気流量、すなわち非常用復水器25の除熱性能は、非常用復水器蒸気吸込み配管28と原子炉圧力容器3との接続端及び非常用復水器凝縮水戻り配管29と原子炉圧力容器3との接続端、この2つの接続端間での原子炉圧力容器3側と非常用復水器25側の水頭差及び非常用復水器25の系統配管の圧力損失で決定されることから、非常用復水器凝縮水戻り配管29の圧力損失が増大することは非常用復水器25の除熱性能を阻害する可能性がある。   The flow rate of the steam flowing into the emergency condenser 25, that is, the heat removal performance of the emergency condenser 25 is determined by the connection end of the emergency condenser steam suction pipe 28 and the reactor pressure vessel 3, and the emergency condenser. The connection end of the condensed water return pipe 29 and the reactor pressure vessel 3, the head difference between the reactor pressure vessel 3 side and the emergency condenser 25 side between the two connection ends, and the system of the emergency condenser 25 Since it is determined by the pressure loss of the pipe, an increase in the pressure loss of the emergency condenser condensate return pipe 29 may hinder the heat removal performance of the emergency condenser 25.

よって、非常用復水器25の除熱を阻害することなく、なおかつ事故時に非常用復水器25から非凝縮性ガスを凝縮水に随伴させて効率よく排出させるためには、非常用復水器凝縮水戻り配管29の口径を適切に選択する必要がある。   Therefore, in order to efficiently discharge the noncondensable gas from the emergency condenser 25 along with the condensed water at the time of an accident without hindering the heat removal of the emergency condenser 25, the emergency condenser is used. It is necessary to select the diameter of the condenser condensate return pipe 29 appropriately.

原子炉定格運転圧力近傍の7MPaの高圧条件で、非常用復水器25が所定の除熱性能を満たす条件において非常用復水器凝縮水戻り配管29が凝縮水で満たされて流れる場合に、その凝縮水の平均流速が所定値以上、例えば1メートル毎秒以上となる非常用復水器凝縮水戻り配管29の口径では、除熱性能を維持しつつ効率的に非凝縮性ガスを排出する2つの要求を満たすことができる。   When the emergency condenser condensate return pipe 29 is filled with condensate and flows under conditions where the emergency condenser 25 satisfies a predetermined heat removal performance under a high pressure condition of 7 MPa near the reactor rated operating pressure, At the diameter of the condensate return pipe 29 for emergency condensers where the average flow velocity of the condensed water is equal to or higher than a predetermined value, for example, 1 meter per second, non-condensable gas is efficiently discharged while maintaining heat removal performance. Can satisfy one request.

また、非常用復水器凝縮水戻り配管29と原子炉圧力容器3の接続部から非常用復水器25に向けて蒸気の逆流を防止する必要があり、このため、非常用復水器凝縮水戻り配管29はU字状の配管(Uシール)として原子炉圧力容器3と接続するが、一方、非常用復水器25からの非凝縮性ガスの排出という観点からはUシールの高さが影響する。   Further, it is necessary to prevent the backflow of steam from the connection portion of the emergency condenser condensate return pipe 29 and the reactor pressure vessel 3 toward the emergency condenser 25. The water return pipe 29 is connected to the reactor pressure vessel 3 as a U-shaped pipe (U seal). On the other hand, the height of the U seal is from the viewpoint of discharging non-condensable gas from the emergency condenser 25. Affects.

このことから、Uシールの高さを配管直径(1D)に一致させることにより、Uシールの効果を維持しつつ、非常用復水器25からの非凝縮性ガスの排気を促進することができる。   From this, by making the height of the U seal coincide with the pipe diameter (1D), the exhaust of the non-condensable gas from the emergency condenser 25 can be promoted while maintaining the effect of the U seal. .

なお、この機能により、万一、原子炉炉心9の冷却不全によって炉心損傷に至り、燃料被覆管材料であるジルコニウムと蒸気が反応して大量の水素が発生した場合においても、非常用復水器25に流入した水素ガスは伝熱管内に蓄積することなしに原子炉圧力容器3へ継続的に排出される。   Even if the reactor core 9 is damaged by this function and the reactor core is damaged, zirconium and the fuel cladding tube material react with steam to generate a large amount of hydrogen. The hydrogen gas flowing into the reactor 25 is continuously discharged to the reactor pressure vessel 3 without accumulating in the heat transfer tube.

よって、実施例1によると、非常用復水器25の除熱性能は極端な劣化をせず、原子炉格納容器2からの継続的な除熱が可能となる。   Therefore, according to the first embodiment, the heat removal performance of the emergency condenser 25 is not extremely deteriorated, and continuous heat removal from the reactor containment vessel 2 is possible.

次に、本発明に係る沸騰水型原子力発電設備1の実施例2について、図7〜図10に基づいて説明する。   Next, a second embodiment of the boiling water nuclear power generation facility 1 according to the present invention will be described with reference to FIGS.

実施例2では、原子炉緊急停止(スクラム)に失敗した事象(以下、ATWS事象という)が発生した場合の事象について説明する。   In the second embodiment, an event when an event (hereinafter referred to as an ATWS event) that has failed in an emergency reactor shutdown (scrum) has occurred will be described.

図7〜図9は、主蒸気隔離弁が閉鎖した場合を例に、ATWS事象が発生した場合の事象推移を時間軸に沿って示したものである。また、図10は、ATWS時の主要パラメータの変動を示すグラフである。   7 to 9 show the event transition along the time axis when an ATWS event occurs, taking as an example the case where the main steam isolation valve is closed. FIG. 10 is a graph showing fluctuations in main parameters during ATWS.

原子炉の運転中に何らかの要因で主蒸気隔離弁が閉鎖した場合には、通常、原子炉を自動でスクラムさせるインターロックが設けられている。しかしながら、このスクラムに失敗すると、原子炉炉心9から発生する蒸気によって原子炉圧力容器3の圧力が上昇し、さらには安全弁22から蒸気が噴出して原子炉格納容器2の圧力及び温度が急激に上昇してしまう。   When the main steam isolation valve is closed for some reason during the operation of the reactor, an interlock that automatically scrams the reactor is usually provided. However, if this scram fails, the pressure in the reactor pressure vessel 3 rises due to the steam generated from the reactor core 9, and further, the steam is ejected from the safety valve 22, causing the pressure and temperature of the reactor containment vessel 2 to suddenly increase. It will rise.

原子炉格納容器2及び原子炉圧力容器3の圧力上昇に対処するために、従来、圧力抑制プールを用いて原子炉圧力容器3への給水流量を最大限絞る等の手段(圧力抑制方式)を用いて、原子炉圧力容器3内の水位を低下させることにより、原子炉の出力を低下させていた。   In order to cope with the pressure rise in the reactor containment vessel 2 and the reactor pressure vessel 3, conventionally, means (such as a pressure suppression method) such as restricting the feed water flow rate to the reactor pressure vessel 3 to the maximum using a pressure suppression pool are used. It was used to reduce the reactor output by reducing the water level in the reactor pressure vessel 3.

しかしながら、沸騰水型原子力発電設備1は、ドライコンテナ方式を採用しており圧力抑制プールを持たないため、原子炉格納容器2の圧力が、原子炉の出力L6が十分に低下しない事象発生後数分で原子炉圧力容器3の圧力にまで上昇する可能性がある。   However, since the boiling water nuclear power generation facility 1 employs a dry container method and does not have a pressure suppression pool, the number of events after the occurrence of an event in which the pressure in the reactor containment vessel 2 does not sufficiently lower the reactor output L6. There is a possibility of increasing to the pressure of the reactor pressure vessel 3 in minutes.

このため、沸騰水型原子力発電設備1においては、非常用復水器25の出口水室に大口径の非常用復水器主ベント配管31を設けて、原子炉炉心9から発生した蒸気を外部タンク34の貯留水中に導いて凝縮させる構成とした。   For this reason, in the boiling water nuclear power generation facility 1, a large-diameter emergency condenser main vent pipe 31 is provided in the outlet water chamber of the emergency condenser 25, and steam generated from the reactor core 9 is externally supplied. It was set as the structure which guides in the storage water of the tank 34 and condenses.

ATWS事象が発生したことを検知して給水流量の絞込みを行うのとほぼ同時にこのベントを作動させることにより、非常用復水器25による除熱に加えて、外部タンク34での蒸気凝縮による除熱も実施することができる。   By operating this vent almost simultaneously with the detection of the occurrence of the ATWS event and reducing the feed water flow rate, in addition to the heat removal by the emergency condenser 25, the removal by steam condensation in the external tank 34 is performed. Heat can also be implemented.

図10に示すように、ATWS事象発生時に、原子炉圧力容器3内の圧力L2及び原子炉格納容器6内の圧力L3も過度に上昇しないため、最低限、この圧力を維持するためには、原子炉圧力容器3内の水位L1の低下により原子炉の出力L6を低下させる(図10の(II)の状態)。   As shown in FIG. 10, when the ATWS event occurs, the pressure L2 in the reactor pressure vessel 3 and the pressure L3 in the reactor containment vessel 6 do not increase excessively. Therefore, in order to maintain this pressure at the minimum, Reducing the output L6 of the reactor by lowering the water level L1 in the reactor pressure vessel 3 (state (II) in FIG. 10).

ここまでの期間で、運転員操作によるスクラムや他の手段を用いて制御棒18挿入などを試みることとなるが、これらがすべて失敗した場合には、次の段階に移行する。   In the period up to this point, an attempt is made to insert the control rod 18 using a scram or other means by the operator's operation. If all of these fail, the process proceeds to the next stage.

また、ここまでの期間に外部タンク34の水位が上昇して、その気相部の容積が減少することで、その圧力が過度に上昇しないよう、図8に示すように、高圧補給水ポンプ42等を使用して外部タンク水位を調節する(図10の(III)の状態)。   Further, as shown in FIG. 8, the high-pressure makeup water pump 42 prevents the pressure from rising excessively as the water level of the external tank 34 rises and the volume of the gas phase portion decreases during the period so far. Etc. to adjust the external tank water level (state (III) in FIG. 10).

さらに、外部タンク34に設けられた残留熱除去系ポンプ38、残留熱除去系熱交換器39、外部タンクスプレイスパージャ40を機能させることで、蒸気凝縮による外部タンク34の水温上昇を抑制する。   Furthermore, by causing the residual heat removal system pump 38, the residual heat removal system heat exchanger 39, and the external tank space purger 40 provided in the external tank 34 to function, an increase in the water temperature of the external tank 34 due to steam condensation is suppressed.

上記の時間が経過した後、最終的な原子炉停止手段として、ポイズン蓄圧貯蔵タンク24から原子炉炉心9の領域へポイズンを急速に注入する。これによって、原子炉を速やかに高温未臨界の状態へ移行させることができる(図10の(IV)の状態)。   After the above time has elapsed, poison is rapidly injected into the region of the reactor core 9 from the poison pressure storage tank 24 as the final reactor shutdown means. As a result, the nuclear reactor can be promptly shifted to a high temperature subcritical state (state (IV) in FIG. 10).

ポイズン注入時間、非常用復水器ベント容量、外部タンク容量などを適切に設定することで、この段階までの期間でも外部タンク内水温及び圧力を所定の値以下することが可能である。   By appropriately setting the poison injection time, the emergency condenser vent capacity, the external tank capacity, and the like, the water temperature and pressure in the external tank can be kept below a predetermined value even during the period up to this stage.

原子炉炉心9がポイズンにより高温未臨界の状態となって以降、さらにポイズンを注入することにより低温未臨界へ移行させることが可能である。   After the reactor core 9 becomes a high-temperature subcritical state by poisoning, it is possible to shift to low-temperature subcriticality by injecting further poison.

また、図9に示すように、高温未臨界到達以降は、非常用復水器25による除熱を行いつつ、原子炉圧力容器3内の水位L1を外部タンク34からの注水等で徐々に回復させることで安全な状態を維持することができる(図10の(V)の状態)。   Further, as shown in FIG. 9, after reaching high temperature subcriticality, the water level L1 in the reactor pressure vessel 3 is gradually recovered by water injection from the external tank 34 while heat removal by the emergency condenser 25 is performed. By doing so, a safe state can be maintained (state (V) in FIG. 10).

なお、非常用復水器25の機能が全て喪失するような事象が発生した場合でも、原子炉炉心9から発生する蒸気をベントさせて原子炉圧力容器3を減圧させるのと同時に、外部タンク34の水を残留熱除去系ポンプ38で吸込み、残留熱除去系熱交換器39で冷却した後、外部タンクスプレイスパージャ40で戻すという経路を確保する。さらに、高圧補給水ポンプ42によって原子炉圧力容器3内の水位維持を組み合わせることにより、原子炉圧力容器3を残留熱除去系ポンプ38の停止時冷却用の運転が可能となる圧力まで安全に減圧することが可能となる。   Even when an event occurs in which all the functions of the emergency condenser 25 are lost, the external tank 34 is simultaneously depressurized by venting the steam generated from the reactor core 9 to depressurize the reactor pressure vessel 3. Water is sucked by the residual heat removal system pump 38, cooled by the residual heat removal system heat exchanger 39, and then returned by the external tank place purge 40. Further, by combining the maintenance of the water level in the reactor pressure vessel 3 with the high-pressure make-up water pump 42, the reactor pressure vessel 3 can be safely reduced to a pressure at which the operation for cooling when the residual heat removal system pump 38 is stopped can be performed. It becomes possible to do.

〔第2実施形態〕
次に、本発明に係る沸騰水型原子力発電設備の第2実施形態について、図11に基づいて説明する。なお、第1実施形態と同一の構成には同一の符号を付し、詳細な説明を省略する。
[Second Embodiment]
Next, a second embodiment of the boiling water nuclear power generation facility according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and detailed description is abbreviate | omitted.

第2実施形態の沸騰水型原子力発電設備1Aは、第1実施形態の沸騰水型原子力発電設備1において、ATWS時における原子炉格納容器2の圧力上昇を抑制するための、後備機能を追加したものである。   The boiling water nuclear power generation facility 1A of the second embodiment has added a back-up function for suppressing the pressure increase of the reactor containment vessel 2 during ATWS in the boiling water nuclear power generation facility 1 of the first embodiment. Is.

すなわち、沸騰水型原子力発電装備1Aの安全系システム8Aは、図11に示すように、原子炉格納容器2及び外部タンク34の圧力上昇を抑制するために、原子炉格納容器2の外部に配設される外部タンク34とは異なる水プール46を備える。   That is, as shown in FIG. 11, the safety system 8A of the boiling water nuclear power generation equipment 1A is arranged outside the reactor containment vessel 2 in order to suppress the pressure rise in the reactor containment vessel 2 and the external tank 34. A water pool 46 different from the external tank 34 provided is provided.

また、原子炉格納容器2に高耐圧型の原子炉格納容器安全弁47が設置されるとともに、この原子炉格納容器安全弁47には、原子炉格納容器2からの排気を水プール46の液相部46aへ導く排気管54が備えられる。この排気管54の水プール46側の開口部には、高耐圧型の原子炉格納容器安全弁排気管用スパージャ48が設けられる。   In addition, a high pressure-resistant nuclear reactor containment safety valve 47 is installed in the reactor containment vessel 2, and the reactor containment vessel safety valve 47 supplies exhaust gas from the reactor containment vessel 2 to the liquid phase portion of the water pool 46. An exhaust pipe 54 leading to 46a is provided. A high pressure resistant reactor containment vessel safety valve exhaust pipe sparger 48 is provided at the opening of the exhaust pipe 54 on the water pool 46 side.

さらに、外部タンク34の気相部にも外部タンク安全弁49が設置されて、同様に、外部タンク安全弁49からの排気を排気管55から水プール46の液相部46aへ外部タンク安全弁排気管用スパージャ50を介して行う。   Further, an external tank safety valve 49 is also installed in the gas phase portion of the external tank 34. Similarly, the exhaust from the external tank safety valve 49 is discharged from the exhaust pipe 55 to the liquid phase section 46a of the water pool 46. Through 50.

第2実施形態の沸騰水型原子力発電設備1Aにおいて、ATWS時に非常用復水器主ベント配管31から外部タンク34への蒸気排出に失敗した場合に、原子炉格納容器2内に安全弁22を介して放出された原子炉蒸気は原子炉格納容器安全弁47から水プール46に導かれて凝縮し、この蒸気とともに排出された原子炉格納容器2内部の窒素ガスも水プール46内部に格納できる。これにより、原子炉格納容器2の過度の圧力上昇を抑制できる。   In the boiling water nuclear power generation facility 1A of the second embodiment, when steam discharge from the emergency condenser main vent pipe 31 to the external tank 34 fails during ATWS, the reactor containment vessel 2 is connected via the safety valve 22. The discharged reactor steam is led from the reactor containment vessel safety valve 47 to the water pool 46 and condensed, and the nitrogen gas inside the reactor containment vessel 2 discharged together with this steam can also be stored in the water pool 46. Thereby, the excessive pressure rise of the reactor containment vessel 2 can be suppressed.

また、非常用復水器主ベント配管31から外部タンク34への蒸気排出に成功した場合でも、外部タンク34に配設された残留熱除去系ポンプ38、残留熱除去系熱交換器39及び外部タンクスプレイスパージャ40を用いた外部タンク34内部の水の冷却に失敗すると外部タンク34の圧力は上昇するが、外部タンク34の圧力が外部タンク安全弁49の作動圧力にまで達すると、外部タンク34内部の蒸気や窒素ガスなどの非凝縮性ガスを水プール46へ移行させることで、外部タンク34の圧力上昇を抑制できるとともに、非常用復水器主ベント配管31による原子炉圧力容器3の圧力上昇抑制も可能となる。   Even when the steam is successfully discharged from the emergency condenser main vent pipe 31 to the external tank 34, the residual heat removal system pump 38, the residual heat removal system heat exchanger 39 and the outside disposed in the external tank 34. If cooling of the water inside the external tank 34 using the tank displacement purger 40 fails, the pressure in the external tank 34 increases. However, when the pressure in the external tank 34 reaches the operating pressure of the external tank safety valve 49, By transferring non-condensable gas such as steam and nitrogen gas to the water pool 46, the pressure increase in the external tank 34 can be suppressed, and the pressure increase in the reactor pressure vessel 3 by the emergency condenser main vent pipe 31 Suppression is also possible.

この結果、ポイズン注入系蓄圧貯蔵タンク43から注入されたポイズン(ホウ酸水等)によって原子炉が停止されるまでの期間で、原子炉格納容器2の過度の圧力上昇を抑制することができ、原子炉停止後は非常用復水器25によって原子炉炉心9の崩壊熱によって発生する蒸気を凝縮することで、原子炉炉心9を冷却することが可能となる。   As a result, an excessive pressure rise in the reactor containment vessel 2 can be suppressed in a period until the reactor is stopped by the poison (boric acid water or the like) injected from the poison injection system pressure accumulation storage tank 43, After the reactor is shut down, the reactor core 9 can be cooled by condensing steam generated by the decay heat of the reactor core 9 by the emergency condenser 25.

また、このような原子炉格納容器2の圧力上昇抑制方法は、ATWS時だけでなく、原子炉炉心9の冷却不全によって炉心損傷に至り、燃料被覆管材料であるジルコニウムと蒸気が反応して大量の水素が発生した場合に対しても利用可能である。   Further, such a method for suppressing the pressure increase of the containment vessel 2 is not only during ATWS, but also causes core damage due to insufficient cooling of the reactor core 9, resulting in a large amount of reaction between zirconium, which is a fuel cladding material, and steam. It can be used even when hydrogen is generated.

なお、水プール46は、例えば、原子炉圧力容器3内の燃料を交換する際に使用する復水貯蔵槽を利用することが可能である。この場合、第1実施形態の原子炉格納容器2の圧力上昇抑制方法を行うためには、原子炉格納容器安全弁47、外部タンク安全弁49、原子炉格納容器安全弁排気管用スパージャ48、外部タンク安全弁排気管用スパージャ50とこれらに付随する排気管54、55を追加するのみで、ATWS時の圧力上昇抑制のための後備機能が得られ、安全性をさらに高めることが可能となる。   In addition, the water pool 46 can utilize the condensate storage tank used when exchanging the fuel in the reactor pressure vessel 3, for example. In this case, in order to perform the method for suppressing the pressure increase of the containment vessel 2 of the first embodiment, the containment vessel safety valve 47, the external tank safety valve 49, the reactor containment vessel safety valve exhaust pipe sparger 48, the external tank safety valve exhaust. By simply adding the sparger 50 for pipes and the exhaust pipes 54 and 55 associated therewith, it is possible to obtain a back-up function for suppressing pressure rise during ATWS, and to further increase safety.

〔第3実施形態〕
次に、本発明に係る沸騰水型原子力発電設備の第3実施形態について、図12に基づいて説明する。なお、第1実施形態及び第2実施形態と同一の構成には同一の符号を付し、詳細な説明を省略する。
[Third Embodiment]
Next, a third embodiment of the boiling water nuclear power generation facility according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment and 2nd Embodiment, and detailed description is abbreviate | omitted.

第3実施形態の沸騰水型原子力発電設備1Bは、第1実施形態の沸騰水型原子力発電設備1において、全ての非常用復水器25の機能が何らかの原因で喪失した場合を想定して、その後備としての代替冷却手段を設けることにより、更に安全性を高めたものである。   In the boiling water nuclear power generation facility 1B of the third embodiment, assuming that the functions of all the emergency condensers 25 are lost for some reason in the boiling water nuclear power generation facility 1 of the first embodiment, By providing an alternative cooling means as a preparation after that, safety is further improved.

すなわち、沸騰水型原子力発電設備1Bの安全系システム8Bは、図12に示すように、原子炉格納容器2の外部に外部タンク34とは異なる水プール46を備える。   That is, the safety system 8B of the boiling water nuclear power generation facility 1B includes a water pool 46 different from the external tank 34 outside the reactor containment vessel 2 as shown in FIG.

また、安全系システム8Bは、全ての非常用復水器25の機能が喪失した場合に原子炉炉心9から発生する蒸気を外部タンク34へ排出する自動減圧機能附き安全弁51、自動減圧機能附き安全弁51からの排気を案内する自動減圧機能附き安全弁排気管52、自動減圧機能附き安全弁排気管52に案内された排気を外部タンク34内に分散して放出する自動減圧機能附き安全弁排気管用スパージャ53を備える。   The safety system 8B includes a safety valve 51 with an automatic pressure reducing function and a safety valve with an automatic pressure reducing function for discharging steam generated from the reactor core 9 to the external tank 34 when the functions of all the emergency condensers 25 are lost. A safety valve exhaust pipe 52 with an automatic pressure reducing function for guiding exhaust from 51, and a safety valve exhaust pipe sparger 53 with an automatic pressure reducing function for discharging the exhaust gas guided to the safety valve exhaust pipe 52 with an automatic pressure reducing function dispersed in the external tank 34. Prepare.

原子炉炉心9から発生する蒸気は、この自動減圧機能附き安全弁51を介して外部タンク34へ排出され、原子炉圧力容器3が除熱される。   The steam generated from the reactor core 9 is discharged to the external tank 34 through the safety valve 51 with an automatic pressure reducing function, and the reactor pressure vessel 3 is removed from heat.

これにより、安全弁22あるいは破断口45から原子炉格納容器2への冷却水あるいは蒸気の流出が最小限に抑制され、原子炉格納容器2や原子炉圧力容器3の圧力及び温度の上昇が抑制される。   As a result, the outflow of cooling water or steam from the safety valve 22 or the breakage opening 45 to the reactor containment vessel 2 is suppressed to the minimum, and the rise in pressure and temperature of the reactor containment vessel 2 and the reactor pressure vessel 3 is suppressed. The

同時に、原子炉炉心9を冠水維持するために、高圧補給水ポンプ42を用いて外部タンク34の水を原子炉給水系7から原子炉圧力容器3へ注水するか、または、外部タンク34の水を原子炉格納容器冠水用配管36から原子炉格納容器2へ注水し、原子炉格納容器内連通配管23Bを開放させて原子炉圧力容器3内へ導くことで達成される。   At the same time, in order to keep the reactor core 9 submerged, the water in the external tank 34 is injected from the reactor water supply system 7 to the reactor pressure vessel 3 using the high-pressure make-up water pump 42, or the water in the external tank 34 is Is achieved by injecting water into the reactor containment vessel 2 from the reactor containment vessel submerging pipe 36 and opening the reactor containment vessel communication pipe 23B into the reactor pressure vessel 3.

残留熱除去系ポンプ38及び残留熱除去系熱交換器39により外部タンク34内の水は冷却され、この外部タンク34内の水の冷却によって原子炉圧力容器3及び原子炉格納容器2の冷却が行われる。   The water in the external tank 34 is cooled by the residual heat removal system pump 38 and the residual heat removal system heat exchanger 39, and the reactor pressure vessel 3 and the reactor containment vessel 2 are cooled by cooling the water in the external tank 34. Done.

また、この代替冷却手段を設けたことにより、非常用復水器主ベント配管31を設ける必要がなくなる。   Further, by providing this alternative cooling means, it is not necessary to provide the emergency condenser main vent pipe 31.

なお、第3実施形態の沸騰水型原子力発電設備1Bは、ATWS時の原子炉圧力容器3及び原子炉格納容器2の冷却手段としても用いることが可能である。   Note that the boiling water nuclear power generation facility 1B of the third embodiment can also be used as a cooling means for the reactor pressure vessel 3 and the reactor containment vessel 2 during ATWS.

まず、スクラム失敗で原子炉隔離状態が続くと、原子炉圧力容器3内の圧力が上昇し自動減圧機能附き安全弁51の安全弁機能が働き、原子炉圧力容器3内の蒸気を外部タンク34へ自動的に排出する。   First, when the reactor is isolated due to the failure of the scram, the pressure in the reactor pressure vessel 3 rises and the safety valve function of the safety valve 51 with the automatic decompression function works to automatically transfer the steam in the reactor pressure vessel 3 to the external tank 34. To exhaust.

この排出機能だけでは容量が不足する場合には、さらに原子炉圧力容器3に設置された安全弁22が開き、原子炉圧力容器3内の蒸気を原子炉格納容器2内に排出し、その圧力を上昇させる。この際、原子炉格納容器2の圧力が設計圧力以下になるような十分な容量を持った安全弁22を設置する。   When the capacity is insufficient with this discharge function alone, the safety valve 22 installed in the reactor pressure vessel 3 is further opened, the steam in the reactor pressure vessel 3 is discharged into the reactor containment vessel 2, and the pressure is reduced. Raise. At this time, a safety valve 22 having a sufficient capacity is installed so that the pressure in the reactor containment vessel 2 is equal to or lower than the design pressure.

安全弁22を開いた後、原子炉圧力容器3内の蒸気の排出による原子炉圧力容器3内の水位低下で生じる原子炉出力の低下、及び、原子炉圧力容器3内の蒸気の排出後のポイズン注入により原子炉は停止し、非常用復水器25による冷却により原子炉高温待機状態に移行し、事象収束に至る。   After the safety valve 22 is opened, the reactor power drop caused by the water level drop in the reactor pressure vessel 3 due to the discharge of the steam in the reactor pressure vessel 3, and the poison after the steam discharge in the reactor pressure vessel 3 The reactor is stopped by the injection, and is cooled to the high temperature standby state by the cooling by the emergency condenser 25, and the event is converged.

本発明に係る沸騰水型原子力発電設備の第1実施形態を示す構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows 1st Embodiment of the boiling water nuclear power generation equipment which concerns on this invention. 第1実施形態の原子炉冷却材喪失時における事象水位の状態を示す第一の図。The 1st figure which shows the state of the event water level at the time of the reactor coolant loss of 1st Embodiment. 第1実施形態の原子炉冷却材喪失時における事象水位の状態を示す第二の図。The 2nd figure which shows the state of the event water level at the time of the reactor coolant loss of 1st Embodiment. 第1実施形態の原子炉冷却材喪失時における事象水位の状態を示す第三の図。The 3rd figure which shows the state of the event water level at the time of the reactor coolant loss of 1st Embodiment. 第1実施形態における原子炉冷却材喪失時の主要パラメータの変動を示すグラフ。The graph which shows the fluctuation | variation of the main parameters at the time of the reactor coolant loss in 1st Embodiment. 第1実施形態における原子炉冷却材喪失時の主要パラメータの変動を示すグラフ。The graph which shows the fluctuation | variation of the main parameters at the time of the reactor coolant loss in 1st Embodiment. 第1実施形態におけるATWS時の事象推移を示す第一の図。The 1st figure which shows the event transition at the time of ATWS in 1st Embodiment. 第1実施形態におけるATWS時の事象推移を示す第二の図。The 2nd figure which shows the event transition at the time of ATWS in 1st Embodiment. 第1実施形態におけるATWS時の事象推移を示す第三の図。The 3rd figure which shows the event transition at the time of ATWS in 1st Embodiment. 第1実施形態におけるATWS時の主要パラメータの変動を示すグラフ。The graph which shows the fluctuation | variation of the main parameters at the time of ATWS in 1st Embodiment. 本発明に係る沸騰水型原子力発電設備の第2実施形態を示す構成図。The block diagram which shows 2nd Embodiment of the boiling water type nuclear power generation equipment which concerns on this invention. 本発明に係る沸騰水型原子力発電設備の第3実施形態を示す構成図。The block diagram which shows 3rd Embodiment of the boiling water nuclear power generation equipment which concerns on this invention.

符号の説明Explanation of symbols

1、1A、1B 沸騰水型原子力発電設備
2 原子炉格納容器
3 原子炉圧力容器
4 格納容器支持ペデスタル
5 圧力容器支持ペデスタル
6 主蒸気系
7 原子炉給水系
7a 給水ポンプ
8、8A、8B 安全系システム
9 原子炉炉心
10 炉心シュラウド
11 ダウンカマー
12 炉心下部プレナム
13 気水分離器
14 蒸気乾燥器
15 主蒸気隔離弁
16 制御棒駆動装置
17 制御棒収納スペース
18 制御棒
19 非常用復水系
20 外部貯蔵系
21 ポイズン注入系
22 安全弁
23、23B 連通配管
24 非常用復水器プール
25 非常用復水器
26 入口水室
27 出口水室
28 非常用復水器蒸気吸込み配管
29 非常用復水器凝縮水戻り配管
30 非常用復水器ガスベント配管
31 非常用復水器主ベント配管
32 非常用復水器ガスベント流量制限オリフィス
33 非常用復水器主ベント配管用スパージャ
34 外部タンク
35 原子炉冷却用補給水配管
36 原子炉格納容器冠水用配管
37 残留熱除去系配管
38 残留熱除去系ポンプ
39 残留熱除去系熱交換器
40 外部タンクスプレイスパージャ
41 高圧補給水配管
42 高圧補給水ポンプ
43 ポイズン注入系蓄圧貯蔵タンク
44 ポイズン注入系ポイズン注入配管
45 破断口
46 水プール
46a 液相部
47 原子炉格納容器安全弁
48 原子炉格納容器安全弁排気管用スパージャ
49 外部タンク安全弁
50 外部タンク安全弁排気管用スパージャ
51 自動減圧機能附き安全弁
52 自動減圧機能附き安全弁排気管
53 自動減圧機能附き安全弁排気管用スパージャ
54、55 排気管
A 原子炉冷却用補給水
B 原子炉格納容器冠水用水
C ベント蒸気凝縮用水
L1 原子炉圧力容器内の水位
L2 原子炉圧力容器内の圧力
L3 原子炉格納容器内の圧力
L4 外部タンク内の圧力
L5 原子炉格納容器内の水位
L6 原子炉の炉出力
L7 外部タンク内の水温
1, 1A, 1B Boiling water nuclear power plant 2 Reactor containment vessel 3 Reactor pressure vessel 4 Containment vessel support pedestal 5 Pressure vessel support pedestal 6 Main steam system 7 Reactor feed water system 7a Feed water pump 8, 8A, 8B Safety system System 9 Reactor core 10 Core shroud 11 Downcomer 12 Lower core plenum 13 Steam / water separator 14 Steam dryer 15 Main steam isolation valve 16 Control rod drive 17 Control rod storage space 18 Control rod 19 Emergency condensate system 20 External storage System 21 Poison injection system 22 Safety valve 23, 23B Communication piping 24 Emergency condenser pool 25 Emergency condenser 26 Inlet water chamber 27 Outlet water chamber 28 Emergency condenser steam suction piping 29 Emergency condenser condensate Return pipe 30 Emergency condenser gas vent pipe 31 Emergency condenser main vent pipe 32 Emergency condenser gas vent flow restriction orifice 3 Emergency condenser main vent piping sparger 34 External tank 35 Reactor cooling makeup water piping 36 Reactor containment submerged piping 37 Residual heat removal system piping 38 Residual heat removal system pump 39 Residual heat removal system heat exchanger 40 External tank displacement purger 41 High pressure makeup water pipe 42 High pressure makeup water pump 43 Poison injection system pressure storage tank 44 Poison injection system poison injection pipe 45 Break port 46 Water pool 46a Liquid phase part 47 Primary containment vessel safety valve 48 Reactor containment vessel Safety valve exhaust pipe sparger 49 External tank safety valve 50 External tank safety valve exhaust pipe sparger 51 Safety valve with automatic decompression function 52 Safety valve exhaust pipe with automatic decompression function 53 Safety valve exhaust pipe sparger with automatic decompression function 54, 55 Exhaust pipe A Replenishment water for reactor cooling B Reactor containment submersion water C Vent steam condensation water L1 Water level in the reactor pressure vessel L2 Pressure in the reactor pressure vessel L3 Pressure in the reactor containment vessel L4 Pressure in the external tank L5 Water level in the reactor containment vessel L6 Reactor output L7 Water temperature in the external tank

Claims (13)

過圧防護用の安全弁を有する原子炉圧力容器を収納した原子炉格納容器と、前記原子炉圧力容器内で発生した蒸気を蒸気タービンに送り込む主蒸気系と、蒸気タービンからの蒸気を復水器により凝縮する原子炉復水系と、この原子炉復水系で凝縮された復水を前記原子炉圧力容器に戻す原子炉給水系とを備えた沸騰水型原子力発電設備において、
前記原子炉圧力容器からの蒸気を凝縮して再び前記原子炉圧力容器に戻す非常用復水系と、
前記非常用復水系からの復水を貯蔵する外部貯蔵系とを備え、
前記外部貯蔵系は、前記非常用復水系からの復水を貯蔵する外部タンクと、この外部タンク内の水を前記原子炉圧力容器へ注水する原子炉冷却用補給水配管と、前記外部タンク内の水を前記原子炉格納容器へ注水する原子炉格納容器冠水用配管とを有し、
前記原子炉冷却用補給水配管が前記原子炉圧力容器及び外部タンクに接続される高さは、前記原子炉格納容器冠水用配管が前記原子炉格納容器及び外部タンクに接続される高さに対して異なるように設定されて、前記原子炉圧力容器への注水量と注水開始タイミング、及び、前記原子炉格納容器への注水量と注水開始タイミングが、それぞれ重力により駆動制御されることを特徴とする沸騰水型原子力発電設備。
A reactor containment vessel containing a reactor pressure vessel having a safety valve for overpressure protection, a main steam system for sending steam generated in the reactor pressure vessel to a steam turbine, and a steam from the steam turbine being a condenser In a boiling water nuclear power generation facility comprising a reactor condensate system that condenses by the reactor and a reactor water supply system that returns the condensate condensed in the reactor condensate system to the reactor pressure vessel,
An emergency condensate system that condenses the steam from the reactor pressure vessel and returns it back to the reactor pressure vessel;
An external storage system for storing condensate from the emergency condensate system,
The external storage system includes an external tank for storing condensate from the emergency condensate system, a reactor cooling makeup water pipe for injecting water in the external tank into the reactor pressure vessel, and an internal tank in the external tank. A reactor containment submerged pipe for injecting water into the reactor containment vessel,
The height at which the reactor cooling makeup water pipe is connected to the reactor pressure vessel and the external tank is higher than the height at which the reactor containment submersion piping is connected to the reactor containment vessel and the external tank. The water injection amount and the water injection start timing to the reactor pressure vessel, and the water injection amount and the water injection start timing to the reactor containment vessel are respectively driven and controlled by gravity. Boiling water nuclear power generation facility.
予め貯蔵されたポイズンを非常時に前記原子炉圧力容器に注入するポイズン注入系を備えた請求項1記載の沸騰水型原子力発電設備。 The boiling water nuclear power plant according to claim 1, further comprising a poison injection system for injecting a previously stored poison into the reactor pressure vessel in an emergency. 前記原子炉圧力容器が原子炉炉心及び上部挿入型の制御棒駆動装置を備えるとともに、前記原子炉炉心の上端より上方においてのみ前記原子炉冷却用補給水配管、前記原子炉給水系の配管、および前記非常用復水系の配管が前記原子炉圧力容器に接続された請求項1記載の沸騰水型原子力発電設備。 The reactor pressure vessel includes a reactor core and an upper insertion type control rod driving device, and only above the upper end of the reactor core, the reactor cooling makeup water pipe, the reactor water supply system pipe, and The boiling water nuclear power plant according to claim 1, wherein the emergency condensate piping is connected to the reactor pressure vessel. 前記非常用復水系の復水を前記外部タンクに注入する非常用復水器ベント配管を備え、
この非常用復水器ベント配管が、大口径の配管と小口径の配管とを並列に並べることにより構成された請求項1記載の沸騰水型原子力発電設備。
An emergency condenser vent pipe for injecting the condensate of the emergency condensate system into the external tank;
The boiling water nuclear power plant according to claim 1, wherein the emergency condenser vent pipe is constructed by arranging a large-diameter pipe and a small-diameter pipe in parallel.
前記非常用復水器ベント配管の外部タンク内部への吐き出し口がスパージャ構造であるとともに、前記吐き出し口の高さが、前記非常用復水器ベント配管の前記非常用復水系側の吸込み口の高さより下方に設定された請求項4記載の沸騰水型原子力発電設備。 The outlet to the outside tank of the emergency condenser vent pipe has a sparger structure, and the height of the outlet is the suction outlet on the emergency condenser side of the emergency condenser vent pipe. The boiling water nuclear power generation facility according to claim 4, which is set below the height. 前記原子炉格納容器内の冠水を前記原子炉圧力容器内に注水するための連通配管を備え、
この連通配管は、前記原子炉格納容器、及び前記非常用復水系からの復水を前記原子炉圧力容器に注水する非常用復水器凝縮水戻り配管に接続され、前記原子炉圧力容器への注水量と注水開始タイミングとが重力により駆動制御される請求項1記載の沸騰水型原子力発電設備。
A communication pipe for pouring the submersion in the reactor containment vessel into the reactor pressure vessel;
This communication pipe is connected to an emergency condenser condensate return pipe for injecting condensate from the reactor containment vessel and the emergency condensate system into the reactor pressure vessel, and to the reactor pressure vessel . The boiling water nuclear power plant according to claim 1, wherein the water injection amount and the water injection start timing are driven and controlled by gravity.
前記外部タンクは、ポンプ、配管、熱交換器から構成される冷却配管を備えた請求項1記載の沸騰水型原子力発電設備。 2. The boiling water nuclear power generation facility according to claim 1, wherein the external tank includes a cooling pipe including a pump, a pipe, and a heat exchanger. 前記非常用復水系からの復水を前記原子炉圧力容器に注水する非常用復水器凝縮水戻り配管の内部の凝縮水平均流速が1メートル毎秒以上となるように口径が設定された前記非常用復水器を有する請求項1記載の沸騰水型原子力発電設備。 The diameter of the emergency condensate is set so that the average condensate flow velocity in the condensate return pipe of the emergency condenser for injecting the condensate from the emergency condensate into the reactor pressure vessel is 1 meter per second or more. The boiling water nuclear power generation facility according to claim 1, further comprising a condenser. 前記非常用復水器凝縮水戻り配管の前記原子炉圧力容器に対する接続箇所に、高さが前記非常用復水器凝縮水戻り配管の直径程度のUシールを設けた請求項8記載の沸騰水型原子力発電設備。 The boiling water according to claim 8, wherein a U-seal having a height approximately equal to the diameter of the emergency condenser condensate return pipe is provided at a connection location of the emergency condenser condensate return pipe to the reactor pressure vessel. Type nuclear power plant. 前記原子炉格納容器の外部に前記外部タンクとは異なる水プールを備えるとともに、前記原子炉格納容器は、排気管が前記水プールの液相部に接続する原子炉格納容器安全弁を具備し、前記排気管の前記水プールに対する接続部先端をスパージャ構造とした請求項1記載の沸騰水型原子力発電設備。 The reactor containment vessel includes a water pool different from the external tank outside the reactor containment vessel, and the reactor containment vessel includes a reactor containment vessel safety valve whose exhaust pipe is connected to a liquid phase part of the water pool, The boiling water nuclear power generation facility according to claim 1, wherein a tip of a connection portion of the exhaust pipe with respect to the water pool has a sparger structure. 前記外部タンクの気相部に、排気管が前記水プールの液相部に接続する外部タンク安全弁が備えられるとともに、前記排気管の前記水プールに対する接続部先端をスパージャ構造とした請求項10記載の沸騰水型原子力発電設備。 11. The external tank safety valve for connecting an exhaust pipe to the liquid phase part of the water pool is provided in the gas phase part of the external tank, and the tip of the connection part of the exhaust pipe to the water pool has a sparger structure. Boiling water nuclear power plant. 前記原子炉圧力容器は、排気管が前記外部タンクの液相部に接続する自動減圧機能附き安全弁を備え、前記非常用復水系の機能が喪失した場合に、原子炉炉心から発生する蒸気が前記排気管を通して前記外部タンクへ排出される請求項1記載の沸騰水型原子力発電設備。 The reactor pressure vessel is provided with a safety valve with an automatic pressure reducing function for connecting an exhaust pipe to the liquid phase part of the external tank, and when the function of the emergency condensate system is lost, steam generated from the reactor core is The boiling water nuclear power generation facility according to claim 1, wherein the water is discharged to the external tank through an exhaust pipe. 前記原子炉格納容器に冠水された水を重力差により前記原子炉圧力容器内に注水するための連通配管を、前記原子炉圧力容器の原子炉炉心より上方に設置した請求項12記載の沸騰水型原子力発電設備。 The boiling water according to claim 12, wherein a communication pipe for injecting water submerged in the reactor containment vessel into the reactor pressure vessel by gravity difference is installed above the reactor core of the reactor pressure vessel. Type nuclear power plant.
JP2006025717A 2006-02-02 2006-02-02 Boiling water nuclear power plant Active JP4761988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025717A JP4761988B2 (en) 2006-02-02 2006-02-02 Boiling water nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025717A JP4761988B2 (en) 2006-02-02 2006-02-02 Boiling water nuclear power plant

Publications (2)

Publication Number Publication Date
JP2007205923A JP2007205923A (en) 2007-08-16
JP4761988B2 true JP4761988B2 (en) 2011-08-31

Family

ID=38485512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025717A Active JP4761988B2 (en) 2006-02-02 2006-02-02 Boiling water nuclear power plant

Country Status (1)

Country Link
JP (1) JP4761988B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991598B2 (en) * 2008-02-28 2012-08-01 株式会社東芝 Automatic decompression system for nuclear power generation facilities
JP5911762B2 (en) 2012-06-29 2016-04-27 株式会社東芝 Nuclear plant and static containment cooling system
CN115910406B (en) * 2022-11-22 2024-01-09 上海核工程研究设计院股份有限公司 Method and system for analyzing reactor cavity inundation of passive pressurized water reactor nuclear power plant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432797A (en) * 1990-05-30 1992-02-04 Toshiba Corp Nuclear reactor cooling device for emergency
JP2934341B2 (en) * 1991-07-05 1999-08-16 株式会社日立製作所 Reactor containment cooling system
JPH085772A (en) * 1994-06-17 1996-01-12 Hitachi Ltd Reactor containment
JPH09243779A (en) * 1996-03-08 1997-09-19 Japan Atom Power Co Ltd:The Nuclear reactor
JP2003185781A (en) * 2001-12-17 2003-07-03 Mitsubishi Heavy Ind Ltd Emergency cooling system for reactor vessel and containment vessel thereof

Also Published As

Publication number Publication date
JP2007205923A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
US5102616A (en) Full pressure passive emergency core cooling and residual heat removal system for water cooled nuclear reactors
US8824619B2 (en) Steam generator flow by-pass system
JP4675926B2 (en) Boiling water reactor
EP2096644A2 (en) Passive cooling and depressurization system and pressurized water nuclear power plant
US10319481B2 (en) Passive containment spray system
JP2007051929A (en) Reactor containment cooling facility and nuclear power plant
KR100813939B1 (en) Passive type emergency core cooling system for an integral reactor with a safeguard vessel
CZ124293A3 (en) Pressurized-water reactor and method of moderating effects of leakages
JP3159820B2 (en) Reactor containment equipment
KR101250479B1 (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof
KR101559017B1 (en) Inherent-safety Reactor after nuclear decay and operating method for the reactor
JP4761988B2 (en) Boiling water nuclear power plant
JP5279325B2 (en) Hybrid safety system for boiling water reactors
JP6359318B2 (en) Static reactor containment cooling system and nuclear power plant
KR20060020756A (en) Integral pwr with diverse emergency cooling and method of operating same
JP2001228280A (en) Reactor
JP2020173201A (en) Emergency condenser system
JP5513880B2 (en) Core cooling system
JP2548838B2 (en) Core collapse heat removal system for pressurized water reactor
JP7453062B2 (en) nuclear power plant
KR102249809B1 (en) Long-term cooling system in nuclear plant and method using the same
KR101695363B1 (en) Passive safety system and nuclear power plant having the same
JPH08334584A (en) System and method for control of water inventory of condenser pool in boiling water reactor
JP7105719B2 (en) ATWS countermeasure equipment and natural circulation boiling water reactor equipped with it
JPH05323084A (en) Reactor containment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4761988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350