JPS62105999A - Method for producing gaas single crystal and apparatus used therefor - Google Patents

Method for producing gaas single crystal and apparatus used therefor

Info

Publication number
JPS62105999A
JPS62105999A JP24244485A JP24244485A JPS62105999A JP S62105999 A JPS62105999 A JP S62105999A JP 24244485 A JP24244485 A JP 24244485A JP 24244485 A JP24244485 A JP 24244485A JP S62105999 A JPS62105999 A JP S62105999A
Authority
JP
Japan
Prior art keywords
impurity
boat
single crystal
gaas single
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24244485A
Other languages
Japanese (ja)
Inventor
Nobuyuki Izawa
伊沢 伸幸
Hiroo Hayashi
林 博雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP24244485A priority Critical patent/JPS62105999A/en
Publication of JPS62105999A publication Critical patent/JPS62105999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To facilitate the growth of an impurity-doped GaAs single crystal having excellent crystallinity, by separately placing an impurity from Ga and As used as raw materials and from a seed crystal, contacting the raw material with the impurity in the course of heating and product. CONSTITUTION:An As source 4 used as a raw material is placed at an end in a quartz tube 1 and quartz boat 3 containing another raw material Ga 12 is placed at the other end of the tube 1. A seed crystal 5 is placed on a step formed at an end of the boat 3 and an impurity 11 such as Si is placed on another step formed at the other end of the boat and having lower height than the former step. The quartz tube 1 is evacuated, sealed and heated in a furnace 20. The evaporated As source 4 is made to react with molten Gas 12 and the impurity 11 and, at the same time, oxides existing in the components are evaporated. The boat 3 is inclined to introduce and mix the impurity 11 in the form of SiAs, etc., into the molten GaAs in the boat 3. The molten liquid is brought into contact with the seed crystal 5 by tilting the boat to the opposite side to effect the growth of a GaAs single crystal doped with a specific amount of an impurity such as Si.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、GaAs単結晶の製造ノコ法とこれQご用い
る装置に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a sawing method for producing GaAs single crystals and an apparatus used therefor.

〔発明の概要] 本発明は、不純物をドープしたGaA:司1拮晶や製造
するに当り、その結晶の主成分であるGa、、’: T
’:鈍物とを接触さ−Qない状態で配置し1、結晶成長
時の昇温過程でGaと不純物とを接触さ1するよう乙こ
(−て、不要な反応4t、成↑勿の発ヰを回避する。
[Summary of the Invention] The present invention provides impurity-doped GaA: 1 antagonist crystals, which are the main components of the crystals.
': Place the blunt object in such a way that it does not come in contact with it, and make sure that Ga and impurities come into contact with each other during the temperature raising process during crystal growth. Avoid ignition.

〔従来の技術〕[Conventional technology]

不純物のSiを1−ブしたn−dすのIi、IAs中結
晶体を1!する方法としては、1113法(ホリゾンタ
ルーア゛リッツマン法)5、或いはGF法(グ:iジェ
ントフリーズ7’J:)がある。そして、この種の11
をGaAsは各種化合物1(導体、例えば半導体レーザ
ー、発)Lダイす−ド、電界効果トランジスタにおける
半導体)(扱1とj)こ広く用いられている。
Ii of n-d with 1-bubble Si impurity, 1 crystal of IAs! Methods for this include the 1113 method (horizontal Alitzman method) 5 or the GF method (G: igent freeze 7'J:). And 11 of this kind
GaAs is widely used in various compounds 1 (conductors, such as semiconductor lasers, light emitting diodes, semiconductors in field effect transistors) (treatments 1 and j).

このような不純物、例えばSiがドープされたGaAs
単結晶体を育成する方法としては、人別して2つの方法
がある。
GaAs doped with such impurities, e.g. Si
There are two methods for growing single crystals, depending on the person.

第1の方法は、GaにSiを添加して置き、これとAs
とを反応させて単結晶の育成を行う方法である。
The first method is to add Si to Ga and add this to As.
This is a method of growing a single crystal by reacting with

これについて第2図を参照して説明すると、この場合、
石英より成る反応(以下石英管という)(1)内にGa
にSiを添加した原料(2)を収容した石英ボート(3
)を配置し、これとは異る位置の石英管(1)内にAs
源(4)を配置する。一方、ボート(3)の縁部に原料
(2)とは離間してGaAsの種結晶を配置するもので
あり、単結晶の育成に当ってAsを、原料(2)のSi
を添加したGaに反応させボート(3)を傾けて原料の
融液(2)を種結晶(5)に接触させて種結晶(5)か
ら単結晶を成長させて行くものである。ところが、この
方法では、Ga中に存在するGa2e 、 Ga2O3
等の酸化物とSiとが容易に反応して5i(h  (固
体) 、 SiO(気体)等の反応生成物を生じ、これ
が石英ボート(3)を汚染したり、原料(2)の融液中
の組成に変動を生じさせ、目的とするSif・−ブ量の
GaAstP結品を正確に18ることができないとか、
或いは上述の反応生成物の付着によってこれが異常成長
種となって単結晶の育成が阻害されて双晶を発生したり
多結晶を発生させるなどの不都合を来す。そこで、この
ような方法を採る場合、予め、真空中、或いは還元性ガ
ス中で結晶育成時の温度より低い温度のベーキング、い
わゆる「から焼きコしてGaの酸化物やAsの酸化物を
排除し、その後、高温加熱下でのAs反応を行わしめつ
つ単結晶の育成を行・うという方法が採られる。しかし
ながら、このような作業は極めて煩雑であり、量産性を
阻む。
To explain this with reference to Figure 2, in this case,
Ga in the reaction (hereinafter referred to as quartz tube) (1) made of quartz
Quartz boat (3) containing raw material (2) with Si added to
) and place As in the quartz tube (1) at a different position.
Place the source (4). On the other hand, a GaAs seed crystal is placed on the edge of the boat (3) at a distance from the raw material (2).
The boat (3) is tilted to bring the raw material melt (2) into contact with the seed crystal (5) to grow a single crystal from the seed crystal (5). However, in this method, Ga2e and Ga2O3 present in Ga
oxides such as oxides easily react with Si to produce reaction products such as 5i(h (solid) and SiO (gas), which may contaminate the quartz boat (3) or the melt of the raw material (2). This may cause fluctuations in the composition inside, making it impossible to accurately produce the desired amount of Sif.
Alternatively, the adhesion of the reaction products described above becomes abnormal growth seeds, which inhibits the growth of single crystals and causes problems such as generation of twins or polycrystals. Therefore, when such a method is adopted, Ga oxides and As oxides are removed by baking in vacuum or in a reducing gas at a temperature lower than the temperature during crystal growth. After that, a method is adopted in which a single crystal is grown while carrying out an As reaction under high-temperature heating.However, such work is extremely complicated and hinders mass production.

また、第2の方法は、第3図に示すようにボート[:i
 4こ、予め多結晶体として作製したアンドープ或いは
、SiドープのGaにSiを添加した原料(2)を収容
し、これを再溶融して前述した第1の方法と同様の単結
晶の育成を行うものである。しかしながら、この方法に
よる場合、多結晶体を予め作製するという手間、装置な
どを必要とすることによ−3て」スト高となる。
In addition, the second method uses the boat [:i
4) A raw material (2) prepared in advance as a polycrystalline material in which Si is added to undoped or Si-doped Ga is stored, and this is remelted to grow a single crystal in the same manner as in the first method described above. It is something to do. However, this method requires the labor and equipment to prepare the polycrystalline body in advance, resulting in high costs.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述した諸問題を解消して、簡単な作業で、
結晶性にすくれた5iiJ度を正確に設定できるように
したGaAs単結晶の製造方法とこれに用いる装置を提
供するものである。
The present invention solves the above-mentioned problems and enables simple work.
The present invention provides a method for producing a GaAs single crystal and an apparatus for use in the method, in which the 5iiJ degree of crystallinity can be accurately set.

〔問題点を解決するための下段〕[Lower section for solving problems]

本発明は、1111法、 Gf’法等におけるように、
Ga及びΔSを原料とし、これに不純物を添加した化合
物半導体単結晶を製造する方法において、GaとΔSと
不純物例えばSiとの3者を分離しておき、結晶成長時
の騨温過稈で3者を接触させた後に結晶化させるという
方法をとる。
The present invention, as in the 1111 method, Gf' method, etc.
In a method for manufacturing a compound semiconductor single crystal using Ga and ΔS as raw materials and adding impurities to them, Ga, ΔS, and an impurity such as Si are separated, and 3 The method is to bring it into contact with someone and then crystallize it.

また、本発明は、この方法を実施する装置に係り、この
装置としては、第1図に示すように、その不純物(11
)の設置場所を、ボート(3)内のGa(12)の設置
場所及び種結晶と離間させた構造とする。
The present invention also relates to an apparatus for carrying out this method, and as shown in FIG.
) is set apart from the Ga (12) installation location in the boat (3) and the seed crystal.

そして、その不純物(11)の設定場所を、重力方向に
関して種結晶(5)より下方、つまり低い位置とする。
Then, the impurity (11) is set at a position below, that is, lower than the seed crystal (5) in the direction of gravity.

更にGaを不純物(11)の設定位置より低い位置とす
る。
Further, Ga is set at a lower position than the set position of the impurity (11).

このようにして、先ずGaAs単結晶の育成に先立って
予めボートに収容されたGaとΔS源とを分1補した状
態で夫々ヘーキングし、排気して酸化物の排除をなし、
石英管(1)を封じる。次に、As源(4)から^Sを
ポー13)における部分よりは低い温度下で加熱蒸発さ
せる。このようにすると、温度上昇7に伴ってこの^S
蒸気がボート(3)のGa中に輸送され、Ga中にGa
Asの生成が始まる。これと同時にGaに若」−残存す
る酸化物がGa20a + Ga2Oの形で原発し、こ
れが、ボート(3)の設置部よりは低い温度のAs源(
4)側の部位、つまりボート(3)外の単結晶育成に関
与しない部分で析出する。同時に不純物SiにもAsの
輸送がなされSiとの反応で5iAsの液体が形成され
る。このとき、不純物5i(11)の配置部の温度は、
Ga酸化物の析出部よりは充分高い温度に選定される。
In this way, first, prior to growing a GaAs single crystal, the Ga and ΔS sources previously stored in a boat are each hakened in a state where they are supplemented by 1/2, and then evacuated to remove oxides.
Seal the quartz tube (1). Next, ^S from the As source (4) is heated and evaporated at a lower temperature than the portion in the port 13). In this way, as the temperature rises 7, this ^S
The steam is transported into the Ga of the boat (3), and the Ga
Generation of As begins. At the same time, the remaining oxides of Ga are generated in the form of Ga20a + Ga2O, which becomes an As source (
4), that is, the part outside the boat (3) that is not involved in single crystal growth. At the same time, As is transported to the impurity Si and reacts with the Si to form a liquid of 5iAs. At this time, the temperature of the portion where the impurity 5i (11) is placed is:
The temperature is selected to be sufficiently higher than the temperature at which the Ga oxide is precipitated.

このようにして生成した5iAsの液体を、必要に応じ
炉を傾けることによってホード(3)内に流入させるこ
とによってボート(3)内にはGaとGaAsと5iA
sとの混合融液を生じさせる。
The 5iAs liquid produced in this way is allowed to flow into the hoard (3) by tilting the furnace as necessary, so that Ga, GaAs, and 5iAs are formed in the boat (3).
A mixed melt with s is produced.

次に、ボート(3)内の融液をその液面ト昇によって、
或いは同様に必要に応して炉を間けることによって種結
晶(5)に接触させ、所要の加熱温度と温度分布によ、
って通常のように単結晶の育成をjテう。
Next, the melt in the boat (3) is raised by raising its liquid level.
Alternatively, the seed crystal (5) may be brought into contact with the seed crystal (5) by shortening the furnace as necessary, and the heating temperature and temperature distribution may be adjusted as needed.
Then, grow the single crystal as usual.

〔作用〕[Effect]

上述したように本発明では、予めGaとAsと不純物の
例えばSiとを分離しておき、Ga或いはGa(!:G
aAsとの融液からGa酸化物を飛散させた後に結晶成
長を行わしめるものであるが、この時上述したように不
純物Siの配置部は、Gaの酸化物の析出温度より充分
高くなされていることによって、これにGa酸化物が混
入することはないものである。そして、実際上、Ga酸
化物の蒸発飛散はGa2Oガスとして飛7仁ほかにΔS
とGa酸化物との反応によるAs2O、AS203等の
ガスとなることにより、効果的にGa酸化物の結晶育成
部からの排除が行われるので安定したSiドープ量をも
って結晶性にすぐれた単結晶を成長さ・υるごとができ
る、二とになる。
As described above, in the present invention, Ga, As, and impurities such as Si are separated in advance, and Ga or Ga(!:G
Crystal growth is performed after Ga oxide is scattered from the melt with aAs, but at this time, as mentioned above, the location of the impurity Si is set at a temperature sufficiently higher than the precipitation temperature of the Ga oxide. This prevents Ga oxide from being mixed in. In reality, the evaporation and scattering of Ga oxide is reported as Ga2O gas by ΔS.
By reacting with Ga oxide to form gases such as As2O and AS203, Ga oxide is effectively removed from the crystal growth zone, making it possible to produce a single crystal with excellent crystallinity with a stable Si doping amount. You can grow up, do things, and become two.

〔実施例〕〔Example〕

第1図を参照して本発明の一実施例を、イ11に説明す
る。
An embodiment of the present invention will be explained in A11 with reference to FIG.

石英管(1)内の例えば−・端側にAJf4)を配置し
、他端側に石英ボート(3)を配置する。石英ボート(
3)には、その上縁の互いに反対側に、(IjIIえば
このボー1−t3131内人々段部を設けて、−・方に
種結晶(5)を、他方に不純物(Illこの例ではSl
を載置1゛る。ボー1− (31内には、Ga(12)
を収容する。
For example, AJf4) is placed at one end of the quartz tube (1), and a quartz boat (3) is placed at the other end. Quartz boat (
3), on opposite sides of their upper edges, (IjII, for example, this board 1-t3131 internal steps are provided, and the seed crystal (5) is placed on one side, and the impurity (Ill, in this example, Sl) is placed on the other side.
Place 1. Bow 1- (31 is Ga(12)
to accommodate.

この時、不純物5i(11)は、Ga(12)に対し7
てAsf)i!f4)とは反対側に配置する。そして、
As源(4)の配置部を250℃に加タハし、ホード(
3)内のGaを600°Cに加熱する。この時、石英管
(1+内は、lO″″〜10’″1′+n fli!に
に排気され、Ga酸化物Ga2Oば、成る程度管外に排
気される。このとき、Sμm1体とGa2Oガスとの反
応は殆んどみられず、したがってSin、  5i02
の生成はみられなかった。次に、石英管10を第1国人
に示すように真空封止し、結晶成長のための加熱炉(2
0)中に設置する。この時、Ga(12)には未だ僅か
なからGa酸化物(13)が残存している。
At this time, impurity 5i (11) is 7
teAsf)i! f4) is placed on the opposite side. and,
Heat the area where the As source (4) is placed to 250°C, and place it in the hoard (
3) Heat the Ga inside to 600°C. At this time, the inside of the quartz tube (1+ is exhausted to lO''''~10'''1'+n fli!, and the Ga oxide Ga2O is exhausted to the outside of the tube. At this time, Sμm1 body and Ga2O gas There was almost no reaction with Sin, 5i02.
No formation was observed. Next, the quartz tube 10 is vacuum-sealed as shown to the first foreigner, and a heating furnace (2
0) Install inside. At this time, a small amount of Ga oxide (13) still remains in Ga (12).

この状態で、加タハ炉(20)の温度上昇を行い、As
源(4)の温度を500〜550℃程度に、Ga(12
)を900〜1000℃に上昇させると、第1図F3に
矢印aをちって模式的に示すように、炉の温度上覧tと
共に、・1sが1発し、ホード(3)内のGaにAsの
輸送が行われ、Ga中にGaAsの4成が開始され、G
aAsを含む融液(IJ()となる。−力、残存してい
たGa酸化物(13)は、G、+201 、 Ga2O
の形で矢印すに模式的に示すように芸発し、低昌側具体
的には例えばAs源(4)の配置部側に析出し、少くと
も屯結晶a成に関与するボート(3)から、つまり種結
晶(5)の単結晶育成部近傍とG rr A sを含む
GaA訣液中から排除される。
In this state, the temperature of the Kataha furnace (20) is increased and As
Ga (12
) is raised to 900 to 1000°C, as schematically shown by arrow a in Figure 1 F3, 1s is emitted once as the temperature of the furnace is t, and the Ga in the hoard (3) is Transport of As occurs, and the quaternary formation of GaAs begins in Ga, resulting in the formation of GaAs in Ga.
The melt containing aAs becomes IJ(). -The remaining Ga oxide (13) is G, +201, Ga2O
As shown schematically by the arrow, it precipitates on the lower side, specifically, for example, on the side where the As source (4) is placed, and at least from the boat (3) involved in the formation of the As crystal. That is, it is excluded from the vicinity of the single crystal growth part of the seed crystal (5) and from the GaA solution containing G rr As.

そして同時にAsが矢印Cで模式的に示すようにSi不
純物(II)の配置部・\も輸送され、5iAsの液体
が約786℃以上の温度で形成され始める。この時、S
i的の発生部位、つまり不純物(11)の配置部位の温
度は、Gol酸化物析出温度より充分用いので、5iA
sとGil酸化物との反応は起りにくく、また、起った
として<)As20やAs20aの形をとるものであり
、その茎気圧は高いので他方側、つまりAs源(4)の
配置端側へと輸送され、5iAsの酸化は殆んど起らな
い。そして、このようにして生成した5iAs(7)液
体を、必要に応し炉を傾ける、−とによってボート(3
)内ろこ流入させ・うことによって第1図Cに示すよう
にボート(3)内にはGaとGaAsと5iAsとの混
合Wb ?fl。
At the same time, As is schematically shown by arrow C, the Si impurity (II) is also transported, and a liquid of 5iAs begins to be formed at a temperature of about 786° C. or higher. At this time, S
Since the temperature of the i-specific generation site, that is, the location of impurity (11), is much higher than the Gol oxide precipitation temperature, 5iA
The reaction between s and Gil oxide is difficult to occur, and even if it does occur, it will take the form of As20 or As20a, and since the stem pressure is high, the reaction will occur on the other side, that is, on the side where the As source (4) is arranged. oxidation of 5iAs hardly occurs. Then, the 5iAs(7) liquid produced in this way is poured into a boat (3) by tilting the furnace as necessary.
) As shown in FIG. 1C, a mixture of Ga, GaAs, and 5iAs (Wb?) is introduced into the boat (3) by flowing the inner layer. fl.

(1,4)を生jユさせる。Make (1, 4) raw.

次に、ボート(3)内の融液(14)をその液面上翼に
よって、或いは同様に必要に応して炉を(噴けることに
よって種結晶(5)に接触さ一ゼ、′、所要の加熱益度
1ど温度分布Qζ31、って通常のように単結晶の育成
を行う。
Next, the melt (14) in the boat (3) is brought into contact with the seed crystal (5) by means of its surface blades, or similarly by blowing the furnace (', A single crystal is grown in the usual manner with a required heating gain of 1 and a temperature distribution of Qζ31.

面1、図示し、た例では、ボート(3)自体乙こ種結晶
(5)の配置部と、不純物5i(11)の配置部を形成
した場合であるが、成る場合は、ボーt・(3)の上縁
乙ご人々適当の1η1さに種結晶(5)と不純物5i(
11)を配置2するt:めのハンガーを…吊する構造と
するこきもできろ。
In the example shown in the figure, the boat (3) itself has a part for placing the seed crystal (5) and a part for placing the impurity 5i (11). Seed crystal (5) and impurity 5i (
11) Arrange 2 t: Make a structure for hanging the hanger.

また、■、述り、5だ例では不純1m(11)かSiで
、n型GaAsの単結晶を育成する場合についてである
が、他のn型の不純物の添加されたGaAs、或いはp
型の不純物の例えばZnを用いる場合に本発明を通用す
ることもできる。
In addition, in the example described in Section 5, an n-type GaAs single crystal is grown with impurities of 1 m (11) or Si, but GaAs doped with other n-type impurities or p-
The present invention can also be applied when using a type impurity such as Zn.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によればGaの酸化物の排除を効
果的に行うようにしたので、双晶の発生など結晶欠陥の
発生を激減させた結晶性にすぐれた不純物ドープ濃度を
正確に設定できるGaAs単結晶体を部用な作業で製造
できるものであり、その工業的に利するところは極めて
大きい。
As described above, according to the present invention, the Ga oxide is effectively eliminated, so that the impurity doping concentration can be accurately set to achieve excellent crystallinity, which drastically reduces the occurrence of crystal defects such as the occurrence of twins. It is possible to produce GaAs single crystals with a small amount of work, and its industrial advantages are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A−Cは本発明装置により、本発明製法を実施す
る一例の製造工程図、第2図及び第3図は従来方法の説
明図である。 illは炉心管(石英管)、(3)はボート、(4)は
As源、(5)は種結晶、(11)は不純物である。 第1図
FIGS. 1A to 1C are manufacturing process diagrams of an example of implementing the manufacturing method of the present invention using the apparatus of the present invention, and FIGS. 2 and 3 are explanatory diagrams of the conventional method. ill is a reactor core tube (quartz tube), (3) is a boat, (4) is an As source, (5) is a seed crystal, and (11) is an impurity. Figure 1

Claims (1)

【特許請求の範囲】 1、Ga及びAsを原料とし、これに不純物を添加した
GaAs単結晶を製造する方法において、上記Ga及び
Asと上記不純物を結晶成長時の昇温過程で接触させた
後に結晶化させる化合物半導体単結晶の製造方法。 2、Ga及びAsを原料とし、これに不純物を添加した
GaAs単結晶を製造する方法に用いる装置において、
上記不純物の設置場所を、上記Gaの設置場所と種結晶
とから離間させたGaAs単結晶の製造装置。 3、Ga及びAsを原料とし、これに不純物を添加した
GaAs単結晶を製造する方法に用いる装置において、
上記Gaを設置するボートの種結晶設置部と不純物設置
部及びGa設置部と不純物設置部を分離し、且つ上記不
純物設置部をGaに対して上記種結晶設置部と同じかそ
れより低くして成るGaAs単結晶の製造装置。
[Claims] 1. In a method for producing a GaAs single crystal using Ga and As as raw materials and adding impurities to the raw materials, after the Ga and As are brought into contact with the impurities during the temperature raising process during crystal growth. A method for producing a compound semiconductor single crystal by crystallization. 2. In an apparatus used in a method for producing a GaAs single crystal using Ga and As as raw materials and adding impurities thereto,
A device for producing a GaAs single crystal, in which the impurity installation location is separated from the Ga installation location and the seed crystal. 3. In an apparatus used in a method for producing a GaAs single crystal using Ga and As as raw materials and adding impurities thereto,
Separate the seed crystal installation part and impurity installation part of the boat where Ga is installed, and the Ga installation part and impurity installation part, and make the impurity installation part the same or lower than the seed crystal installation part with respect to Ga. A device for producing GaAs single crystals.
JP24244485A 1985-10-29 1985-10-29 Method for producing gaas single crystal and apparatus used therefor Pending JPS62105999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24244485A JPS62105999A (en) 1985-10-29 1985-10-29 Method for producing gaas single crystal and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24244485A JPS62105999A (en) 1985-10-29 1985-10-29 Method for producing gaas single crystal and apparatus used therefor

Publications (1)

Publication Number Publication Date
JPS62105999A true JPS62105999A (en) 1987-05-16

Family

ID=17089180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24244485A Pending JPS62105999A (en) 1985-10-29 1985-10-29 Method for producing gaas single crystal and apparatus used therefor

Country Status (1)

Country Link
JP (1) JPS62105999A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160890A (en) * 1987-12-18 1989-06-23 Hitachi Cable Ltd Evacuation of ampule for production of single crystal
US4929572A (en) * 1988-07-18 1990-05-29 Furukawa Co., Ltd. Dopant of arsenic, method for the preparation thereof and method for doping of semiconductor therewith
JPH03122097A (en) * 1989-09-14 1991-05-24 Akzo Nv Preparation of single crystal ii-vi group or iii-v group compound and product made of it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160890A (en) * 1987-12-18 1989-06-23 Hitachi Cable Ltd Evacuation of ampule for production of single crystal
US4929572A (en) * 1988-07-18 1990-05-29 Furukawa Co., Ltd. Dopant of arsenic, method for the preparation thereof and method for doping of semiconductor therewith
JPH03122097A (en) * 1989-09-14 1991-05-24 Akzo Nv Preparation of single crystal ii-vi group or iii-v group compound and product made of it

Similar Documents

Publication Publication Date Title
JP5665094B2 (en) n-type group III nitride compound semiconductor
US9464367B2 (en) Method for producing N-type group III nitride single crystal, N-type group III nitride single crystal, and crystal substrate
KR100497262B1 (en) Epitaxy Method on Vapor Phase of Compound Semiconductor
JP2016037426A (en) Method of manufacturing group iii nitride semiconductor and group iii nitride semiconductor wafer
JPS6255688B2 (en)
JPS62105999A (en) Method for producing gaas single crystal and apparatus used therefor
JP2007106669A (en) METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL
US3649193A (en) Method of forming and regularly growing a semiconductor compound
US3290181A (en) Method of producing pure semiconductor material by chemical transport reaction using h2s/h2 system
JPS61197499A (en) Method of growing single crystal of inorganic compound
RU2534106C1 (en) Method of obtaining big-volume monocrystals of gallium antimonide with low dislocation density
JPS59214276A (en) Manufacture of gallium phosphide green light-emitting element
JPH0760800B2 (en) Vapor growth method for compound semiconductors
Keramidas et al. Growth of InP and InGaAsP (Eg≥ 1.15 eV) layers by liquid phase epitaxy under phosphorus overpressure
JPS6065527A (en) Method for vapor growth of compound semicondutor of iii-v group
JPS5869800A (en) Growing method for semiconductor crystal of 3[5 group element compound
JPS6153186A (en) Heater for resistance heating
JPS6229399B2 (en)
JP2003146791A (en) Method of manufacturing compound semiconductor single crystal
Plaskett The Synthesis of Bulk GaP from Ga Solutions
JPH0329036B2 (en)
JP2001130999A (en) METHOD FOR PRODUCING GaAs SEMICONDUCTOR SINGLE CRYSTAL
JPS61117198A (en) Melt for growth of inp single crystal and method for using said melt
CN113818085A (en) System and method for uniformly growing nitride single crystal by flux method
JPS63276215A (en) Vapor growth device