JP5513880B2 - Core cooling system - Google Patents

Core cooling system Download PDF

Info

Publication number
JP5513880B2
JP5513880B2 JP2009297628A JP2009297628A JP5513880B2 JP 5513880 B2 JP5513880 B2 JP 5513880B2 JP 2009297628 A JP2009297628 A JP 2009297628A JP 2009297628 A JP2009297628 A JP 2009297628A JP 5513880 B2 JP5513880 B2 JP 5513880B2
Authority
JP
Japan
Prior art keywords
pipe
cooling system
reactor
core cooling
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009297628A
Other languages
Japanese (ja)
Other versions
JP2011137709A (en
Inventor
直子 松永
幹英 中丸
昭 村瀬
一芳 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009297628A priority Critical patent/JP5513880B2/en
Publication of JP2011137709A publication Critical patent/JP2011137709A/en
Application granted granted Critical
Publication of JP5513880B2 publication Critical patent/JP5513880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は炉心冷却システムに関し、特に、動的安全系と静的安全系を組み合わせた炉心冷却システムに関する。   The present invention relates to a core cooling system, and more particularly to a core cooling system that combines a dynamic safety system and a static safety system.

次世代沸騰水型原子炉(BWR)では、地震、津波等の外部事象への安全性強化対策として、このような外部事象に対して故障しにくい安全系構成が望まれている。このための案として、最近では海水系に依存せず原子炉建屋内に設置された各種機器のみで事故を収束させる冷却系構成が考えられている。例えば、特許文献1で提案されている動的安全系と静的安全系を組み合わせた沸騰水型原子炉のハイブリッド安全系では、炉心を原子炉圧力容器(RPV)外から水没状態にした後、原子炉圧力容器からの流出蒸気を格納容器上方に設けられた冷却プール内の熱交換器にて凝縮させ、そのドレン水を再び炉内に重力で戻すことで、動的機器の故障の影響を極力排除した炉心冷却を継続させる冷却系の構成が開示されている。   In the next-generation boiling water reactor (BWR), as a safety enhancement measure against external events such as earthquakes and tsunamis, a safety system configuration that is unlikely to fail against such external events is desired. As a proposal for this, recently, a cooling system configuration has been considered in which the accident is converged only by various devices installed in the reactor building without depending on the seawater system. For example, in a hybrid safety system of a boiling water reactor combining a dynamic safety system and a static safety system proposed in Patent Document 1, after the reactor core is submerged from outside the reactor pressure vessel (RPV), By condensing the spilled steam from the reactor pressure vessel in the heat exchanger in the cooling pool provided above the containment vessel and returning the drain water to the reactor again by gravity, the effects of dynamic equipment failure can be reduced. The structure of the cooling system which continues the core cooling eliminated as much as possible is disclosed.

この安全系の構成を図3により具体的に説明する。
図3において、原子炉格納容器6のダイアフラムフロアー1は炉心2の上端より上部に設置され、上部ドライウェル3と圧力抑制プール4とを連通するベント管5の上端開口部がダイアフラムフロアー1より上部に設けられている。
また、冷却材喪失事故発生後の長期的な炉心崩壊熱除去のための安全系システムとして、静的格納容器冷却系と均圧炉心冷却系を備えている。
The configuration of this safety system will be specifically described with reference to FIG.
In FIG. 3, the diaphragm floor 1 of the reactor containment vessel 6 is installed above the upper end of the reactor core 2, and the upper end opening of the vent pipe 5 that communicates the upper dry well 3 and the pressure suppression pool 4 is above the diaphragm floor 1. Is provided.
In addition, a static containment vessel cooling system and a pressure equalization core cooling system are provided as a safety system for long-term core decay heat removal after the loss of coolant accident.

静的格納容器冷却系は、原子炉格納容器6の上部に設置された冷却プール7とその中に設置された熱交換器8と熱交換器8上部に接続された蒸気室9及び下部に接続された水室10と、蒸気室9と上部ドライウェル3を接続する配管11と、水室10と上部ドライウェル3を接続する配管12により構成される。   The static containment vessel cooling system is connected to the cooling pool 7 installed in the upper part of the reactor containment vessel 6, the heat exchanger 8 installed therein, the steam chamber 9 connected to the upper part of the heat exchanger 8, and the lower part. The water chamber 10, the steam chamber 9 and the upper dry well 3 are connected to each other, and the water chamber 10 and the upper dry well 3 are connected to each other.

均圧炉心冷却系は、ベント管5の上端よりも低く、炉心2より高い位置に設けられ、上部ドライウェル3と原子炉圧力容器13を連通する均圧炉心冷却系配管14から構成されている。   The pressure equalizing core cooling system is provided at a position lower than the upper end of the vent pipe 5 and higher than the core 2 and is composed of a pressure equalizing core cooling system pipe 14 communicating the upper dry well 3 and the reactor pressure vessel 13. .

このように構成された安全系において、例えば、15に示すような一次冷却材配管に破断事故が発生した場合、原子炉圧力容器13につながる配管破断口15からの流出蒸気は静的格納容器冷却系を構成する熱交換器8にて凝縮され、配管12の開口部から溢れたドレン水が破断した配管口15から溢れる一次冷却水や外部から注水される水と共にダイアフラムフロアー1上にベント管5開口端まで溜り、主蒸気管16等に設置されて原子炉圧力容器13と上部ドライウェル3を均圧にする均圧弁17、18の開作動により均圧炉心冷却系配管14を介して原子炉圧力容器13内との圧力差により炉内に注水され、炉心冷却が行われる。   In the safety system thus configured, for example, when a breakage accident occurs in the primary coolant pipe as shown in 15, the outflow steam from the pipe breakage opening 15 connected to the reactor pressure vessel 13 is cooled by the static containment vessel. The vent pipe 5 is formed on the diaphragm floor 1 together with the primary cooling water that is condensed in the heat exchanger 8 constituting the system and overflows from the opening 15 of the pipe 12 and overflows from the pipe port 15 where water is poured from the outside. The reactor is accumulated through the pressure equalizing core cooling system pipe 14 by opening the pressure equalizing valves 17 and 18 which are accumulated in the open end and are installed in the main steam pipe 16 or the like to equalize the pressure in the reactor pressure vessel 13 and the upper dry well 3. Water is poured into the furnace due to a pressure difference from the pressure vessel 13 to cool the core.

特開2009−58496号公報JP 2009-58496 A

上述した従来の安全系においては、外部のサポート系に依存せず原子炉建屋内に設置された各種機器のみで炉心冷却を継続して行うことができるので、外部事象に対しての安全性が強化されているが、一方で比較的大きい均圧炉心冷却系配管が炉心の上方近傍に配置されているため、この配管が破断した際の事故の影響が大きくなってしまうという問題点がある。   In the above-described conventional safety system, the core cooling can be continuously performed only with various devices installed in the reactor building without depending on the external support system. Although strengthened, on the other hand, since a relatively large pressure equalizing core cooling system pipe is arranged in the vicinity of the upper part of the core, there is a problem that the influence of an accident when the pipe breaks becomes large.

本発明は上記課題を解決するためになされたもので、均圧炉心冷却系配管が破断する事故が発生したとしても、事故の影響を最小限に抑制することができる炉心冷却システムを提供することを目的とする。   The present invention has been made to solve the above problems, and provides a core cooling system that can suppress the influence of an accident to a minimum even if an accident occurs in which a pressure equalizing core cooling system pipe breaks. With the goal.

本発明は上記課題を解決するためになされたもので、本発明に係る炉心冷却システムは、原子炉格納容器の上部に設けられた冷却水プールと、前記冷却水プールに収容された複数の熱交換器と、前記熱交換器の各々の上部に接続された蒸気室及び各々の下部に接続された水室と、上部ドライウェルと前記各蒸気室を接続する第1の配管と、前記上部ドライウェルと前記各水室を連通し、先端が開口部を有するU字状の立ち上がり管部を備えた第2の配管と、原子炉圧力容器と前記上部ドライウェルを連通する複数の均圧炉心冷却配管と、前記第2の配管と前記原子炉圧力容器を接続するドレン配管と、を有し、前記複数の均圧炉心冷却配管はその全体が炉心より上部でベント管の開口部上端より下部に設置されていることを特徴とする。 The present invention has been made to solve the above problems, and a core cooling system according to the present invention includes a cooling water pool provided in an upper part of a reactor containment vessel, and a plurality of heats accommodated in the cooling water pool. An exchanger, a steam chamber connected to the upper part of each of the heat exchangers, a water chamber connected to the lower part of each, a first pipe connecting the upper dry well and the steam chambers, and the upper dryer and communicating said the wells each water chamber, a plurality of equalizing pressure furnace center that communicates with the second pipe having a riser portion of the U-shape, a nuclear reactor pressure vessel upper drywell tip having an opening a cooling pipe, said a drain pipe and the second pipe connecting the reactor pressure vessel, have a, the plurality of equalizing pressure furnace core cooling pipe is lower than the opening upper end of the vent tube at the top in its entirety from the core and said that you have been placed in.

本発明によれば、均圧炉心冷却系配管が破断する事故が発生したとしても、事故の影響を最小限に抑制することが可能な炉心冷却システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if the accident which a pressure equalization core cooling system piping fractures | ruptures occurs, the core cooling system which can suppress the influence of an accident to the minimum can be provided.

本発明の第1の実施形態に係る炉心冷却システムの全体構成図。1 is an overall configuration diagram of a core cooling system according to a first embodiment of the present invention. 本発明の第2の実施形態に係る炉心冷却システムの全体構成図。The whole block diagram of the core cooling system which concerns on the 2nd Embodiment of this invention. 従来の炉心冷却システムの全体構成図。The whole core cooling system block diagram.

以下、本発明に係る炉心冷却システムの実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of a core cooling system according to the present invention will be described with reference to the drawings.

[第1の実施形態]
図1は、本発明の第の1実施形態に係る炉心冷却システムの全体構成図である。
原子力発電プラントの原子炉格納容器6の内部には、炉心2が収納される原子炉圧力容器13が格納され、炉心2は炉水である原子炉冷却材で冠水されている。また、原子炉圧力容器13は、下端にインターナルポンプ(図示せず)が設置され、原子炉冷却材が炉心2に強制的に循環されている。
[First Embodiment]
FIG. 1 is an overall configuration diagram of a core cooling system according to a first embodiment of the present invention.
Inside the reactor containment vessel 6 of the nuclear power plant, a reactor pressure vessel 13 in which the reactor core 2 is accommodated is stored, and the reactor core 2 is flooded with a reactor coolant that is reactor water. Further, an internal pump (not shown) is installed at the lower end of the reactor pressure vessel 13, and the reactor coolant is forcibly circulated through the reactor core 2.

原子炉圧力容器13は上部ドライウェル3と下部ドライウェル19とからなるドライウェル20内部に設置され、圧力抑制室21は下部ドライウェル19を環状に取り囲むように設置されており、この圧力抑制室21内部には圧力抑制プール水4が貯えられる。上部ドライウェル3と圧力抑制プール水4とはベント管5により連通され、圧力抑制室21の圧力抑制プール水の上空間は、事故時にベント管5から噴き出した蒸気を凝縮させた残りの不凝縮性ガスを貯留する。   The reactor pressure vessel 13 is installed inside a dry well 20 composed of an upper dry well 3 and a lower dry well 19, and a pressure suppression chamber 21 is installed so as to surround the lower dry well 19 in an annular shape. The pressure suppression pool water 4 is stored inside 21. The upper dry well 3 and the pressure suppression pool water 4 are communicated with each other by a vent pipe 5, and the upper space of the pressure suppression pool water in the pressure suppression chamber 21 is the remaining non-condensation obtained by condensing the steam blown out from the vent pipe 5 at the time of the accident. Stores sex gases.

ベント管5の上端側の開口部は圧力抑制室21の天井であるダイアフロムフロアー1より上方に突出して設けられるとともに、この突出量は炉心の上端よりも所定長さだけ高くなるように設定される。   The opening on the upper end side of the vent pipe 5 is provided so as to protrude upward from the diaphragm floor 1 which is the ceiling of the pressure suppression chamber 21, and the protruding amount is set to be higher by a predetermined length than the upper end of the core. The

原子炉圧力容器13には、炉心2で発生した蒸気が案内される主蒸気系16、及び蒸気タービンにて仕事をし、復水器で凝縮された後の給水を送水する給水系22が接続される。   Connected to the reactor pressure vessel 13 are a main steam system 16 through which steam generated in the reactor core 2 is guided, and a water supply system 22 for supplying water after working in a steam turbine and condensed in a condenser. Is done.

本第1の実施形態に係る炉心冷却システムは、均圧弁(DPV)、蓄圧注水系(ACC)、均圧注水系(EPFL)、静的格納容器冷却系(PCCS)、及び均圧炉心冷却系とから構成される。以下、各安全系について説明する。   The core cooling system according to the first embodiment includes a pressure equalizing valve (DPV), an accumulating water injection system (ACC), a pressure equalizing water injection system (EPFL), a static containment vessel cooling system (PCCS), and a pressure equalizing core cooling system. Consists of Hereinafter, each safety system will be described.

(均圧弁(DPV))
均圧弁(DPV)は、主蒸気系16から分岐された配管23上に原子炉圧力容器13とドライウェル20とを連通できるように設置された爆破弁17と遠隔操作弁18からなり、事故発生から一定時間経過した後に開き、原子炉圧力容器13内の蒸気をドライウェル20内に放出し、原子炉圧力容器13内の圧力を速やかに低下させ、ドライウェル20との差圧を最小化させる。原子炉圧力容器13内の圧力を低下させることで、蓄圧注水系(ACC)及び、均圧注水系(EPFL)による注水を可能とし、炉心2を冠水させる。
(Equal pressure equalizing valve (DPV))
The pressure equalizing valve (DPV) is composed of a blast valve 17 and a remote control valve 18 installed on a pipe 23 branched from the main steam system 16 so that the reactor pressure vessel 13 and the dry well 20 can communicate with each other. After a certain period of time has elapsed, the steam is opened in the reactor pressure vessel 13 and discharged into the dry well 20 to quickly reduce the pressure in the reactor pressure vessel 13 and minimize the pressure difference with the dry well 20. . By reducing the pressure in the reactor pressure vessel 13, water can be injected by an accumulating water injection system (ACC) and an equal pressure water injection system (EPFL), and the core 2 is flooded.

(蓄圧注水系(ACC))
蓄圧注水系(ACC)は、窒素により加圧された蓄圧タンク24と、蓄圧タンク24と均圧注水系配管25を接続する蓄圧注水系配管26とにより構成され、事故発生後、均圧弁17、18とは別に設置される複数の逃がし安全弁による自動減圧系(図示せず)により原子炉圧力容器13の圧力が蓄圧タンク24の圧力より低くなると自動的に注水する。
(Accumulated water injection system (ACC))
The accumulator water injection system (ACC) is composed of a pressure accumulator tank 24 pressurized by nitrogen and an accumulator water injection pipe 26 connecting the pressure accumulator tank 24 and the pressure equalization water injection pipe 25. After an accident occurs, the pressure equalization valves 17, 18 In addition, water is automatically injected when the pressure in the reactor pressure vessel 13 becomes lower than the pressure in the pressure accumulating tank 24 by an automatic pressure reducing system (not shown) using a plurality of relief safety valves installed separately.

(均圧注水系(EPFL))
均圧注水系(EPFL)は、空冷DG又はバッテリーにて作動可能な小型ポンプ27と、炉心2より上方の位置で原子炉圧力容器13に接続する均圧注水系配管25により構成され、均圧弁17、18により原子炉圧力容器13の圧力が十分下がった後、ポンプ27により圧力抑制プール4の水を原子炉圧力容器13内に注水する。
(Equal pressure water injection system (EPFL))
The pressure equalizing water injection system (EPFL) is composed of a small pump 27 that can be operated by air-cooled DG or a battery, and a pressure equalizing water injection system pipe 25 connected to the reactor pressure vessel 13 at a position above the core 2. After the pressure in the reactor pressure vessel 13 is sufficiently lowered by 18, water from the pressure suppression pool 4 is injected into the reactor pressure vessel 13 by the pump 27.

(静的格納容器冷却系(PCCS))
静的格納容器冷却系(PCCS)は、格納容器6の上部に設置された冷却プール7と、その中に設置された熱交換器8と、熱交換器8上部に接続された蒸気室9及び下部に接続された水室10と、上部ドライウェル3と蒸気室9を連通する配管11と、水室10と上部ドライウェル3を連通し、開放部近くは一旦U字構造を形成して立ち上がり、先端が開いた開口部を有する立ち上がり管部を備えた配管12と、開口部の出口近傍から原子炉圧力容器13を連通するドレン配管28と、このドレン配管28上に設置され自動開放するドレン注入弁29とから構成される。
(Static containment cooling system (PCCS))
The static containment vessel cooling system (PCCS) includes a cooling pool 7 installed at the top of the containment vessel 6, a heat exchanger 8 installed therein, a steam chamber 9 connected to the top of the heat exchanger 8, and A water chamber 10 connected to the lower part, a pipe 11 communicating the upper dry well 3 and the steam chamber 9, and a water chamber 10 and the upper dry well 3 are communicated. A pipe 12 having a rising pipe portion having an opening with an open end, a drain pipe 28 communicating with the reactor pressure vessel 13 from the vicinity of the outlet of the opening, and a drain installed on the drain pipe 28 and automatically opened And an injection valve 29.

一次冷却材配管に破断事故が発生した場合、蓄圧注水系(ACC)及び均圧注水系(EPFL)により炉心2が冠水された後も炉心2の崩壊熱により原子炉圧力容器13から蒸気がドライウェル20に流出する。この流出蒸気は、配管11を通り静的格納容器冷却系熱交換器8にて凝縮され、配管12のU字管立ち上がり部の開口部からドライウェルに溢れる。   In the event of a rupture accident in the primary coolant piping, steam is drywelled from the reactor pressure vessel 13 due to the decay heat of the core 2 even after the core 2 has been submerged by the accumulator injection system (ACC) and the equal pressure injection system (EPFL). It flows out to 20. This outflowing steam passes through the pipe 11 and is condensed in the static containment vessel cooling system heat exchanger 8 and overflows from the opening of the U-tube rising portion of the pipe 12 to the dry well.

原子炉圧力容器13がドライウェル20と均圧された後、ドレン注入弁29が開かれると、U字管部に溜まったドレン水が原子炉圧力容器13内に重力差により直接注水され、炉心2を冷却する。この繰り返しにより長期的に炉心の崩壊熱を除去する。原子炉圧力容器13から蒸気が出ている間中は、熱交換器8にて凝縮されドレンが発生するため、配管12の立ち上がり部には常にドレンが溜まり、シールされた状態となっている。   When the drain injection valve 29 is opened after the pressure in the reactor pressure vessel 13 is equalized with the dry well 20, the drain water accumulated in the U-shaped pipe portion is directly poured into the reactor pressure vessel 13 due to the difference in gravity, and the core. 2 is cooled. By repeating this, the decay heat of the core is removed in the long term. While steam is being discharged from the reactor pressure vessel 13, the heat exchanger 8 condenses and generates drainage. Therefore, the drain always accumulates at the rising portion of the pipe 12 and is in a sealed state.

(均圧炉心冷却系)
均圧炉心冷却系は、炉心2より上部で、ベント管5開口部上端より下部に設置された原子炉圧力容器13と上部ドライウェル3を連通する均圧炉心冷却系配管14と、この均圧炉心冷却系配管14上に設置された自動開放弁30と逆止弁31で構成され、格納容器6壁面にて冷却された原子炉圧力容器13からの流出蒸気のドレン水及び、静的格納容器冷却系配管28の破断時に破断口から流出するドレン水および、静的格納容器冷却系ドレン注入弁29の開失敗時に配管12の立ち上がり部から溢れたドレン水が、ダイアフラムフロアー1まで溜まった際に原子炉圧力容器13内に重力差により注水する。
(Equal pressure core cooling system)
The pressure equalizing core cooling system includes a pressure equalizing core cooling system pipe 14 communicating with the reactor pressure vessel 13 and the upper dry well 3 installed above the core 2 and below the upper end of the vent pipe 5 opening, and this pressure equalization. Condensate drainage water from the reactor pressure vessel 13 cooled by the containment vessel 6 wall surface and a static containment vessel, which is composed of an automatic release valve 30 and a check valve 31 installed on the core cooling system pipe 14 When drain water that flows out from the break opening when the cooling system pipe 28 is broken and drain water that overflows from the rising portion of the pipe 12 when the static containment vessel cooling system drain injection valve 29 fails to open are collected up to the diaphragm floor 1. Water is poured into the reactor pressure vessel 13 due to a difference in gravity.

なお、均圧炉心冷却系は、3本以上の均圧炉心冷却系配管14と、各配管に設けられた自動開放弁30と逆止弁31とから構成され、均圧炉心冷却系配管14 一本が破断し、もう一本の均圧炉心冷却系配管14に設置される弁30、31が故障した場合にも、残りの均圧炉心冷却系配管により、前記2本分のドライウェルへ溢れたドレン水及び原子炉格納容器6壁面で冷却されたドレン水を原子炉圧力容器13に注入する。   The pressure equalizing core cooling system is composed of three or more pressure equalizing core cooling system pipes 14, automatic opening valves 30 and check valves 31 provided in the respective pipes, and the pressure equalizing core cooling system pipes 14. Even when the book breaks and the valves 30 and 31 installed in the other pressure equalizing core cooling system pipe 14 fail, the remaining pressure equalizing core cooling system pipe overflows into the two dry wells. Then, the drain water and the drain water cooled by the wall of the reactor containment vessel 6 are injected into the reactor pressure vessel 13.

このように構成された炉心冷却システムにおいて、静的安全系である格納容器冷却系熱交換器8を3基以上、水室10と原子炉圧力容器13を接続する配管12、ドレン配管28を各熱交換器1基当たりに1ラインで構成した場合に、均圧炉心冷却系配管14の1本当たりの必要容量が最大となるのは、静的格納容器冷却系のドレン配管28が破断し、もう一本のドレン配管28に設置されたドレン注入弁29が故障した場合である。   In the core cooling system configured as described above, three or more containment vessel cooling system heat exchangers 8 which are static safety systems, a pipe 12 connecting the water chamber 10 and the reactor pressure vessel 13, and a drain pipe 28 are provided. When it is configured with one line per heat exchanger, the required capacity per one pressure equalizing core cooling system pipe 14 is maximized because the drain pipe 28 of the static containment vessel cooling system is broken, This is a case where the drain injection valve 29 installed in the other drain pipe 28 has failed.

このため、均圧炉心冷却系配管14は、ドレン配管28の2ライン分のみの注水量を流せるだけの口径とすることができる。これは、従来の静的な格納容器冷却系で発生する全ドレンを、ダイアフラムフロアー1を介して注水する場合に対して、2/3以下の容量に相当する。   For this reason, the pressure equalizing core cooling system pipe 14 can have a diameter sufficient to allow the water injection amount of only two lines of the drain pipe 28 to flow. This corresponds to a capacity of 2/3 or less of the total drain generated in the conventional static containment vessel cooling system when water is injected through the diaphragm floor 1.

さらに、静的な格納容器冷却系を構成する熱交換器8の基数及び配管12、ドレン配管28のライン数を4本、5本と増加させることにより均圧炉心冷却系配管14の容量をトータルドレン量の2/4、2/5に低減することが可能となる。これにより、均圧炉心冷却系配管14の口径を小さくすることができ、この系統の破断時の影響を緩和することが可能となる。   Further, by increasing the number of heat exchangers 8 constituting the static containment vessel cooling system and the number of lines 12 and drain lines 28 to 4 and 5, the capacity of the pressure equalizing core cooling system pipe 14 is increased. It is possible to reduce the drain amount to 2/4 and 2/5. As a result, the diameter of the pressure equalizing core cooling system pipe 14 can be reduced, and the influence at the time of breakage of this system can be mitigated.

以上説明したように、本第1の実施形態によれば、均圧炉心冷却系配管の配管口径を低減させることが可能となるので、均圧炉心冷却系配管が破断する事故が発生したとしても、事故の影響を最小限に抑制することが可能な炉心冷却システムを提供することができる。   As described above, according to the first embodiment, it is possible to reduce the pipe diameter of the pressure equalizing core cooling system pipe. Therefore, even if an accident occurs in which the pressure equalizing core cooling system pipe is broken. Therefore, it is possible to provide a core cooling system capable of minimizing the influence of an accident.

[第2の実施形態]
次に、本発明の第2の実施形態に係る炉心冷却システムを、図2を用いて説明する。
なお、本実施形態において第1実施形態と同じ構成には同一の符号を付し、重複する説明は省略する。
[Second Embodiment]
Next, a core cooling system according to a second embodiment of the present invention will be described with reference to FIG.
In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

この第2の実施形態は、静的格納容器冷却系(PCCS)を構成する熱交換器8の配管12からのドレン水を原子炉圧力容器13に直接注入する代わりに、給水配管22もしくは均圧注水系配管25、もしくは残留熱除去系の吸込みまたは注水配管(図示せず)などに、ドレン配管32とドレン注入弁33を介して接続する構成とする。
これにより、事故発生後、ドレン水は均圧注水系注入配管25もしくは、給水配管22などを経由して原子炉圧力容器13内に注水する。
In this second embodiment, instead of directly injecting drain water from the pipe 12 of the heat exchanger 8 constituting the static containment vessel cooling system (PCCS) into the reactor pressure vessel 13, the feed water pipe 22 or the pressure equalizing injection is used. A drain pipe 32 and a drain injection valve 33 are connected to the water pipe 25 or the suction or water injection pipe (not shown) of the residual heat removal system.
Thereby, after the accident occurs, the drain water is injected into the reactor pressure vessel 13 via the pressure equalizing water injection pipe 25 or the water supply pipe 22.

本第2の実施形態によれば、均圧炉心冷却系配管14の口径の低減に加え、原子炉圧力容器13へ接続されるノズル数も減らすことが可能となり、事故発生の可能性も低減することが可能な信頼性の高い炉心冷却システムを提供することができる。   According to the second embodiment, in addition to reducing the diameter of the pressure equalizing core cooling system pipe 14, the number of nozzles connected to the reactor pressure vessel 13 can be reduced, and the possibility of an accident is also reduced. Therefore, it is possible to provide a highly reliable core cooling system.

1…ダイアフラムフロアー、2…炉心、3…上部ドライウェル、4…圧力抑制プール、5…ベント管、6…原子炉格納容器、7…冷却水プール、8…熱交換器、9…蒸気室、10…水室、11…蒸気吸込み配管、12…配管、13…原子炉圧力容器、14…均圧炉心冷却系配管、15…破断箇所、16…主蒸気配管、17…均圧弁(爆破弁)、18…均圧弁(遠隔操作弁)、19…下部ドライウェル、20…ドライウェル、21…圧力抑制室、22…給水配管、23…配管、24…蓄圧タンク、25…均圧注水系配管、26…蓄圧注水系配管、27…均圧注水ポンプ、28…ドレン配管、29…ドレン注入弁、30…自動開放弁、31…逆止弁、32…ドレン配管、33…ドレン注入弁。   DESCRIPTION OF SYMBOLS 1 ... Diaphragm floor, 2 ... Core, 3 ... Upper dry well, 4 ... Pressure suppression pool, 5 ... Vent pipe, 6 ... Reactor containment vessel, 7 ... Cooling water pool, 8 ... Heat exchanger, 9 ... Steam chamber, DESCRIPTION OF SYMBOLS 10 ... Water chamber, 11 ... Steam suction piping, 12 ... Piping, 13 ... Reactor pressure vessel, 14 ... Pressure equalizing core cooling system piping, 15 ... Broken part, 16 ... Main steam piping, 17 ... Pressure equalizing valve (blasting valve) , 18 ... pressure equalization valve (remote control valve), 19 ... lower dry well, 20 ... dry well, 21 ... pressure suppression chamber, 22 ... water supply piping, 23 ... piping, 24 ... pressure accumulation tank, 25 ... pressure equalizing water injection system piping, 26 DESCRIPTION OF SYMBOLS ... Accumulated water injection system piping, 27 ... Pressure equalizing water injection pump, 28 ... Drain piping, 29 ... Drain injection valve, 30 ... Automatic release valve, 31 ... Check valve, 32 ... Drain piping, 33 ... Drain injection valve.

Claims (5)

原子炉格納容器の上部に設けられた冷却水プールと、前記冷却水プールに収容された複数の熱交換器と、前記熱交換器の各々の上部に接続された蒸気室及び各々の下部に接続された水室と、上部ドライウェルと前記各蒸気室を接続する第1の配管と、前記上部ドライウェルと前記各水室を連通し、先端が開口部を有するU字状の立ち上がり管部を備えた第2の配管と、原子炉圧力容器と前記上部ドライウェルを連通する複数の均圧炉心冷却配管と、前記第2の配管と前記原子炉圧力容器を接続するドレン配管と、を有し、
前記複数の均圧炉心冷却配管はその全体が炉心より上部でベント管の開口部上端より下部に設置されていることを特徴とする炉心冷却システム。
A cooling water pool provided in the upper part of the reactor containment vessel, a plurality of heat exchangers accommodated in the cooling water pool, a steam chamber connected to the upper part of each of the heat exchangers, and connected to the lower part of each a water chamber that is, a first pipe which connects the upper dry well each vapor chamber, and communicating with each water chamber and the upper drywell the riser portion of the U-shaped tip having an opening Yes a second pipe having a plurality of equalizing pressure furnace core cooling pipe which communicates the upper dry well and nuclear reactor pressure vessel, a drain pipe connecting the reactor pressure vessel and the second pipe, the And
The core cooling system more uniform pressure furnace core cooling pipe in its entirety is characterized that you have installed in the lower than the opening upper end of the vent tube above the reactor core.
前記複数の熱交換器のそれぞれにおいて、前記第2の配管と前記原子炉圧力容器がドレン配管により接続されていることを特徴とする請求項1記載の炉心冷却システム。 2. The core cooling system according to claim 1 , wherein in each of the plurality of heat exchangers, the second pipe and the reactor pressure vessel are connected by a drain pipe . 前記均圧炉心冷却系配管を少なくとも3本設けたことを特徴とする請求項1又は2記載の炉心冷却システム。   The core cooling system according to claim 1 or 2, wherein at least three pressure equalizing core cooling system pipes are provided. 前記ドレン配管にドレン注入弁を設けたことを特徴とする請求項1乃至3いずれかに記載の炉心冷却システム。   The core cooling system according to any one of claims 1 to 3, wherein a drain injection valve is provided in the drain pipe. 前記ドレン配管を、前記第2の配管と原子炉圧力容器の給水配管に接続するか、又は前記第2の配管と原子炉圧力容器の均圧注水系配管に接続したことを特徴とする請求項1乃至4いずれかに記載の炉心冷却システム。 2. The drain pipe is connected to the second pipe and a water supply pipe of a reactor pressure vessel, or is connected to a pressure equalizing water system pipe of the second pipe and a reactor pressure vessel. to 4 reactor core cooling system according to any one.
JP2009297628A 2009-12-28 2009-12-28 Core cooling system Active JP5513880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297628A JP5513880B2 (en) 2009-12-28 2009-12-28 Core cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297628A JP5513880B2 (en) 2009-12-28 2009-12-28 Core cooling system

Publications (2)

Publication Number Publication Date
JP2011137709A JP2011137709A (en) 2011-07-14
JP5513880B2 true JP5513880B2 (en) 2014-06-04

Family

ID=44349272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297628A Active JP5513880B2 (en) 2009-12-28 2009-12-28 Core cooling system

Country Status (1)

Country Link
JP (1) JP5513880B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5916584B2 (en) 2012-10-24 2016-05-11 日立Geニュークリア・エナジー株式会社 Static decay heat removal system and nuclear power plant equipment
CN112071451B (en) * 2020-09-15 2022-11-01 哈尔滨工程大学 Multifunctional double-layer concrete containment system of pressurized water reactor
JP2024006559A (en) * 2022-07-04 2024-01-17 崇 佐藤 nuclear power plant

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2856865B2 (en) * 1990-08-16 1999-02-10 株式会社東芝 Core cooling equipment for nuclear power plants
JPH05215886A (en) * 1992-02-05 1993-08-27 Toshiba Corp Emergency reactor core cooling system
JP3524116B2 (en) * 1993-01-22 2004-05-10 株式会社東芝 Reactor containment cooling system
JP3149606B2 (en) * 1993-03-11 2001-03-26 株式会社日立製作所 Reactor containment cooling system
JP2004061192A (en) * 2002-07-25 2004-02-26 Toshiba Corp Nuclear power generation facilities
JP3982419B2 (en) * 2003-01-17 2007-09-26 株式会社日立製作所 Reactor safety equipment
JP4675926B2 (en) * 2007-03-29 2011-04-27 株式会社東芝 Boiling water reactor
JP5279325B2 (en) * 2007-08-08 2013-09-04 株式会社東芝 Hybrid safety system for boiling water reactors

Also Published As

Publication number Publication date
JP2011137709A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
EP2096644B1 (en) Passive cooling and depressurization system and pressurized water nuclear power plant
KR101389276B1 (en) Passive Safety System of Integral Reactor
US9793015B2 (en) Containment vessel and nuclear power plant therewith
US10229762B2 (en) Cooling system of emergency cooling tank and nuclear power plant having the same
US10319481B2 (en) Passive containment spray system
KR101463440B1 (en) Passive safety system and nuclear power plant having the same
JP5916584B2 (en) Static decay heat removal system and nuclear power plant equipment
CN108461163A (en) Emergence core stacking cool system and the boiling water reactor device for using the emergence core stacking cool system
KR100856501B1 (en) The safety features of an integral reactor using a passive spray system
KR101447029B1 (en) Multi-stage safety injection device and passive safety injection system having the same
KR100813939B1 (en) Passive type emergency core cooling system for an integral reactor with a safeguard vessel
WO2013028408A1 (en) Pressurized water reactor with compact passive safety systems
KR101250479B1 (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof
KR100856174B1 (en) Cooling system
JP5513880B2 (en) Core cooling system
KR101416912B1 (en) Multi function multi stage safety injection facility and passive safety injection system having the same
EP2549484B1 (en) Nuclear power plant
JP5279325B2 (en) Hybrid safety system for boiling water reactors
EP3492811B1 (en) Nuclear power plants
JP4761988B2 (en) Boiling water nuclear power plant
JPH08334584A (en) System and method for control of water inventory of condenser pool in boiling water reactor
JP4991598B2 (en) Automatic decompression system for nuclear power generation facilities
JP2020165660A (en) Atws countermeasure facility and natural circulation type boiling water reactor including the same
JP2022502626A (en) Methods and systems to keep nuclear power plants safe after extreme effects
US20190326026A1 (en) Nuclear power plant having improved cooling performance and method for operating same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140328

R151 Written notification of patent or utility model registration

Ref document number: 5513880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151