JPS62106339A - Method for measuring light transmission loss of optical fiber with high accuracy - Google Patents

Method for measuring light transmission loss of optical fiber with high accuracy

Info

Publication number
JPS62106339A
JPS62106339A JP24738485A JP24738485A JPS62106339A JP S62106339 A JPS62106339 A JP S62106339A JP 24738485 A JP24738485 A JP 24738485A JP 24738485 A JP24738485 A JP 24738485A JP S62106339 A JPS62106339 A JP S62106339A
Authority
JP
Japan
Prior art keywords
light
optical fiber
transmission loss
fiber
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24738485A
Other languages
Japanese (ja)
Other versions
JPH0528776B2 (en
Inventor
Tadashi Namiki
並木 忠
Shinichi Kitazawa
北沢 進一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP24738485A priority Critical patent/JPS62106339A/en
Publication of JPS62106339A publication Critical patent/JPS62106339A/en
Publication of JPH0528776B2 publication Critical patent/JPH0528776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/35Testing of optical devices, constituted by fibre optics or optical waveguides in which light is transversely coupled into or out of the fibre or waveguide, e.g. using integrating spheres

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure transmission loss by a light receiving part with good reproducibility and high accuracy, by passing an optical fiber through a light incident cylinder having a light reflective inner surface and two light condensing cylinders each having a light receiving part at the predetermined position thereof and a light reflective inner surface to allow light to be incident on said fiber from the light source provided to the fiber introducing part of the light incident cylinder. CONSTITUTION:An optical fiber F being a specimen to be measured is introduced into a light incident cylinder 1 by a guide roller 2 and the light from the light source P provided to the introducing part of said cylinder 1 is allowed to irradiate said fiber F. This fiber F is successively passed through a rear light attenuation part 6, a light condensing cylinder 3, a light transmission loss part 7, a light condensing cylinder 3' and an external light absorbing/light blocking part 8 to be taken up by a take-up part 9 and light transmission loss is measured by the light receiving parts 4, 4' provided to the cylinders 3, 3'. A light reflective surface 2 is formed to the entire peripheral inner surface of the cylinder 1. Light receiving parts 11 each comprising a spherical shell is provided to the cylindrical bodies of the cylinders 3, 3' and light reflective surfaces are respectively formed thereto and a voltmeter 15 is connected to the radiant light quantity detector 12 of the light receiving parts 11 through an amplifier 14.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光学繊維の光伝送損失を該光学繊維を破壊す
ることなく、かつ高精度で測定する方法に係るものであ
り、ざらに詳しくは、光学繊維、特に有薇重合体からな
る光学繊維の光伝送損失を極めて再現性並びに精度よく
、実用上、容易、かつ簡便に測定することができる非破
壊測定法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method of measuring optical transmission loss of an optical fiber with high accuracy without destroying the optical fiber, and will be described in detail. The present invention relates to a non-destructive measuring method that can easily and conveniently measure the optical transmission loss of optical fibers, particularly optical fibers made of barbed polymers, with extremely high reproducibility and precision.

(従来の技術) 従来、光学繊維の被測定部以外の部分の該光学繊維の側
面から光をあて、被測定部内を進行する光を入射させ、
該入射光が被測定部を伝播するときに放射する光量を被
測定部の両側側面部において検出し、これらの放射光量
の比を求めることにより測定する方法は、特公昭59−
18647号公報によって公知である。
(Prior Art) Conventionally, light is applied from the side of a part of an optical fiber other than the part to be measured, and the light traveling inside the part to be measured is made incident.
A method of measuring by detecting the amount of light emitted when the incident light propagates through the part to be measured is detected at both side surfaces of the part to be measured and calculating the ratio of these emitted light amounts is disclosed in Japanese Patent Publication No. 1983-
It is known from the publication No. 18647.

しかしながら、ここに開示されている測定法は、原理的
には測定可能な方法ではおっても、現実には、ここに開
示されている方法をそのまま適用しても、光学繊維の光
伝送損失を再現性よく、かつ高精度で測定することが極
めて難しく、特に、光学繊維の側面から光を照射しても
該光学繊維内部に測定に係る量の光を導入、進行させる
ことが極めて困難な有機重合体からなる光学繊維の場合
には、実際上高精度の測定は不可能であった。
However, although the measurement method disclosed herein is measurable in principle, in reality, even if the method disclosed herein is applied as it is, the optical transmission loss of optical fibers cannot be measured. It is extremely difficult to measure with good reproducibility and high precision, especially for organic materials where it is extremely difficult to introduce and advance the amount of light required for measurement inside the optical fiber even if light is irradiated from the side of the optical fiber. In the case of optical fibers made of polymers, highly accurate measurements are practically impossible.

すなわち、まず、有機重合体からなる光学繊維は、その
透光性がガラス製の光学繊維に比較して低いから、光を
繊維側面に入射しても、入射した光が繊維中を伝播、進
行してゆくにつれて、急激にその光量が減衰し、測定に
係る量の光が検知できなくなり、結果として光伝送損失
を測定することができなくなる。
First, optical fibers made of organic polymers have lower light transmittance than optical fibers made of glass, so even if light is incident on the side of the fiber, the incident light will not propagate and progress through the fiber. As the amount of light increases, the amount of light rapidly attenuates, making it impossible to detect the amount of light relevant to measurement, and as a result, it becomes impossible to measure optical transmission loss.

他方において、光が繊維側面に入射した位置(入光点〉
か1)繊維中を伝播、進行してきた光の量を繊維側面か
ら検出する位置(受光点という)までの距離を短縮し、
繊維中を伝播、進行する光量の多い位置の繊維側面から
放射光量を検出、測定する手段が考えられるが、この場
合は、光が繊維内に入射した位置、すなわち入光点から
僅かな距離を伝播、進行した光は、光の波形、強度が安
定せず、対象光学繊維の光伝送損失を正確に測定するこ
とができないことが判明した。
On the other hand, the position where the light is incident on the side of the fiber (light incidence point)
(1) Shorten the distance from the side of the fiber to the position where the amount of light that has propagated and progressed through the fiber is detected (called the light receiving point),
One possible method is to detect and measure the amount of emitted light from the side of the fiber at a position where the amount of light propagating and traveling through the fiber is large, but in this case, it is possible to detect and measure the amount of emitted light from the side of the fiber at a position where the amount of light propagating and traveling through the fiber is large. It was found that the waveform and intensity of the propagated and advanced light were unstable, making it impossible to accurately measure the optical transmission loss of the target optical fiber.

すなわち、第2図は、有機重合体からなる光学繊維につ
いて、前述のように、繊維側面から光を入射させた場合
における入光点から受光点までの距離における光学繊維
の放射光量を示すグラフであるが、図に示すように、光
学繊維の太さ、光学繊維を構成するクラッドおよびコア
の屈折率などに依存するけれども、光学繊維側面に入射
する光の量(強さ)に関係なく、入光点からかなりの距
離を経なければ、該受光点における繊維側面からの放射
光量は安定化しない。すなわち、入光点で繊維内に入光
した光は、入射直後急激にその光量を変動しながら減衰
してゆき、一定の距離を伝播、進行した後に安定化する
(以下、定常モードという)。したがって、繊維内部を
伝播、進行する放射光量が大きく、強さが強い入光点に
できるだけ近い距離に受光点を設けて測定する場合は、
繊維内の光量の変動が激しくて、精度の高い光伝送損失
値を測定することができないのでおる。
That is, FIG. 2 is a graph showing the amount of emitted light of an optical fiber made of an organic polymer at a distance from the light incident point to the light receiving point when light is incident from the side surface of the fiber, as described above. However, as shown in the figure, although it depends on the thickness of the optical fiber and the refractive index of the cladding and core that make up the optical fiber, it is independent of the amount (intensity) of light incident on the side of the optical fiber. The amount of light emitted from the side surface of the fiber at the light-receiving point does not stabilize until it passes a considerable distance from the light point. That is, the light that enters the fiber at the light incident point attenuates while rapidly changing the amount of light immediately after the light enters, and stabilizes after propagating and traveling a certain distance (hereinafter referred to as steady mode). Therefore, when measuring by setting the light receiving point as close as possible to the light incident point where the amount of radiant light propagating and traveling inside the fiber is large and the intensity is strong,
This is because the amount of light within the fiber fluctuates drastically, making it impossible to measure optical transmission loss values with high precision.

換言すれば、有機重合体からなる光学繊維の非破壊光伝
送損失の測定が困難な理由は、繊維内部に充分な光を入
射させることが困難でおり、しかも入射した光量が急激
に変動、減衰し、定常モードに達した位置では、その放
射光量が著しく弱くなることに起因するといえる。
In other words, the reason why it is difficult to measure the non-destructive optical transmission loss of optical fibers made of organic polymers is that it is difficult to allow sufficient light to enter the fiber, and the amount of light that enters the fiber is subject to rapid fluctuations and attenuation. However, this can be said to be due to the fact that the amount of emitted light becomes significantly weaker at the position where the steady mode is reached.

(発明の解決しようとする問題点) 本発明の目的は、上記光学繊維の非破壊光伝送損失の測
定法において、光学繊維の側面からの入射光量を増大し
て、前記受光点における放射光量を大きくすると同時に
、入光点から受光点までの距離を充分にとって、光学繊
維内部を伝播、進行する光を安定化させる、すなわち定
常モードに到達せしめ、この定常モードになった点の繊
維側面から放射される光量を受光し、検出することによ
って、正確で精度の高い光学繊維の光伝送損失測定法を
提供するにあり、他の目的は、特に透光性の低い有機重
合体からなる光学繊維の光伝送損失を精度が高く、容易
で、簡便に測定することができる優れた実用性を有する
測定方法を提供するにある。
(Problems to be Solved by the Invention) An object of the present invention is to increase the amount of incident light from the side surface of the optical fiber to increase the amount of emitted light at the light receiving point in the method for measuring non-destructive optical transmission loss of an optical fiber. At the same time, by increasing the distance from the light input point to the light receiving point, the light propagating and traveling inside the optical fiber is stabilized, that is, it is made to reach a steady mode, and the light is emitted from the side of the fiber at the point where the steady mode is reached. The purpose of the present invention is to provide an accurate and precise optical transmission loss measurement method for optical fibers by receiving and detecting the amount of light transmitted. It is an object of the present invention to provide a highly practical measurement method that can easily and easily measure optical transmission loss with high precision.

(問題点を解決するための手段) このような本発明の目的は、上記特許請求の範囲に記載
した発明、すなわち 光学繊維を内面に光反射面を有する入光用筒状体および
所定位置に受光部を設けた内面に光反射面を有する少な
くとも2ケの集光用筒状体内に連続して通過せしめると
共に、該入光用筒状体への光学繊維導入部に光源を設置
してこの光源から該筒状体中に光を導く共に、該光学繊
維側面に光を照射して光学繊維内部に光を入射せしめ、
該入射光が光学繊維内部を伝播する際に放射する光量を
前記2つの集光用筒状体の受光部から検出しそれらの放
射光量の比から該光学繊維の光伝送損失を測定すること
によって達成することができる。
(Means for Solving the Problems) The object of the present invention is to achieve the invention described in the claims above, that is, to provide an optical fiber to a light-entering cylindrical body having a light-reflecting surface on the inner surface and a predetermined position. The optical fiber is made to pass continuously through at least two condensing cylindrical bodies each having a light-receiving part and a light-reflecting surface on the inner surface, and a light source is installed at the optical fiber introducing part to the light-incoming cylindrical body. guiding light from a light source into the cylindrical body, and irradiating light onto the side surface of the optical fiber to allow the light to enter the inside of the optical fiber;
By detecting the amount of light emitted when the incident light propagates inside the optical fiber from the light receiving portion of the two condensing cylindrical bodies, and measuring the optical transmission loss of the optical fiber from the ratio of the amounts of emitted light. can be achieved.

本発明において、被測定試料の光学繊維は、内面に光反
射面を有する入光用筒状体および所定位置に受光部を設
けた内面に光反射面を有する少なくとも2ケの集光用筒
状体内に光学繊維を連続して通過せしめ、入光点と受光
点との距離を大きくする点に特徴がある。
In the present invention, the optical fiber of the sample to be measured consists of a light-entering cylindrical body having a light-reflecting surface on its inner surface and at least two light-collecting cylindrical bodies each having a light-reflecting surface on its inner surface and having a light-receiving portion at a predetermined position. It is characterized by having optical fibers pass through the body continuously, increasing the distance between the light input point and the light reception point.

以下、図面に基づいて、発明を具体的に説明する。第1
図は、本発明の光学繊維、特に有機重合体からなる光学
繊維の光伝送損失を測定する方法の1実施態様を示す側
面図でおり、図において、Fは光学繊維、Pは光源、1
は入光用筒状体、2は光反射面を有するガイドローラ、
3.3′はそれぞれ集光用筒状体、4.4−は該集光用
筒状体に設けた受光部、6は光減衰部、7は光伝送損失
部、8は外部光吸収・遮光部、9は光学繊維の巻取り部
である。
Hereinafter, the invention will be specifically explained based on the drawings. 1st
The figure is a side view showing one embodiment of the method for measuring optical transmission loss of an optical fiber of the present invention, particularly an optical fiber made of an organic polymer. In the figure, F is an optical fiber, P is a light source, and 1
2 is a light-entering cylindrical body, 2 is a guide roller having a light reflecting surface,
3.3' is a condensing cylindrical body, 4.4- is a light receiving section provided on the condensing cylindrical body, 6 is an optical attenuation section, 7 is an optical transmission loss section, and 8 is an external light absorbing section. The light shielding part 9 is a winding part of the optical fiber.

図に示すように、本発明測定法においては、被測定試料
の光学繊維Fは、ガイドローラ2に導かれて入光用筒状
体1に導入され、該入光用筒状体1の光学繊維導入部に
に設けた光源Pから光を照射された後1、光減衰部6、
集光用筒状体3、光伝送損失部7、集光用筒状体3.3
−1外部光吸収・遮光部8をそれぞれ順次経由して巻取
り部9で巻取られ、集光用筒状体3と3−にそれぞれ設
けられている受光部4と4−において被測定試料の光学
繊維Fからの放射光量を検出し、その比から光伝送損失
が算出される。
As shown in the figure, in the measurement method of the present invention, the optical fiber F of the sample to be measured is guided by a guide roller 2 and introduced into the light-entering cylindrical body 1. After being irradiated with light from a light source P provided in the fiber introduction part 1, a light attenuation part 6,
Concentrating cylindrical body 3, optical transmission loss section 7, condensing cylindrical body 3.3
-1 The sample to be measured is wound up by the winding part 9 through the external light absorbing/shading parts 8, respectively, and then placed in the light receiving parts 4 and 4- provided in the condensing cylinders 3 and 3-, respectively. The amount of light emitted from the optical fiber F is detected, and the optical transmission loss is calculated from the ratio.

この本発明の測定法において、被測定試料の光学繊維内
部に有効、かつ多量の光を導入し、その中を伝播、進行
させるためには、該光学繊維は内面に光反射面を有する
筒状体中に導き、その中を走行させることが必要でおり
、このような内面に光反射面を有する入光用および集光
用筒状体(以下、単に筒状体という場合は、これらの両
者を指す)を使用することによってはじめて、走行する
該光学繊維を破壊することなく、しかも連続して、正確
、かつ精度よく当該光学繊維の光伝送損失を測定するこ
とができる。
In the measurement method of the present invention, in order to effectively introduce a large amount of light into the optical fiber of the sample to be measured, and to propagate and advance within the optical fiber, the optical fiber has a cylindrical shape with a light reflecting surface on the inner surface. It is necessary to guide the light into the body and run it through the body, and it is necessary to use a cylindrical body for light entry and light collection that has a light reflecting surface on its inner surface (hereinafter simply referred to as a cylindrical body refers to both of these) ), it is possible to continuously, accurately and precisely measure the optical transmission loss of the optical fiber without destroying the running optical fiber.

そして、このような筒状体内を走行する光学繊維への光
の入射は、前記筒状体に光学繊維が導入される入光用筒
状体1の端部の光学繊維の導入部に光源Pを設け、この
光源から光学繊維に光が照射されるが、ここで照射され
た光をできるだけ多量に該光学繊維内部に入光ざぜるた
めには、光源を前記入光用筒状体の端部になるべく近接
して設置し、かつ走行する光学繊維に対して一定の角度
、たとえば、走行する光学繊維に対し、約20〜30度
の角度をもって光源からの光を照射するのがよい。
The light is incident on the optical fiber running inside the cylindrical body by a light source P at the optical fiber introduction part at the end of the light entrance cylindrical body 1 where the optical fiber is introduced into the cylindrical body. The optical fiber is irradiated with light from this light source, but in order to mix as much of the irradiated light as possible into the optical fiber, the light source must be placed at the end of the light input tube. It is preferable to install the light source as close as possible to the running optical fiber and to irradiate the running optical fiber with light from the light source at a certain angle, for example, at an angle of about 20 to 30 degrees.

そして、該筒状体に光学繊維を導くガイドローラとして
、その表面に光反射面を有する、好ましくは形状が凹面
を有するローラを該筒状体の光学繊維導入部に設けるの
がよく、このようなガイドローラを使用することによっ
て、より有効、かつ効果的に光学繊維内部に光源からの
光を導入することができる。
As a guide roller for guiding the optical fibers into the cylindrical body, it is preferable to provide a roller having a light reflecting surface on its surface, preferably a concave shape, in the optical fiber introduction part of the cylindrical body. By using a guide roller, the light from the light source can be more effectively and effectively introduced into the optical fiber.

このような入光用筒状体の1例を第3図に示した。すな
わち、第3図は本発明の入光用筒状体の1態様を示す側
断面図でおり、図において、1は筒状物、2は筒状物の
内面全周に設けた光反射面であり、該光反射面は、拡散
光反射面でおってもよいが、より好ましくは整反射面と
するのがよい。
An example of such a cylindrical body for light entry is shown in FIG. That is, FIG. 3 is a side sectional view showing one embodiment of the light-entering cylindrical body of the present invention, and in the figure, 1 is a cylindrical body, and 2 is a light reflecting surface provided on the entire inner circumference of the cylindrical body. The light reflecting surface may be a diffused light reflecting surface, but is more preferably a regular reflecting surface.

たとえばこのような整反射面を有する筒状体は、ガラス
管などのような筒状物1の内周面にAQ。
For example, a cylindrical body having such a regular reflective surface has an AQ on the inner circumferential surface of a cylindrical body 1 such as a glass tube.

AI、Au、Rh、Cu、Tiなとの金属を蒸着し、該
筒状物の内周面に光反射面2を形成させることによって
容易に製作することができる。
It can be easily manufactured by depositing a metal such as AI, Au, Rh, Cu, or Ti and forming the light reflecting surface 2 on the inner peripheral surface of the cylindrical object.

これらの入光用および集光用筒状体の形状は、光学繊維
が円滑に内部を通過できる大きさのものであればよく、
特に限定されるものではないが、円形形状とするのがよ
く、さらにこれらの筒状体内に光学繊維を通し易くし、
かつこれらの筒状体の内面の清掃をし易くする上から、
これらの筒状体は縦方向に分割、分離できる構造にする
ことができる。
The shapes of these light-incoming and light-collecting cylindrical bodies may be large enough to allow the optical fiber to pass through them smoothly.
Although not particularly limited, it is preferable to have a circular shape, and furthermore, it is easy to pass the optical fiber through these cylindrical bodies,
In addition, from the viewpoint of making it easier to clean the inner surface of these cylindrical bodies,
These cylindrical bodies can have a structure that can be divided and separated in the vertical direction.

該集光用筒状体に設けられる受光部は、該集光用筒状体
によって光学繊維内部に導入された光が繊維内部を伝播
、進行するにつれて、該繊維側面から放射される光を集
光し、検知するためにするために設けたものでおるが、
この受光部は、該集光用筒状体によって集光された光学
繊維からの放射光が拡散するのを防止し、放射光を集光
する機能を有するように設計することが望ましい。この
ような放射光が拡散するのを防止し、放射光を集光する
機能は、たとえばこの受光部を第4図に示すような構造
にすることによって容易に与えることができる。
The light-receiving section provided in the condensing cylindrical body collects the light emitted from the side surface of the optical fiber as the light introduced into the optical fiber by the condensing cylindrical body propagates and progresses inside the fiber. Although it is designed to emit light and detect it,
It is desirable that the light receiving section is designed to have the function of preventing the radiation from the optical fibers collected by the light collecting cylindrical body from being diffused and condensing the radiation. The function of preventing the emitted light from being diffused and concentrating the emitted light can be easily provided, for example, by making the light receiving section have a structure as shown in FIG. 4.

第4図は、上記受光部の1態様を示す断面図であり、F
は光学繊維、10は集光用筒状体、11は球核からなる
受光部、12は放射光量検出器、13は集光用筒状体入
口の内周面に設けた遮光体、14は増幅器、15は電圧
計を示す。
FIG. 4 is a sectional view showing one aspect of the light receiving section, and FIG.
10 is an optical fiber, 10 is a condensing cylindrical body, 11 is a light receiving part consisting of a spherical nucleus, 12 is a radiation amount detector, 13 is a light shielding body provided on the inner peripheral surface of the entrance of the condensing cylindrical body, and 14 is a An amplifier, 15 shows a voltmeter.

このような本発明の測定法においては、前述したように
、これらの筒状体を使用して繊維内部に光を導入し、繊
維内部を伝播、進行する光を前記定常モードに移行させ
た後、該集光用筒状体の受光部において放射光量を検出
、測定し、その比から光伝送損失量を測定する点に特徴
がある。したがって、この定常モードに移行させるため
に、本発明においては、前記の光学繊維への入光用筒状
体と集光用筒状体との間に、光学繊維内部を伝播する光
を減衰させ、定常モードに移行させるだめの光減衰部を
設け、さらに該集光用筒状体と集光用筒状体との間に光
学繊維の光伝送損失を測定のための光伝送損失部が設け
られる。上記光減衰部は、主として前記光学繊維内を伝
播、進行する光が定常モードに移行させるために設けら
れるものであるが、外部からの光を吸収・遮光する機能
も併せ有している。また、これらの光減衰部および光伝
送損失部においては、被測定試料である光学繊維に外部
からの光が入るのを極力遮断、防止する、たとえば、第
1図に示すように該入光用筒状体と集光用筒状体を経て
、光学繊維が巻き取られるまでのそれぞれ筒状体の間に
設けられる筒状体、光減衰部、光伝送損失部などを個別
および/または全体をカバーする、たとえば暗幕を設け
たり、暗室としたりすることが望ましい。
In such a measurement method of the present invention, as described above, these cylindrical bodies are used to introduce light into the fiber, and after the light propagating and traveling inside the fiber is shifted to the steady mode. , is characterized in that the amount of emitted light is detected and measured in the light receiving part of the condensing cylindrical body, and the amount of optical transmission loss is measured from the ratio thereof. Therefore, in order to shift to this steady mode, in the present invention, the light propagating inside the optical fiber is attenuated between the cylindrical body for entering the optical fiber and the cylindrical body for condensing light. , an optical attenuation section is provided for transitioning to a steady mode, and an optical transmission loss section for measuring optical transmission loss of the optical fiber is provided between the condensing cylindrical body and the condensing cylindrical body. It will be done. The light attenuator is provided mainly to cause the light propagating and traveling within the optical fiber to shift to a steady mode, but also has the function of absorbing and blocking light from the outside. In addition, these optical attenuation sections and optical transmission loss sections are designed to block or prevent external light from entering the optical fiber, which is the sample to be measured, as much as possible, for example, as shown in Figure 1. After passing through the cylindrical body and the condensing cylindrical body, the cylindrical body, optical attenuation section, optical transmission loss section, etc. provided between the cylindrical bodies, light attenuation section, optical transmission loss section, etc., are individually and/or as a whole until the optical fiber is wound up. It is desirable to cover the area, for example by installing blackout curtains or creating a dark room.

このような光減衰部および光伝送損失部としては、光学
繊維が走行するそれぞれの筒状体の相対間距離を大きく
し、この区間を密閉するのが最も単純であるが、この場
合は長い繊維の走行距離を要するから装置設計上で問題
がある。それ故、この筒状体の出入り口に、たとえば回
転ドラムを設け、この回転ドラムに外部光が入らないよ
うに遮光したものを光減衰部および光伝送損失部として
使用するのが装置設計上簡便、有利である。この回転ド
ラムを使用する場合に留意すべきことは、その曲率半径
が小であると、光減衰中および光伝送損失中に光学繊維
に機械的な損傷を与えたり、切角繊維内部に入光した光
がその減衰中および光伝送損失中に光学繊維から放射光
として外部に放射される光量が多くなるので好ましくな
い。
The simplest way to create such an optical attenuation section and an optical transmission loss section is to increase the relative distance between the respective cylindrical bodies through which the optical fibers run and seal this section. This poses a problem in terms of equipment design because it requires a travel distance of . Therefore, it is convenient in terms of device design to provide, for example, a rotating drum at the entrance and exit of this cylindrical body, and to use this rotating drum as a light attenuation section and an optical transmission loss section to prevent external light from entering. It's advantageous. When using this rotating drum, it should be kept in mind that its small radius of curvature may cause mechanical damage to the optical fiber during light attenuation and light transmission loss, or light entering inside the truncated fiber. This is undesirable because the amount of light emitted from the optical fiber to the outside as radiation increases during its attenuation and optical transmission loss.

したがって、光学繊維の太さや透光様にもよるが、該光
減衰部および光伝送損失部に使用するドラムとしては、
その曲率半径が大きいもの、たとえば直径が約25〜3
5cmの範囲のものがよい。そして、この光学繊維に入
射した光を定常モードに移行させるだめの光減衰部の光
学繊維の長さは、繊維直径、有機重合体からなる光学繊
維の場合は該繊維を構成するコアおよびクラッドの屈折
率などによって相違し、適宜決定する必要があるが、通
常少なくとも長さが約10m以上、好ましくは13m以
上、ざらに好ましくは17m以上にするのがよい。
Therefore, although it depends on the thickness and transparency of the optical fiber, the drum used for the optical attenuation section and the optical transmission loss section may be
Those with a large radius of curvature, for example, approximately 25 to 3 in diameter
A range of 5 cm is preferable. The length of the optical fiber of the optical attenuator that converts the light incident on the optical fiber into a steady mode is the fiber diameter, and in the case of an optical fiber made of an organic polymer, the length of the core and cladding that constitute the fiber. Although it differs depending on the refractive index and needs to be determined appropriately, the length is usually at least about 10 m or more, preferably 13 m or more, and most preferably 17 m or more.

このように光学繊維の長さが10m以上にも及ぶ光減衰
部を設け、かつ光伝送損失部を長くとる、たとえばこの
長さを実施例に示すように10m以上にしても、十分に
当該光学繊維の放射光を測定できることは驚くべきこと
でおる。そして、この光減衰部の光学繊維の長さが約1
0mよりも短くなると、入射光の減衰および外部光の吸
収、遮光が十分でなく、光学繊維内を伝播、進行する光
が定常モードに移行しなかったり、測定誤差を招き、精
度の高い光伝送損失値を測定することが難しくなる。ま
た、余りに長ずざると、光学繊維内を伝播、進行する光
量が小さくなりすぎて、測定の検出性能の上で好ましく
ない。
In this way, even if the optical fiber is provided with an optical attenuation section with a length of 10 m or more and the optical transmission loss section is made long, for example, even if this length is increased to 10 m or more as shown in the example, the optical It is surprising that it is possible to measure the emitted light of fibers. The length of the optical fiber of this light attenuation section is approximately 1
If it is shorter than 0 m, the attenuation of incident light, absorption of external light, and shielding will not be sufficient, and the light propagating and progressing within the optical fiber may not shift to a steady mode, leading to measurement errors and preventing highly accurate optical transmission. Loss values become difficult to measure. On the other hand, if the length is too long, the amount of light that propagates and travels within the optical fiber becomes too small, which is unfavorable in terms of measurement detection performance.

本発明によって光学繊維の光伝送損失を測定するに際し
ては、光減衰部、光伝送損失部、入光用および集光用筒
状体などを個別に密閉することに加えて、第1図に示す
ように、外部光遮光部8を設け、外部からの光の侵入を
遮光、防止することが測定精度および測定作業上の向上
の上から好ましい。この外部光遮光部8は、本発明の測
定に使用する前記筒状体はもちろん、光減衰部および光
伝送損失部への外部光の導入を防止し、吸収し、これら
の各測定部、特に集光用筒状体への外部光を遮光するこ
とによって、測定精度を向上することができるし、測定
を終った光学繊維の巻取り部を外部光に晒した状態で測
定することを可能にするから、測定作業終了後の作業性
、特に光学繊維の製造に測定法をオンラインして、生産
される光学繊維の光伝送損失値を測定する場合の作業性
を大きく向上させる。
When measuring the optical transmission loss of an optical fiber according to the present invention, in addition to individually sealing the optical attenuation part, the optical transmission loss part, the light entrance and light collecting cylinders, etc., as shown in FIG. As such, it is preferable to provide an external light shielding section 8 to shield and prevent light from entering from the outside in order to improve measurement accuracy and measurement work. This external light shielding section 8 prevents and absorbs external light from entering not only the cylindrical body used in the measurement of the present invention but also the optical attenuation section and the optical transmission loss section, and protects each of these measurement sections, especially By blocking external light from entering the condensing cylindrical body, measurement accuracy can be improved, and it is also possible to perform measurements with the wound part of the optical fiber exposed to external light after measurement. Therefore, the workability after the measurement work is completed, especially when the measurement method is applied online to the production of optical fibers to greatly improve the workability when measuring the optical transmission loss value of the produced optical fibers.

ざらに、前記筒状体への光学繊維の出入り部分には、遮
光または光遮断部品、たとえばカメラのマガジンに設け
られているような布帛状物、特に立毛布帛を設けること
によって、光源以外からの外部光が繊維内に侵入するの
を防止し、精度をより高めることができる。
Generally speaking, by providing a light-shielding or light-blocking component, such as a fabric-like material such as that provided in a camera magazine, especially a raised fabric, at the entrance and exit portion of the optical fiber to the cylindrical body, it is possible to prevent light from coming from sources other than the light source. Prevents external light from penetrating into the fibers and improves accuracy.

(発明の効果) 本発明によれば、原理的には知られていたけれども、現
実には再現性よく、かつ高精度で測定することが困難で
あった光学繊維の光伝送損失を実際に測定可能にしたも
のであり、しかも本発明方法によれば光学特性が無機系
光学繊維に比較して劣る該有機重合体からなる光学繊維
の光伝送損失を光学繊維を走行させながら、連続して再
現性および精度よく、容易、かつ簡易に、しかも繊維を
切断などの破壊を行うことなく測定することができる。
(Effects of the Invention) According to the present invention, the optical transmission loss of optical fibers, which was known in principle but difficult to measure with good reproducibility and high precision, can be actually measured. Moreover, according to the method of the present invention, the optical transmission loss of optical fibers made of organic polymers, which have optical properties inferior to those of inorganic optical fibers, can be continuously reproduced while running the optical fibers. It is possible to easily and simply measure the fibers with good quality and accuracy, and without destroying the fibers by cutting or the like.

すなわち、本発明の測定法は、光学繊維製造に際して、
オンラインで測定することができるので、工業的に極め
て有用な方法であるといえる。
That is, the measuring method of the present invention can be used to produce optical fibers.
Since it can be measured online, it can be said to be an extremely useful method industrially.

以下、実施例に基づいて、本発明を具体的に説明する。The present invention will be specifically described below based on Examples.

実施例1 光伝送損失の値が約380dB/Kmであり、直径が5
00ミクロンのコアがポリメチルメタクリレートである
光学繊維を用いて、第1図に示す測定手段により、該光
学繊維の光伝送損失を測定した。
Example 1 The optical transmission loss value is approximately 380 dB/Km, and the diameter is 5
Using an optical fiber having a 0.00 micron core made of polymethyl methacrylate, the optical transmission loss of the optical fiber was measured by the measuring means shown in FIG.

第1図において、外部光遮光部を設けないで、光減衰部
における光学繊維の長さを10m、光伝送損失部におけ
る光学繊維の長さを10mとし、入光点と受光点との間
の距離を3mとして上記光学繊維の光伝送損失の値を測
定した結果、光伝送損失値は800dB/Kmであった
In Figure 1, no external light shielding part is provided, the length of the optical fiber in the light attenuation part is 10 m, the length of the optical fiber in the optical transmission loss part is 10 m, and the length of the optical fiber between the light incident point and the light receiving point is 10 m. The optical transmission loss value of the optical fiber was measured at a distance of 3 m, and the optical transmission loss value was 800 dB/Km.

この測定値を検量線などを用いて補正することにより、
上記光学繊維の光伝送損失値に近い値を容易に測定する
ことができた。
By correcting this measured value using a calibration curve,
It was possible to easily measure a value close to the optical transmission loss value of the above optical fiber.

次に、光減衰部における光学繊維の長さくほぼ入光点と
受光点との距離に該当する)を15m、光伝送損失部に
おける光学繊維の長さを10mおよび、外部光遮断光部
における光学繊維の長さを10mとして、前記光学繊維
の光伝送損失を求めた結果、400dB/Kmであった
Next, the length of the optical fiber in the light attenuation section (corresponding to the distance between the light incident point and the light receiving point) is 15 m, the length of the optical fiber in the light transmission loss section is 10 m, and the length of the optical fiber in the external light blocking section is 15 m. Assuming that the length of the fiber was 10 m, the optical transmission loss of the optical fiber was determined to be 400 dB/Km.

この値は、回答測定値を補正することなく、上記光学繊
維そのものの光伝送損失値を直接示す値であり、本発明
の測定法は極めて高い精度と信頼性を示す測定法である
ことが判った。
This value directly indicates the optical transmission loss value of the optical fiber itself without correcting the returned measured value, and it has been found that the measurement method of the present invention is a measurement method that shows extremely high accuracy and reliability. Ta.

他方、比較のために、第1図において、本発明の筒状体
やガイドなどを全く使用しないで、上記光学繊維の光伝
送損失を測定したが、該繊維内部に光が十分にに入光せ
ず、2つの受光点において光を充分な感度で検知するこ
とができず、測定不能でめった。
On the other hand, for comparison, in FIG. 1, the optical transmission loss of the above optical fiber was measured without using any cylindrical body or guide of the present invention, but it was found that sufficient light entered the fiber. Therefore, the light could not be detected with sufficient sensitivity at the two light receiving points, resulting in measurement being impossible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の光学繊維の光伝送損失を測定する方
法の1実施態様を示す側面図であり、図において、Fは
光学繊維、Pは光源、1は入光用筒状体、2は光反射面
を有するガイドローラ、3.3′はそれぞれは集光用筒
状体、4.4′は該集光用筒状体に設けた受光部、6は
光減衰部、7は光伝送損失部、8は外部光吸収・遮光部
、9は光学繊維の巻取り部である。 第2図は、有機重合体からなる光学繊維の繊維側面から
光を入射させた場合における入光点から受光点までの距
離における光学繊維の放射光量を示すグラフである 第3図は、本発明の入光用筒状体の1態様を示す側断面
図であり、図において、1は筒状物、2は光反射面であ
る。 第4図は、集光用筒状体の受光部の1態様を示す断面図
であり、Fは光学繊維、10は筒状体、11は球核から
なる受光部、12は放射光量検出器、13は筒状体の内
周面に設けた遮光体、14は増幅器、15は電圧計を示
す。
FIG. 1 is a side view showing one embodiment of the method for measuring optical transmission loss of an optical fiber according to the present invention. In the figure, F is an optical fiber, P is a light source, 1 is a cylindrical body for light entrance, 2 is a guide roller having a light reflecting surface, 3.3' is a condensing cylindrical body, 4.4' is a light receiving part provided on the condensing cylindrical body, 6 is a light attenuating part, and 7 is a light attenuating part. An optical transmission loss section, 8 is an external light absorption/shading section, and 9 is an optical fiber winding section. FIG. 2 is a graph showing the amount of emitted light of the optical fiber at the distance from the light incident point to the light receiving point when light is incident from the fiber side of the optical fiber made of an organic polymer. FIG. 2 is a side sectional view showing one aspect of the light-incoming cylindrical body of FIG. FIG. 4 is a sectional view showing one aspect of the light receiving part of the condensing cylindrical body, where F is an optical fiber, 10 is a cylindrical body, 11 is a light receiving part consisting of a spherical nucleus, and 12 is a radiation light amount detector. , 13 is a light shield provided on the inner peripheral surface of the cylindrical body, 14 is an amplifier, and 15 is a voltmeter.

Claims (3)

【特許請求の範囲】[Claims] (1)光学繊維を内面に光反射面を有する入光用筒状体
および所定位置に受光部を設けた内面に光反射面を有す
る少なくとも2ヶの集光用筒状体内に通し、かつ該入光
用筒状体への光学繊維導入部に光源を設置してこの光源
から該光学繊維側面に光を照射して光学繊維内部に光を
入射せしめ、該入射光が光学繊維内部を伝播する際に放
射する光量を前記2つの集光用筒状体の受光部から検出
しそれらの放射光量の比から該光学繊維の光伝送損失を
測定することを特徴とする光学繊維の光伝送損失の高精
度測定法。
(1) An optical fiber is passed through at least two light-concentrating cylindrical bodies, each having a light-reflecting surface on its inner surface and a light-receiving section at a predetermined position; A light source is installed at the optical fiber introduction part to the light entrance cylindrical body, and the light source irradiates the side surface of the optical fiber to cause the light to enter the optical fiber, and the incident light propagates inside the optical fiber. The method of measuring optical transmission loss of an optical fiber is characterized in that the amount of light emitted from the light receiving portion of the two condensing cylinders is detected and the optical transmission loss of the optical fiber is measured from the ratio of the amounts of emitted light. High precision measurement method.
(2)特許請求の範囲第1項において、光源から該光学
繊維側面に光を照射する位置に光反射面を有する繊維の
ガイドを設けた光学繊維の光伝送損失の高精度測定法。
(2) A highly accurate measuring method for optical transmission loss of an optical fiber according to claim 1, wherein a fiber guide having a light reflecting surface is provided at a position where light is irradiated from a light source onto the side surface of the optical fiber.
(3)特許請求の範囲第1〜2項において、入光用筒状
体と集光用筒状体との間に該光学繊維を伝播、進行する
光を安定化するための光減衰部を設けた光学繊維の光伝
送損失の高精度測定法。
(3) In claims 1 and 2, a light attenuator for stabilizing the light propagating and traveling through the optical fiber is provided between the light-incoming cylindrical body and the light-collecting cylindrical body. A highly accurate measurement method for optical transmission loss of optical fibers.
JP24738485A 1985-11-05 1985-11-05 Method for measuring light transmission loss of optical fiber with high accuracy Granted JPS62106339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24738485A JPS62106339A (en) 1985-11-05 1985-11-05 Method for measuring light transmission loss of optical fiber with high accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24738485A JPS62106339A (en) 1985-11-05 1985-11-05 Method for measuring light transmission loss of optical fiber with high accuracy

Publications (2)

Publication Number Publication Date
JPS62106339A true JPS62106339A (en) 1987-05-16
JPH0528776B2 JPH0528776B2 (en) 1993-04-27

Family

ID=17162627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24738485A Granted JPS62106339A (en) 1985-11-05 1985-11-05 Method for measuring light transmission loss of optical fiber with high accuracy

Country Status (1)

Country Link
JP (1) JPS62106339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424321A (en) * 2015-11-05 2016-03-23 深圳市科彩印务有限公司 Method for detecting radiation energy attenuation rate of UV curing light source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918647A (en) * 1982-07-22 1984-01-31 Nec Corp Manufacturing device of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918647A (en) * 1982-07-22 1984-01-31 Nec Corp Manufacturing device of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424321A (en) * 2015-11-05 2016-03-23 深圳市科彩印务有限公司 Method for detecting radiation energy attenuation rate of UV curing light source
CN105424321B (en) * 2015-11-05 2017-08-25 深圳市科彩印务有限公司 A kind of detection method of UV curing light sources emittance attenuation rate

Also Published As

Publication number Publication date
JPH0528776B2 (en) 1993-04-27

Similar Documents

Publication Publication Date Title
US5423513A (en) Method of and a capillary flow cell for analysing fluid samples
JPS6177745A (en) System for fluoro-optic measuring substance concentration insample
JPH06214035A (en) Scintillation detecting device
JP2005526238A (en) Opaque additive that blocks stray light in a flow cell for TEFLON (registered trademark) AF light guidance
KR910021571A (en) Coating thickness measuring method and apparatus
EP1229322B1 (en) Cell for analyzing fluid and analyzing apparatus using the same
US4168907A (en) Method for inspecting transparent rods
JP4005929B2 (en) Immunochromatographic test piece measuring device
EP0597552A1 (en) An improved method of and a capillary flow cell for analysing fluid samples
JPS62106339A (en) Method for measuring light transmission loss of optical fiber with high accuracy
JPH06294871A (en) Radiation intensity distribution measuring instrument
JPH0954050A (en) X-ray small-angle scattering device
JP3384927B2 (en) Transparent long body defect detection device
JPH0511780B2 (en)
US6393094B1 (en) Methods and apparatus using attenuation of radiation to determine concentration of material in object
JP2666032B2 (en) Measurement method of scattering light and scattering angle distribution
JPS5918647B2 (en) How do you know how to use light and light?
JP3210429B2 (en) Optical waveguide cross-section refractive index distribution measurement device
SU1155848A1 (en) Device for measuring roughness of polished surface of object
JP3039569B2 (en) Prism for total internal reflection measurement
JPS5992332A (en) Moisture detector
JPH05332880A (en) Measuring apparatus for distribution of refractive index at cross section of optical waveguide
JPH0628684Y2 (en) UV Fluorescence Analyzer
JPH07301519A (en) Distance measuring instrument
JPS5810638A (en) Inspecting apparatus for inner surface of steel pipe