JPS62106029A - Production of ether compound - Google Patents

Production of ether compound

Info

Publication number
JPS62106029A
JPS62106029A JP60245294A JP24529485A JPS62106029A JP S62106029 A JPS62106029 A JP S62106029A JP 60245294 A JP60245294 A JP 60245294A JP 24529485 A JP24529485 A JP 24529485A JP S62106029 A JPS62106029 A JP S62106029A
Authority
JP
Japan
Prior art keywords
compound
group
cupric
cuprous
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60245294A
Other languages
Japanese (ja)
Other versions
JPH0583525B2 (en
Inventor
Shozo Kato
加藤 祥三
Masahiko Ishizaki
石崎 雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP60245294A priority Critical patent/JPS62106029A/en
Publication of JPS62106029A publication Critical patent/JPS62106029A/en
Publication of JPH0583525B2 publication Critical patent/JPH0583525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:The reaction between a halogenated aromatic compound and a metal salt of organic hydroxy compound is carried out using a mixture of a cuprous compound and a cupric compound as a catalyst to produce the titled compound which is used as an intermediate of agricultural chemicals or medicines in high selectivity and high yield. CONSTITUTION:In the production of an ether such as 2-ethoxythiophene or 3-methoxythiopene by reaction of a halogenated aromatic organic hydroxyl compound such as sodium ethylate or sodium methylate in the presence of a catalyst, a mixture of a cuprous compound such as cuprous oxide, cuprous iodide, or cuprous cyanide with a cupric compound such as cupric oxide, cupric iodide, cupric chloride, or cupric cyanide is used as a catalyst. EFFECT:The objective compound is produced in a shortened time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエーテル化合物を選択性良く、なおかつ高収率
で製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing ether compounds with good selectivity and high yield.

〔従来の技術及び発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

芳香環を有するエーテル化合物は農薬や医薬等の中間体
として広範囲に利用し得る有用な化合物である。現在ま
で芳香環を有するエーテル化合物の合成反応の触媒とし
て酸化第1銅が用いられていた。その反応例としてアル
キブ ケミ (Alkiv  Kemi、) 23巻管
239頁、1958年に触媒として酸化第1銅ヲ用いた
ろ一メトキシチオフェンの合成法が記載されている。こ
の報告によると、1当量の3−ブロムチオフェンに対し
、2.8当量のナトリウムメチラート及び触媒として0
.5当量の酸化第1銅を用い、100時間加熱還流し、
収率81%で3−メトキシチオフェンが得られている。
Ether compounds having an aromatic ring are useful compounds that can be widely used as intermediates for agricultural chemicals, medicines, and the like. Until now, cuprous oxide has been used as a catalyst for the synthesis reaction of ether compounds having an aromatic ring. As an example of this reaction, Alkiv Kemi, Vol. 23, p. 239, 1958, describes a method for synthesizing methoxythiophene using cuprous oxide as a catalyst. According to this report, for 1 equivalent of 3-bromothiophene, 2.8 equivalents of sodium methylate and 0
.. Using 5 equivalents of cuprous oxide, heating under reflux for 100 hours,
3-methoxythiophene was obtained with a yield of 81%.

この合成法では原料である6−ブロムチオフェンカ残存
L 、5−7’ Oムチオフエンと生成物である3−メ
トキシチオフェンの沸点が近似しているために煩雑な分
離精製工程が必要であるばかりではなく、反応時間が極
めて長く、しかも収率も良くないという欠点があった。
This synthesis method not only requires complicated separation and purification steps because the boiling points of the raw material 6-bromothiophene, 5-7'O muchiophene, and the product 3-methoxythiophene are similar. However, the reaction time was extremely long and the yield was not good.

〔問題を解決するだめの手段〕[Failure to solve the problem]

本発明者らは上記事実に鑑み、ノ・ロゲン化芳香族化合
物と有機ヒドロキシ化合物の金属塩を反応させてエーテ
ル化合物を製造する方法について装量検討してきた。
In view of the above facts, the present inventors have studied the amount of a method for producing an ether compound by reacting a non-logogenated aromatic compound with a metal salt of an organic hydroxy compound.

その結果、触媒として第1価の銅化合物と第2価の銅化
合物の混合物を用いた場合、短時間に、選択性よくエー
テル化合物を製造できることを見い出し、本発明を完成
するに至った。
As a result, they discovered that when a mixture of a primary copper compound and a secondary copper compound was used as a catalyst, an ether compound could be produced in a short time and with good selectivity, and the present invention was completed.

囲ち、本発明は、ハロゲン化芳香族化合物と有機ヒドロ
キン化合物の金属塩とを触媒の存在下に反応させてエー
テル化合物を製造するに際し、触媒として第1価の銅化
合物と第2価の銅化合物の混合物を用いることを特徴と
するエーテル化合物の製造方法である。
The present invention relates to the production of an ether compound by reacting a halogenated aromatic compound and a metal salt of an organic hydroquine compound in the presence of a catalyst, using a monovalent copper compound and a divalent copper compound as catalysts. This is a method for producing an ether compound, characterized by using a mixture of compounds.

本発明に於いて原料として用いられるハロゲン化芳香族
化合物は、芳香環に結合した水素がハロゲン原子で置換
された化合物であり。
The halogenated aromatic compound used as a raw material in the present invention is a compound in which hydrogen bonded to an aromatic ring is replaced with a halogen atom.

一般式で次のように表わされる。It is expressed in the general formula as follows.

R,−X       (1) (但し、R1は、置換もしぐけ非置換の同素芳香環基又
は置換もしくけ非置換の複素芳香環基を示し、X¥iハ
ロゲン原子を示す。)上記一般式(1)中、R1で示さ
れる同素芳香環基としては、いかなるものも使用でき何
ら制限されない。しかしながら、原料入手の容易さから
、炭素数6〜14であるものが好適である。該同素芳香
環基の具体例としてはフェニル基、ナフチル基、アント
リル基、フエナントリル基等の了り−ル基が挙げられる
R, -X (1) (However, R1 represents a substituted or unsubstituted isoaromatic ring group or a substituted or unsubstituted heteroaromatic ring group, and represents an X\i halogen atom.) The above general formula In (1), any isotropic aromatic ring group represented by R1 can be used without any limitations. However, from the viewpoint of easy availability of raw materials, those having 6 to 14 carbon atoms are preferred. Specific examples of the allotropic aromatic ring group include phenyl, naphthyl, anthryl, and phenanthryl groups.

又、上記一般式(1)中、R1で示される複素芳香環基
も、いかなるものも使用でき何ら制限されない。核複素
芳香環基と1−ではフリル基、チェニル基、ピロリル基
、イミダゾリル基、ピラゾリル基、ピリジル基、ベンゾ
フリル基、ベンゾチェニル基、インドリル基。
Further, in the above general formula (1), any heteroaromatic ring group represented by R1 can be used without any limitation. Nuclear heteroaromatic ring group and 1- include furyl group, chenyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, pyridyl group, benzofuryl group, benzothenyl group, and indolyl group.

キノリル基、ピラジニル基、ビ1)ミジル基。Quinolyl group, pyrazinyl group, bi1)midyl group.

ビリダジル基、キノキサリニル基、チアゾリル基、ベン
ゾチアゾリル基、インオキサシリル基等が挙げられろ。
Examples include a pyridazyl group, a quinoxalinyl group, a thiazolyl group, a benzothiazolyl group, and an inoxasilyl group.

又、上記一般式(1)中、R1で示される置換同素芳香
環基と置換複素芳香環基の置換基としでは反応に用いら
れる試剤と反応しなりものであれば、あらゆる置換基が
特に制限されず用−らねる。該置換基の具体例としては
メチル基、エチル基、プロピル基等のアルキル基;ビニ
ル基、フリル基等のアルケニル基;プロピニル基等のア
ルキニル基;メトキシ基、エトキシ基等のアルコキシ基
;メチルチオ基、エチルチオ基等のアルキルチオ幕;メ
トキシメチル基等のアルコキシアルキル基:フェニル基
;ニトロ基;シアノ基;アミノ基;アルコキシカルボニ
ル基;スルホニル基:ホルミル基:モノアルキルアミノ
基、ジアルキルアミノ基、トリフルオロメチル基等のポ
リフルオロアルキル基等が挙げられる。寸た、エーテル
化反応を阻害しなければ、フッ素。
In addition, in the above general formula (1), any substituent of the substituted homologous aromatic ring group and the substituted heteroaromatic ring group represented by R1 may be particularly selected as long as it reacts with the reagent used in the reaction. Can be used without restrictions. Specific examples of the substituent include alkyl groups such as methyl, ethyl, and propyl groups; alkenyl groups such as vinyl and furyl groups; alkynyl groups such as propynyl; alkoxy groups such as methoxy and ethoxy; methylthio groups. , alkylthio group such as ethylthio group; alkoxyalkyl group such as methoxymethyl group: phenyl group; nitro group; cyano group; amino group; alkoxycarbonyl group; sulfonyl group: formyl group: monoalkylamino group, dialkylamino group, trifluoro Examples include polyfluoroalkyl groups such as methyl groups. Actually, fluorine does not inhibit the etherification reaction.

塩素等のハロゲン原子又はヒドロキシ基が置換していて
もよい。
It may be substituted with a halogen atom such as chlorine or a hydroxy group.

さらに又、上記一般式(1)中、Xで示されるハロゲン
原子はフッ素、塩素、臭素、沃素のいずれでも使用でき
るが、反応性の良さから好甘しぐは臭素又は沃素が用す
られる。
Furthermore, the halogen atom represented by X in the above general formula (1) can be any of fluorine, chlorine, bromine, and iodine, but bromine or iodine is preferably used because of its good reactivity.

本発明で用いろもう一方の原料は、有機ヒドロキシ化合
物の金属塩である。有機ヒドロキシ化合物の金属塩は、
アルコラード或いはフェノラートとして知られており、
本発明では、このような公知の有機ヒドロキシ化合物の
金属塩が何ら制限されず使用し得る。本発明に於いて特
に好適に用いることのできる有機ヒドロキシ化合物の金
属塩は一般式で次のように示される。
The other raw material used in the present invention is a metal salt of an organic hydroxy compound. Metal salts of organic hydroxy compounds are
It is known as alcolade or phenolate.
In the present invention, such known metal salts of organic hydroxy compounds can be used without any restriction. A metal salt of an organic hydroxy compound that can be particularly preferably used in the present invention is represented by the following general formula.

R2−0〜M(2) (但し、R2は置換もしくは非置換のアルキル基、置換
もしくは非置換の同素芳香環基。
R2-0 to M(2) (However, R2 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted homoaromatic ring group.

置換もしくは非置換の複素芳香環基を示し、Mはアルカ
リ金属原子を示す。)で示される有機ヒドロキシ化合物
の金属塩である。
It represents a substituted or unsubstituted heteroaromatic ring group, and M represents an alkali metal atom. ) is a metal salt of an organic hydroxy compound.

上記一般式(2)中、R2で示されるアルキルt5は直
鎖状1分枝状のbずれであってもよく、炭素数も特に制
限されない。しかしながら、原料入手の容易さから炭素
数1〜6個であることが好適である。該アルキル基の具
体例としては、メチル基、エチル基、n−プロピル基、
1s○−プロピル基、n−ブチル基。
In the above general formula (2), the alkyl t5 represented by R2 may be a linear monobranched b-shifted one, and the number of carbon atoms is not particularly limited. However, from the viewpoint of easy availability of raw materials, it is preferable that the number of carbon atoms is 1 to 6. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group,
1s○-propyl group, n-butyl group.

iso −7’チル基、t−ブチル基、n−ペンチル基
、n−ヘキシル基等が挙げられる。
Examples include iso-7'thyl group, t-butyl group, n-pentyl group, n-hexyl group, and the like.

さらに、上記一般式(2)中、R2で示される同素芳香
環基及び複素芳香環基としては、前記一般式(1)で説
明した各基が何ら制限なくそのまオ用いられる。
Furthermore, in the above general formula (2), as the homoaromatic ring group and the heteroaromatic ring group represented by R2, each group explained in the above general formula (1) can be used as is without any restriction.

前記一般式(2)中、R2で示される置換アルキル基の
置換基としては、前記一般式(1)について説明した置
換同素芳香環基及び置換複素芳香環基の置換基のうち、
アルキル基を除−て用することができる。また、置換同
素芳香環基及び置換複素芳香環基の置換基としては、前
記一般式(1)について説明した置換基をそのま1適用
することができる。
In the general formula (2), the substituents for the substituted alkyl group represented by R2 include the substituents for the substituted homoaromatic ring group and the substituted heteroaromatic ring group described for the general formula (1).
It can be used by removing the alkyl group. Further, as the substituents for the substituted alloaromatic ring group and the substituted heteroaromatic ring group, the substituents explained for the general formula (1) can be directly applied.

又、前記一般式(2)中、Mで示されるアルカリ金属原
子としてはリチウム、ナトリウム。
In the general formula (2), the alkali metal atom represented by M is lithium or sodium.

カリウム等が挙げられるが、取扱A上から。Potassium, etc. can be mentioned, but from the top of Handling A.

ナトリウム及びカリウムが好適に使用される。Sodium and potassium are preferably used.

前記一般式(2)で示される有機ヒドロキシ化合物の金
属塩の中でも、R2がアルキル基。
Among the metal salts of organic hydroxy compounds represented by the general formula (2), R2 is an alkyl group.

又は置換アルキル基の場合は、目的物であるエーテル化
合物の収率が高くなるため、本発明では特に好適である
Alternatively, a substituted alkyl group is particularly preferred in the present invention because the yield of the target ether compound increases.

また、本発明の触媒である@1価の銅化合物と第2価の
銅化合物は公知の化合物が特に制限されず使用できる。
Further, as the @monovalent copper compound and the divalent copper compound which are the catalysts of the present invention, known compounds can be used without particular restriction.

好適な第1価の銅化合物としては酸化第1銅、沃化第1
銅、臭化第1銅、塩化第1銅、フン化第1銅、シアン化
第1銅等が挙げられる。また、好適な第2価の銅化合物
としては酸化第2銅、臭化第2銅、塩化第2銅、フッ化
第2銅、シアン化第2銅等が挙げられる。第1価と第2
価の銅化合物の組み合せは同種化合物同志は勿論のこと
、異種化合物同志でも、本発明のエーテル化反応を促進
し、生成するエーテル化合物の収率及び選択性を高める
効果がある。さらに第1価の銅化合物と第2価の銅化合
物の組み合せに、金属鋼を加えても、さらに良い効果を
見い出゛すことができる。
Suitable primary copper compounds include cuprous oxide and cuprous iodide.
Examples include copper, cuprous bromide, cuprous chloride, cuprous fluoride, cuprous cyanide, and the like. Suitable divalent copper compounds include cupric oxide, cupric bromide, cupric chloride, cupric fluoride, cupric cyanide, and the like. 1st valence and 2nd valence
The combination of copper compounds of the same type, as well as different types of compounds, has the effect of accelerating the etherification reaction of the present invention and increasing the yield and selectivity of the produced ether compound. Furthermore, even better effects can be found by adding metallic steel to the combination of the first-valent copper compound and the second-valent copper compound.

本発明により、触媒として第1価の銅化合物と第2価の
銅化合物の混合物を用h、上記のハロゲン化芳香族化合
物と有機ヒドロキシ化合物の金属塩からエーテル化合物
を製造する際、通常は不活性有機溶媒を用いるのが好プ
しい。該不活性有機溶媒としてはあらゆる種類の不活性
有機溶媒が適用でき、具体例としてはベンゼン、ヘキサ
ン、シクロヘキサン。
According to the present invention, a mixture of a primary copper compound and a secondary copper compound is used as a catalyst, and when an ether compound is produced from the above-mentioned halogenated aromatic compound and a metal salt of an organic hydroxy compound, an inorganic compound is usually used. Preference is given to using active organic solvents. All kinds of inert organic solvents can be used as the inert organic solvent, and specific examples include benzene, hexane, and cyclohexane.

デカリン、トルエン、キシレン、N、N−ジメチルホル
ムアミドC以下、DMFと略−i)。
Decalin, toluene, xylene, N,N-dimethylformamide (hereinafter abbreviated as DMF -i).

ジメチルスルホキシド(以下、DMSOと略ス)、ジエ
チルニーデル、ジブチルエーテル。
Dimethyl sulfoxide (hereinafter abbreviated as DMSO), diethyl needle, dibutyl ether.

ジメトキシエタン、ジエチレングリコールジメチルエー
テル、アルコール等が挙げられる。
Examples include dimethoxyethane, diethylene glycol dimethyl ether, alcohol, and the like.

アルコールを溶媒として用いる場合には、上記一般式(
2)で示されるR2−0−Mに対応するアルコール、す
なわち、一般式R2−OHで表わされるアルコールを用
いることが望ましい。例tばR2h″−メチル基であれ
ばメタノール、エチル基であればエタノール、イソプロ
ピル基であればイソプロピルアルコールヲ用いることが
、収率9選択性の面から好適である。
When alcohol is used as a solvent, the above general formula (
It is desirable to use an alcohol corresponding to R2-0-M shown in 2), that is, an alcohol represented by the general formula R2-OH. For example, it is preferable to use methanol for an R2h''-methyl group, ethanol for an ethyl group, and isopropyl alcohol for an isopropyl group in terms of yield and selectivity.

本発明を実施する際、不活性有機溶媒中へのハロゲン化
芳香族化合物、有機ヒドロキシ化合物の金属塩及び第1
価の銅化合物と第2価の銅化合物の混合物の添加順序は
、特に制限されるものではない。−例としては、アルコ
ール、特にエーテル化反応の溶媒とり、ての使用を勘案
するとメタノール、エタノール又はイソプロピルアルコ
ール等の低級アルコールをアルカリ金属と反応させてア
ルコラードを含むアルコール溶液を調製し、該アルコー
ル溶液にハロゲン化芳香族化合物及び第1価の銅化合物
と第2価の銅化合物の混合物を添加する方法が挙げられ
る。
In carrying out the invention, a halogenated aromatic compound, a metal salt of an organic hydroxy compound and a first
The order of addition of the mixture of the valent copper compound and the second valent copper compound is not particularly limited. - For example, considering the use of alcohols, especially as solvents for etherification reactions, lower alcohols such as methanol, ethanol or isopropyl alcohol are reacted with alkali metals to prepare alcoholic solutions containing alcoholades; For example, a method of adding a halogenated aromatic compound and a mixture of a primary copper compound and a secondary copper compound may be mentioned.

また、ハロゲン化芳香族化合物と有機ヒト。Also, halogenated aromatic compounds and organic humans.

ロキシ化合物の金属塩のモル比は特に限定されるもので
はないが、一般にけ1:01〜1:100、好1しくは
ハロゲン化芳香族化合物に対して、有機ヒドロキシ化合
物の金属塩を多量に加えることにより、短時間のうちに
より選択的に、しかも高収率でエーテル化合物を得るこ
とができろ点から、モル比 1 :1.1〜1:10の
範囲で使用するのがよい。
The molar ratio of the metal salt of the organic hydroxy compound is not particularly limited, but is generally 1:01 to 1:100, preferably a large amount of the metal salt of the organic hydroxy compound to the halogenated aromatic compound. It is preferable to use the molar ratio in the range of 1:1.1 to 1:10 because by adding the ether compound, the ether compound can be obtained more selectively and in a high yield in a short period of time.

また、触媒である第1価の銅化合物と第2価の銅化合物
の混合割合は、広い範囲から選択できるが、通常は1モ
ルの第1価の銅化合物に対し0.01〜100モルの範
囲の第2価の銅化合物を使用するのがよい。好ましくは
第1価の銅化合物と第2価の銅化合物のモル比は0.1
 : 10〜10 : []、1の範囲から選ばれる。
The mixing ratio of the primary copper compound and the secondary copper compound, which are catalysts, can be selected from a wide range, but it is usually 0.01 to 100 mol per 1 mol of the primary copper compound. A range of secondary valent copper compounds may be used. Preferably, the molar ratio of the primary copper compound to the secondary copper compound is 0.1.
: 10-10 : [], selected from the range of 1.

着た、第1価の硝化合物と第2価の銅化合物の混合物に
金属銅を加える場合、前者と後者のモル比は0.01〜
100〜100:0.01の範囲、好ブしくけ0.1 
: 10〜10:0.1の範囲から選ぶことが好適であ
る。
When metallic copper is added to a mixture of a primary nitrate compound and a secondary copper compound, the molar ratio of the former to the latter is 0.01 to
Range of 100 to 100:0.01, preference 0.1
: It is suitable to select from the range of 10 to 10:0.1.

また、触媒である第1価の銅化合物と第2価の銅化合物
の混合物はハロゲン化芳香族化合物に対し0.01〜8
0モルパーセント、好ましくは1〜50モルパーセント
の範囲から選ぶことが好適である。
In addition, the mixture of the primary copper compound and the secondary copper compound, which are catalysts, has a ratio of 0.01 to 8
It is suitable to choose from the range of 0 mole percent, preferably from 1 to 50 mole percent.

更にまた、ハロゲン化芳香族化合物と不活性有機溶媒の
重量比は一般に1:1〜1:20、好ましくは1:1〜
1:10の範囲から選ぶことが好適である。
Furthermore, the weight ratio of the halogenated aromatic compound to the inert organic solvent is generally from 1:1 to 1:20, preferably from 1:1 to
It is preferable to choose from a range of 1:10.

本発明の反応における温度は特に限定されず広い温度範
囲で選び得るが、一般には50〜i s o ”c、好
ましくは80〜150℃の範囲から選ぶと良い。
The temperature in the reaction of the present invention is not particularly limited and can be selected within a wide temperature range, but it is generally selected from the range of 50 to 150°C, preferably 80 to 150°C.

本発明で得られるエーテル化合物の精製方法は特に限定
されるものではない。一般には触媒を濾別した後、反応
液を中和し、ベンゼン、トルエン、塩化メチレン、クロ
ロホルム。
The method for purifying the ether compound obtained in the present invention is not particularly limited. Generally, after filtering off the catalyst, the reaction solution is neutralized and mixed with benzene, toluene, methylene chloride, or chloroform.

四塩化炭素、エーテル等の不活性有機溶媒で抽出、乾燥
し、常圧蒸留、減圧蒸留、再結晶マタはクロマトグラフ
ィーによって精製することができる。さらにまた、反応
液を中和した後、水蒸気蒸留にて触媒を分離する方法も
採用することもできる。
After extraction with an inert organic solvent such as carbon tetrachloride or ether, drying, distillation under normal pressure, distillation under reduced pressure, and recrystallization, the material can be purified by chromatography. Furthermore, it is also possible to adopt a method in which the reaction solution is neutralized and then the catalyst is separated by steam distillation.

〔効 果〕〔effect〕

以上に述べた本発明の方法によれば、触媒として第1価
の銅化合物及び第2価の銅化合物を夫々単独で使用した
場合に比して、短時間及び高収率でエーテル化合物を得
ることができる。しかも、得られたエーテル化合物の選
択性が良好であり、精製が容易である。
According to the method of the present invention described above, an ether compound can be obtained in a shorter time and in a higher yield than when a primary copper compound and a secondary copper compound are used alone as catalysts. be able to. Moreover, the obtained ether compound has good selectivity and is easy to purify.

即ち、本発明の方法によれば、100時間で81%の収
率でエーテル化合物が得られた従来の方法に比べて30
時間以下で、しかも85%以上の収率でエーテル化合物
を得ることができる。さらに、副反応である脱ハロゲン
化反応もおこらないため副生成物がほとんどなく、目的
とするエーテル化合物の選択性が極めて高い。
That is, according to the method of the present invention, the ether compound was obtained in 100 hours with a yield of 81%, compared to the conventional method.
The ether compound can be obtained in less than an hour and with a yield of 85% or more. Furthermore, since no dehalogenation reaction, which is a side reaction, occurs, there are almost no by-products, and the selectivity for the target ether compound is extremely high.

以下に本発明を具体的に説明するために実施例を挙げる
が、本発明はこれらの実施例に限定されろものではない
Examples are given below to specifically explain the present invention, but the present invention is not limited to these Examples.

実施例 1 還流冷却器、攪拌器を備えた200−の三つロフラスコ
に2−ブロムチオフェン30.9(184mmole 
) 、ナトリウムエチラート27.5 ! (405!
TII]]01+3 ) 、予め調製した酸化第1銅と
酸化第2銅の混合物8 、!i’ CCu0(5,0!
j−+ 57.7 mmole ) 、 Cu2O(5
g−。
Example 1 30.9 (184 mmole) of 2-bromothiophene was added to a 200-cm three-neck flask equipped with a reflux condenser and a stirrer.
), sodium ethylate 27.5! (405!
TII]]01+3), a mixture of cuprous oxide and cupric oxide prepared in advance 8,! i' CCu0(5,0!
j−+ 57.7 mmole), Cu2O(5
g-.

34.9 mmole ) ]及びエタノール100−
を仕込み、窒素雰囲気下、加熱還流状態(オイルバス温
度120℃)で20時間激しぐ攪拌した。反応液を室温
舊で戻し、希塩酸で中和した後、水蒸気蒸留を行なった
。得られた油層を分離してガスクロマトグラフィーによ
り分析した結果、チオフェンは生成しておらず、脱ハロ
ゲン化反応は生起してbないことが確認された。次いで
油層を減圧蒸留することにより、64°C/ 18 m
mHyの無色液体である2−エトキシチオフェンを22
.5 g ヲ?Gた。
34.9 mmole)] and ethanol 100-
The mixture was heated under reflux (oil bath temperature: 120° C.) and stirred vigorously for 20 hours under a nitrogen atmosphere. The reaction solution was returned to room temperature, neutralized with dilute hydrochloric acid, and then steam distilled. As a result of separating the obtained oil layer and analyzing it by gas chromatography, it was confirmed that thiophene was not produced and no dehalogenation reaction occurred. The oil layer was then distilled under reduced pressure to 64°C/18 m
2-ethoxythiophene, a colorless liquid with mHy, is
.. 5 g wo? G.

収率は原料である2−ブロムチオフェンに対して95.
7%であった。
The yield is 95% based on the raw material 2-bromothiophene.
It was 7%.

実施例 2 還流冷却器、攪拌器をQえた200−の三つロフラスコ
に、メタノール100 Mg (!: 金FfAナトリ
ウム12.31 (53D +nmole )を加え、
予めナトリウムメチラート−メタノール溶液を調製した
。該溶液に3−ブロムチオフェン55g(214mmo
le)と微粉化した酸化鋼6J9CCuO2,21(2
7mmole)  、 Cu202.7g(19mmo
le)、Cu1.1g(1,7mmole ) )を順
次加え、加熱速流状態(オイルバス温度120℃)で2
0時間激しく攪拌した。その後、反応液を室温1で戻し
、希塩酸で中和した後、水蒸気蒸留を行なった。得られ
た油層を実施例1と同様に分析した結果、脱ハロゲン化
反応が生起してbな込ことが確認された。次いで油層を
塩化メチレン50―で抽出し、塩化メチレン層は塩化カ
ルシウムで乾燥した。塩化メチレンを留去した後、常圧
蒸留を行ない、沸点159℃の4色液体である6−エト
キシチオフェンを231得た。
Example 2 100 Mg of methanol (!: 12.31 (53 D + nmole) of sodium gold FfA) was added to a 200-cm three-neck flask equipped with a reflux condenser and a stirrer.
A sodium methylate-methanol solution was prepared in advance. 55 g of 3-bromothiophene (214 mmo
le) and pulverized oxidized steel 6J9CCuO2,21(2
7 mmole), Cu202.7g (19 mmole)
1.1 g (1.7 mmole) of Cu) were added sequentially, and the mixture was heated under rapid flow conditions (oil bath temperature 120°C).
Stir vigorously for 0 hours. Thereafter, the reaction solution was returned to room temperature 1, neutralized with dilute hydrochloric acid, and then steam distilled. As a result of analyzing the obtained oil layer in the same manner as in Example 1, it was confirmed that a dehalogenation reaction had occurred and b was reduced. The oil layer was then extracted with 50% of methylene chloride, and the methylene chloride layer was dried with calcium chloride. After distilling off methylene chloride, atmospheric distillation was performed to obtain 231 6-ethoxythiophene, which is a four-color liquid with a boiling point of 159°C.

収率は原料である3−ブロムチオフェンに対して94.
5%であった。
The yield was 94.9% based on the raw material 3-bromothiophene.
It was 5%.

実施例 3 代表的な第1価銅化合物である酸化第1匍。Example 3 Oxide oxide is a representative monovalent copper compound.

塩化第1銅及び沃化第1銅と、代表的な第2価銅化合物
である酸化第2銅、塩化第2銅及び臭化第2銅の組み合
せを下記反応の触媒として用いた。
A combination of cuprous chloride and cuprous iodide with cupric oxide, cupric chloride, and cupric bromide, which are typical cupric compounds, was used as a catalyst for the following reaction.

即ち、6−ブロムチオフェン16.3 、!i’(I 
D。
That is, 6-bromothiophene 16.3,! i'(I
D.

mm01θ)とナトリウムエチラート15 g(220
mmole )をエタノール70−に溶かし、所定量の
上記組み合せの触媒(表1中に記入)を加え、100℃
で激しく加熱攪拌した。3時間後、反応液をガスクロマ
トグラフィーによす検定し、3−エトキシチオフェンの
生成率を算出した。
mm01θ) and 15 g of sodium ethylate (220
mmole ) in ethanol 70-, add a predetermined amount of the above combination of catalysts (entered in Table 1), and heat at 100°C.
The mixture was heated and stirred vigorously. After 3 hours, the reaction solution was analyzed by gas chromatography to calculate the production rate of 3-ethoxythiophene.

表   1 実施例 3 表2に示したハロゲン化芳香廣化合物、有機ヒドロキシ
化合物の金属塩及び触媒を用いて、実施例1と同様にし
てエーテル化合物を合成した。その結果を表2に併記し
た。
Table 1 Example 3 An ether compound was synthesized in the same manner as in Example 1 using the halogenated aromatic compounds, metal salts of organic hydroxy compounds, and catalysts shown in Table 2. The results are also listed in Table 2.

尚、実施例1と同様の方法にして分析した結果、脱ハロ
ゲン化反応は生起していなめことが確認された。
As a result of analysis in the same manner as in Example 1, it was confirmed that the dehalogenation reaction had occurred.

以ト\j″:tJIt\j″:tJ

Claims (1)

【特許請求の範囲】 ハロゲン化芳香族化合物と有機ヒドロキシ 化合物の金属塩とを触媒の存在下に反応させてエーテル
化合物を製造するに際し、触媒として第1価の銅化合物
と第2価の銅化合物の混合物を用いることを特徴とする
エーテル化合物の製造方法。
[Claims] When producing an ether compound by reacting a halogenated aromatic compound and a metal salt of an organic hydroxy compound in the presence of a catalyst, a primary valent copper compound and a secondary valent copper compound are used as catalysts. A method for producing an ether compound, characterized by using a mixture of.
JP60245294A 1985-11-02 1985-11-02 Production of ether compound Granted JPS62106029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60245294A JPS62106029A (en) 1985-11-02 1985-11-02 Production of ether compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60245294A JPS62106029A (en) 1985-11-02 1985-11-02 Production of ether compound

Publications (2)

Publication Number Publication Date
JPS62106029A true JPS62106029A (en) 1987-05-16
JPH0583525B2 JPH0583525B2 (en) 1993-11-26

Family

ID=17131525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60245294A Granted JPS62106029A (en) 1985-11-02 1985-11-02 Production of ether compound

Country Status (1)

Country Link
JP (1) JPS62106029A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230743A (en) * 1986-03-31 1987-10-09 Eisai Co Ltd Production of 1-alkoxy-2-methylnaphthalene
US5140603A (en) * 1990-05-02 1992-08-18 Scientific-Atlanta, Inc. Overmodulation protection for amplitude modulated laser diode
WO2009090866A1 (en) * 2008-01-16 2009-07-23 Japan Carlit Co., Ltd. Process for production of thiophene derivative
JP2009161457A (en) * 2007-12-28 2009-07-23 Japan Carlit Co Ltd:The Method for producing dialkoxythiophene
US20130017489A1 (en) * 2010-01-25 2013-01-17 International Business Machines Corporation Fluorine-free fused ring heteroaromatic photoacid generators and resist compositions containing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533490A (en) * 1978-08-28 1980-03-08 Bayer Ag Manufacture of 44fluoroo33phenoxyytoluene
JPS57102830A (en) * 1980-10-30 1982-06-26 Hoechst Ag Manufacture of diphenyl ether
JPS6019740A (en) * 1983-07-11 1985-01-31 San Ei Chem Ind Ltd Production of 2,3,4,5-tetramethoxytoluene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533490A (en) * 1978-08-28 1980-03-08 Bayer Ag Manufacture of 44fluoroo33phenoxyytoluene
JPS57102830A (en) * 1980-10-30 1982-06-26 Hoechst Ag Manufacture of diphenyl ether
JPS6019740A (en) * 1983-07-11 1985-01-31 San Ei Chem Ind Ltd Production of 2,3,4,5-tetramethoxytoluene

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230743A (en) * 1986-03-31 1987-10-09 Eisai Co Ltd Production of 1-alkoxy-2-methylnaphthalene
US5140603A (en) * 1990-05-02 1992-08-18 Scientific-Atlanta, Inc. Overmodulation protection for amplitude modulated laser diode
JP2009161457A (en) * 2007-12-28 2009-07-23 Japan Carlit Co Ltd:The Method for producing dialkoxythiophene
WO2009090866A1 (en) * 2008-01-16 2009-07-23 Japan Carlit Co., Ltd. Process for production of thiophene derivative
JP5476568B2 (en) * 2008-01-16 2014-04-23 カーリットホールディングス株式会社 Method for producing thiophene derivative
US20130017489A1 (en) * 2010-01-25 2013-01-17 International Business Machines Corporation Fluorine-free fused ring heteroaromatic photoacid generators and resist compositions containing the same
US8518630B2 (en) * 2010-01-25 2013-08-27 International Business Machines Corporation Fluorine-free fused ring heteroaromatic photoacid generators and resist compositions containing the same

Also Published As

Publication number Publication date
JPH0583525B2 (en) 1993-11-26

Similar Documents

Publication Publication Date Title
JPH0730031B2 (en) Process for producing 2-pyrazolin-5-ones
JP2003512344A5 (en)
JP4828862B2 (en) Process for producing 5-bromo-2,2-difluorobenzo- [1,3] -dioxole
JPS62106029A (en) Production of ether compound
JPS59118780A (en) Preparation of furfuryl alcohols
JP2019147829A (en) 5-(trifluoromethyl)pyrimidine derivative and manufacturing method therefor
JPS63250385A (en) Production of halogenated heterocyclic compound
JPH0544951B2 (en)
CN112321451B (en) Method for preparing cinacalcet hydrochloride drug intermediate
EP1070038B1 (en) New processes for the preparation of 3-bromoanisole and 3-bromonitrobenzene
JP4243683B2 (en) Method for producing 1-tetralone
US8211820B2 (en) Catalyst composition, and process for production of cross-coupling compound using the same
JP4147302B2 (en) 1-Indanone production method
JPH01272559A (en) 2,6-diethylaniline derivative and production thereof
JP4008306B2 (en) Production method of terminal alkyne
JPS58109443A (en) Preparation of 3-(2'-chloro-4'-trifluoromethylphenoxy) acetophenone
JPH04234825A (en) Process for producing benzotrifluoride compound
CN113968802A (en) Synthesis method of chlorinated trifluoromethyl compound of cycloolefine
JP2021178811A (en) Production method of aromatic ether compound or aromatic sulfhydryl compound
JPS5858335B2 (en) Alpha - Chikanacetone no Seizouhou
JPS58148834A (en) Manufacture of 5-substituted 1-chloro-3,3- dimethylpentan-2-one
JPH0713065B2 (en) Method for producing furfuryl alcohol
JPS63162674A (en) Production of 1-dodecylazacycloheptan-2-one
JPH0533698B2 (en)
JPH0662467B2 (en) Alcohol production method