JPS62104016A - Manufacture of anisotropic magnet - Google Patents

Manufacture of anisotropic magnet

Info

Publication number
JPS62104016A
JPS62104016A JP24318685A JP24318685A JPS62104016A JP S62104016 A JPS62104016 A JP S62104016A JP 24318685 A JP24318685 A JP 24318685A JP 24318685 A JP24318685 A JP 24318685A JP S62104016 A JPS62104016 A JP S62104016A
Authority
JP
Japan
Prior art keywords
diameter
dice
anisotropic
internal wall
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24318685A
Other languages
Japanese (ja)
Inventor
Motoharu Shimizu
元治 清水
Akio Kobayashi
明男 小林
Hisashi Higashiya
東谷 久志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP24318685A priority Critical patent/JPS62104016A/en
Publication of JPS62104016A publication Critical patent/JPS62104016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To easily obtain a diameter bipolar anisotropic magnet having the outer diameter similar to a perfect circle after the sintering by using a dice and a punch so that the external circumference of molding space becomes like an ellipse having the longer diameter in the magnetic field applying direction. CONSTITUTION:The internal wall 2 of dice is formed larger than the internal wall 3 of the prior art and the dice has the elliptical shape. Where, the maximum diameter is set in the M direction (anisotropic direction) and the minimum diameter is set in the direction crossing orthogonally the M direction. Namely, the internal wall of dice becomes like an ellipse defined by a=alpha1Xb where a is longer diameter in the M direction and b is short diameter in the direction crossing orthogonally the M direction. The punch may be designed adopting to the internal wall size of dice. Thereby, a diameter bipolar anisotropic ferrite system permanent magnet having the external diameter similar to a perfect circle can be obtained easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、MD・nFe1o1 (ただしMは、Ba、
8r、Pbの少くとも1種で、nは5〜6.5)を主原
料とするハード・フェライト系永久磁石であり【直径方
向に異方性方向を有するいわゆる径2極異方性磁石の製
造方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to MD.nFe1o1 (where M is Ba,
It is a hard ferrite permanent magnet whose main raw material is at least one of 8r, Pb, and n is 5 to 6.5. This relates to a manufacturing method.

〔従来の技術〕[Conventional technology]

ハード・フェライト磁石は、アルニコFe−Cr−C。 The hard ferrite magnet is Alnico Fe-Cr-C.

および肴土類Co−Fe 411石に比較し、原料コス
トが安価なため、最も多(使用され【いる磁石である。
It is the most commonly used magnet because its raw material cost is lower than that of Co-Fe 411 stone.

技術的には、磁気特性の高性能化の点から等方性→乾式
異方性→湿式異方性へと追突がなされ、現在ではSr系
フェライト磁石が主流である。
Technically, in order to improve the performance of magnetic properties, there has been a shift from isotropy to dry anisotropy to wet anisotropy, and currently Sr-based ferrite magnets are the mainstream.

(日本応用磁気学会誌 VO4,6161参照)〔発明
が解決しようとする問題点〕 しかしながら、成形に使用する金型構造については従来
公知の文献なども詳細に言及してないこと、および−万
では、実際の大量生産において成形体と製品との間での
収縮率が、異方性方向および非異方性方向において異な
るため、従来方法での金型構造の場合、多量に不良品を
発生するという問題があった。すなわち、真円に近いダ
イスおよびパンチで成形すると、その後の熱処理により
異方性方向での収縮が大きいため、圧縮方向から見る断
面の外径が楕円状を呈し、真円属近い外径形状を得るこ
とが、因難であった。そこで本発明は上述した従来技術
の問題点を解消し、精匿よく真円に近い外径を有する径
2極異方性磁石が得られる製造方法を提供することを目
的とするものである。
(Refer to Journal of the Japan Society of Applied Magnetics VO4, 6161) [Problems to be solved by the invention] However, the conventionally known literature does not mention in detail the structure of the mold used for molding, and - In actual mass production, the shrinkage rate between the molded body and the product is different in the anisotropic direction and the non-anisotropic direction, so if the mold is constructed using the conventional method, a large number of defective products will be produced. There was a problem. In other words, when forming with a die and punch that are close to a perfect circle, the shrinkage in the anisotropic direction is large due to subsequent heat treatment, so the outer diameter of the cross section viewed from the compression direction takes on an elliptical shape. Obtaining it was a karma. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method of manufacturing a bipolar anisotropic magnet having an outer diameter close to a perfect circle with precision.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明者らは成形後の成形体寸法(Lg)および焼結後
の焼結体寸法(Ls )を調査した結果、磁界を印加す
る異方性方向の収縮率(sh)が、他方向のそれに比較
して大であることを見出し本発明に至ったのである。
The present inventors investigated the dimensions of the compact after molding (Lg) and the dimensions of the sintered compact after sintering (Ls), and found that the shrinkage rate (sh) in the anisotropic direction where a magnetic field is applied is different from that in the other direction. They found that this was relatively large and led to the present invention.

すなわち、本発明は、成形空間に磁性合金粉を充てんし
圧縮方向と直交するように磁界を径方向に印加し、圧縮
成形するハード・フェライト系の径2極異方性磁石の成
形方法において、異方性方向を長径とする楕円状の成形
断面を構成するダイスおよびパンチから成る金型または
必要に応じコアピンを設けた前記金型を用いることを特
徴とするものである。
That is, the present invention provides a method for molding a hard ferrite-based bipolar anisotropic magnet in which a molding space is filled with magnetic alloy powder and a magnetic field is applied in the radial direction so as to be perpendicular to the compression direction to compression mold the magnet. The present invention is characterized by using a mold consisting of a die and a punch which constitute an elliptical molding cross section with the major axis in the anisotropic direction, or the aforementioned mold provided with a core pin if necessary.

〔作 用〕 詳述すると異方性方向の収縮率(Sh)mは16%を越
えるが、他方向の収縮率(sh)は、16%未満である
[Function] To be more specific, the shrinkage ratio (Sh)m in the anisotropic direction exceeds 16%, but the shrinkage ratio (sh) in the other direction is less than 16%.

例として、外径(Ls)なる径2極異方性磁石を作成す
るKは、(Sh)M −0,20および異方性方向から
最も遠い方向での収縮率を(Sh)o −0,14とし
た場合、成形体寸法(Lg)は、それぞれ下式を満足せ
ねばならない。
As an example, K to create a bipolar anisotropic magnet with an outer diameter (Ls) is (Sh)M -0,20 and the shrinkage rate in the direction farthest from the anisotropy direction is (Sh)o -0 , 14, the molded body dimensions (Lg) must each satisfy the following formula.

(1)、(2)式において、(Lg)M、 (Lg)o
はそれぞれ異方性方向および異方性方向から最も遠い方
向での成形体寸法である。(1)および(2)式より(
3)式が得られる。
In equations (1) and (2), (Lg)M, (Lg)o
are the dimensions of the compact in the anisotropic direction and in the direction farthest from the anisotropic direction, respectively. From equations (1) and (2), (
3) Equation is obtained.

(3)式に、(ah)M−α20および(Sh)o−α
14を代入1−ると、(4)式となる。
In formula (3), (ah) M-α20 and (Sh) o-α
Substituting 14 into 1- gives equation (4).

(Lg)M−一ρ且邊−x (Lg)0− t08 (
Lg、)O−(4)α80 (4)式から、異方性方向での収縮率が大なる場合焼結
体において外径(Ls)なる円柱状の径2極異万注磁石
を得るには、異方性方向から最も遠い方向すなわち異方
性方向に直交する方向での成形体寸法(Lg)oに対し
、異方性方向での成形体寸法(Lg)Mは、(Lg)M
−α・(Lg)O−108(Lg)Oとせねばならない
ことが分る。係数αは、(5)式を満足するものであり
、to2〜t22の範囲が好ましい。
(Lg) M-1ρ且邊-x (Lg)0- t08 (
Lg, )O-(4)α80 From formula (4), if the shrinkage rate in the anisotropic direction is large, in order to obtain a cylindrical two-pole magnet with an outer diameter (Ls) in the sintered body, is the molded body size (Lg)o in the direction farthest from the anisotropic direction, that is, the direction perpendicular to the anisotropic direction, and the molded body size (Lg)M in the anisotropic direction is (Lg)M
It can be seen that it must be -α·(Lg)O-108(Lg)O. The coefficient α satisfies equation (5) and is preferably in the range of to2 to t22.

以上のことを円柱状磁石(第1,2図)および円筒状磁
石(第3,4図)について、さらに詳述する。
The above will be explained in more detail regarding the cylindrical magnets (FIGS. 1 and 2) and the cylindrical magnets (FIGS. 3 and 4).

図中、Mは、異方性方向(磁界印加方向)を示す。In the figure, M indicates the anisotropy direction (magnetic field application direction).

また図は全て、圧縮方向に見たダイス内側の成形空間1
を示す。第3,4図にはコアピン8もある。
All figures show molding space 1 inside the die as seen in the compression direction.
shows. There is also a core pin 8 in Figures 3 and 4.

第2図は、従来法によるもので、ダイス内壁3は円柱状
である。それに対し、第1図は本発明によるもので、ダ
イス内壁2を従来の内壁3に比較し、太き(かつ楕円状
としている。ただし、M方向に最大とし、M方向と直交
する方向に最少としている。すなわち、本発明によるダ
イス内壁は、M方向の長径8.M方向と直交する方向で
の短径すで、a−α1xbなる楕円状を示す。パンチは
、ダイス内壁寸法に適合すべく設計すれば良い。
FIG. 2 shows a conventional method, in which the inner wall 3 of the die is cylindrical. On the other hand, FIG. 1 shows a die according to the present invention, in which the inner wall 2 of the die is thicker (and elliptical) than the conventional inner wall 3. However, the inner wall 2 of the die is thicker (and has an elliptical shape). That is, the inner wall of the die according to the present invention has an elliptical shape in which the major axis in the M direction is 8 and the minor axis in the direction orthogonal to the M direction is a-α1xb. Just design it.

第4図は、コアピン8を有する円筒状磁石を、作成する
上での従来法によるもので、ダイス内壁5およびコアピ
ン外壁7は、同心円状に位置し、成形空間1を構成する
。それに対し、第3図は、本発明によるもので、前述の
如く、M方向と直交する方向での短径す、M方向での長
径aで、a−偽xbなる楕円状のダイス内壁4吋よび同
様KM方向と直交する方向での短径d、M方向での長径
Cで、c−α3xdなる楕円状のコアピン外壁6を同心
状に配置し、成形空間1を構成する。パンチは、上記ダ
イス内壁4およびコアピン外壁6に適合すべく、作成す
れば良い。
FIG. 4 shows a conventional method for producing a cylindrical magnet having a core pin 8. The die inner wall 5 and the core pin outer wall 7 are located concentrically and constitute a molding space 1. On the other hand, FIG. 3 is a die according to the present invention, and as described above, the inner wall of the elliptical die is 4 inches, with the short axis in the direction orthogonal to the M direction and the long axis a in the M direction, and a-false xb. Similarly, an elliptical core pin outer wall 6 having a short axis d in the direction orthogonal to the KM direction and a long axis C in the M direction, c-α3xd, is arranged concentrically to form the molding space 1. The punch may be made to fit the die inner wall 4 and core pin outer wall 6.

また第3図においてはコアピン断面形状を、楕円状とし
たが、一般にコアピンは小さいため、(b)d)、c−
dとしても良(、また円筒状磁石の内径部の形状を、必
要に応じ任意の形状にしても良い。以上述べた方法すな
わち圧縮方向から見た成形空間の外周部が楕円なる金型
にて成形することにより、外径が真円に近い径2極異方
性のフェライト系永久磁石が容易に得られる。本発明は
各方法に適用できる。その1つは、磁性合金粉のみを圧
縮成形し、必1!’に応じて熱処理を行い、さらにバイ
ンダー(熱可塑性または熱硬化性樹脂)を含浸し加熱固
化する方法である。他の方法として、前述した如(、磁
性合金粉のみを圧縮成形後、焼結および時効などの熱処
理を行ういわゆる焼結磁石である。また、成形時にバイ
ンダー(Aj、Cu。
In addition, in Fig. 3, the cross-sectional shape of the core pin is elliptical, but since core pins are generally small, (b) d), c-
d (Also, the shape of the inner diameter part of the cylindrical magnet may be made into any shape as required. In the method described above, that is, in a mold in which the outer circumference of the molding space as seen from the compression direction is an ellipse) By molding, a ferrite permanent magnet with a bipolar anisotropy with an outer diameter close to a perfect circle can be easily obtained.The present invention can be applied to various methods.One of them is compression molding of only magnetic alloy powder. This is a method in which heat treatment is performed as required, and then impregnated with a binder (thermoplastic or thermosetting resin) and heated to solidify. It is a so-called sintered magnet, which undergoes heat treatment such as sintering and aging after molding.Also, binder (Aj, Cu) is used during molding.

Pb−8n合金、熱可塑性および熱硬化性樹脂など)と
磁性合金粉の混合物を圧縮成形し、加熱固化する方法に
も、本発明は適用可能である。
The present invention is also applicable to a method in which a mixture of Pb-8n alloy, thermoplastic and thermosetting resin) and magnetic alloy powder is compressed and solidified by heating.

次に本発明を適用するハード・フェライト系永久磁石の
成分限定理由について説明する。
Next, the reason for limiting the components of the hard ferrite permanent magnet to which the present invention is applied will be explained.

必須成分は、M(MはPb、Bd、Srの少(とも1種
コ0およびBeであり、成分表示として(4)・nFe
、01で表わせる。ただし、nは5〜&5なる値である
。上記添加物以外KNa、0.に、0.CaO,MgO
,5i01 、B@OH、Cr@0@ +。
The essential components are M (M is Pb, Bd, and Sr (both are type 1 co0 and Be, and as an ingredient display, (4), nFe
,01. However, n is a value of 5 to &5. KNa other than the above additives, 0. To, 0. CaO, MgO
,5i01,B@OH,Cr@0@+.

AJ、0.などの内、少(とも1種を磁気特性の向上を
目的とし、総量で5wt%以下添加しても良い。
A.J., 0. At least one of these may be added in a total amount of 5 wt % or less for the purpose of improving magnetic properties.

有害成分であるMrO、CuO、Nip、などは、少な
い万が好ましい。
It is preferable that the amount of harmful components such as MrO, CuO, NIP, etc. is as small as possible.

上記成分以外に、成形性の改善を目的としステアリン酸
、ステアリン酸M塩(MとしてCa 、 Mg。
In addition to the above components, stearic acid and stearic acid M salt (M being Ca and Mg) are added for the purpose of improving moldability.

AJ 、 Znなどの内、少くとも1種)およびPVA
なとの内、選択した1種以上を総量で5wt%以下含有
しても良い。
At least one of AJ, Zn, etc.) and PVA
The total amount of one or more selected among these may be 5 wt% or less.

〔実施例〕〔Example〕

次に本発明の実施例について説明するが、本発明はこれ
ら実施例に限定されるものではない。
Next, examples of the present invention will be described, but the present invention is not limited to these examples.

実施例1 8rCO@とFe諺0@をモに比で1 : 5.5の割
合で混合し、1300℃で1時間仮焼成し、さらにボー
ル・ミルで平均粒径1μmに微粉砕した。
Example 1 8rCO@ and Fe 0@ were mixed in a ratio of 1:5.5, pre-calcined at 1300°C for 1 hour, and further pulverized to an average particle size of 1 μm using a ball mill.

なお、仮焼前の添加物として、Sin、をo、3wt%
添加した。得られた微粉末スラリー20kg(水分50
%)K10%PVA水溶液を5ノ混合した。
In addition, as an additive before calcination, 3 wt% of Sin was added.
Added. 20 kg of the obtained fine powder slurry (moisture 50
%) K10% PVA aqueous solution was mixed.

このスラリーを、5KOeの磁界中で磁化後、乾燥し6
0メツシエ以下に解砕、整粒した。
This slurry was magnetized in a magnetic field of 5KOe and then dried for 6
It was crushed and sized to 0 mesh or less.

この粉末を第1図で示す成形空間(長径52.4m、短
径30.0−の楕円形状)に充てんし、成形圧1 to
ll/jで磁界(長径方向に7KOe )中で成形し、
成形体を得た。成形後、1240℃で1時間の焼結を行
い、測定に供した。
This powder was filled into the molding space shown in Fig. 1 (elliptical shape with a major axis of 52.4 m and a minor axis of 30.0 m), and a molding pressure of 1 to
Molded in a magnetic field (7KOe in the major axis direction) at ll/j,
A molded body was obtained. After molding, sintering was performed at 1240°C for 1 hour, and the product was subjected to measurement.

結果を、第1表に実施@1として表示した。The results are presented in Table 1 as run@1.

第1表 比較例1 第2図で示す成形空間(ダイス内径−50,0−) i
c元てんすること以外は、実施例1と同様に行りた結果
を第1表に比較例1と表示した。第1表に見る如く、従
来法では、異方性方向が小さく、外径寸法のバラツキは
t8■と大きいのに対し、本発明(実施例1)ではα4
■と小さく、真円に近い外径寸法が得られることが分っ
た。
Table 1 Comparative Example 1 Molding space shown in Figure 2 (Dice inner diameter -50,0-) i
The results were shown as Comparative Example 1 in Table 1, which was carried out in the same manner as in Example 1, except that c was used. As shown in Table 1, in the conventional method, the anisotropy direction is small and the variation in the outer diameter dimension is as large as t8■, whereas in the present invention (Example 1), α4
It was found that an outer diameter as small as ■ and close to a perfect circle could be obtained.

実施例2 第3図で示す成形空間(長径58.9m、短径3&0■
のダイス内径および長径195−1短径18.0−のコ
アビン外径)K変更すること以外は、実施例1と同様に
行りた結果を第1表に実施例2として表示した。
Example 2 Molding space shown in Fig. 3 (long axis 58.9 m, short axis 3 & 0 mm)
The results were shown in Table 1 as Example 2 in the same manner as in Example 1, except that the inner diameter of the die and the outer diameter of the core bin (major axis 195-1 minor axis 18.0-) were changed.

外径寸法のバラツキはα5−でありコアピンを設けても
本発明の効果は失なわれないことが分る。
It can be seen that the variation in the outer diameter dimension is α5-, and the effect of the present invention is not lost even if a core pin is provided.

実施例3 コアビンの外径寸法をφ18.0−とした以外は、実施
例2と同′laK行った結果を第1表に実施例5として
表示した。
Example 3 The same procedure as in Example 2 was carried out except that the outer diameter of the core bin was changed to φ18.0-. The results are shown in Table 1 as Example 5.

比較例2 第4図で示す成形空間(ダイス内径−36■、コアビン
外径φ18■)K変更した以外は、実施例1と同様に行
った結果を第1表に比較例2として表示した。真円に近
いダイス内径およびコアビン外径とで構成する成形空間
にて径2極異方性の円筒状磁石を成形すると、本発明法
での外径バラツキ(実施例2でC1,5■、実施例3で
0.6m )に比較し、2.1−と大きいことが分る。
Comparative Example 2 The molding space shown in FIG. 4 (inner diameter of the die -36 mm, outer diameter of the core bin 18 mm) was carried out in the same manner as in Example 1, except that K was changed, and the results are shown in Table 1 as Comparative Example 2. When a cylindrical magnet with bipolar anisotropy in diameter is molded in a molding space composed of a die inner diameter that is close to a perfect circle and a core bin outer diameter, the outer diameter variation in the method of the present invention (C1, 5■ in Example 2, It can be seen that the distance is larger at 2.1 m compared to 0.6 m in Example 3.

〔発明の効果〕〔Effect of the invention〕

以上の如く、成形空間の外周部が磁場印加方向を長径と
する楕円となるようなダイスおよびパンチを使用し、成
形するととKより焼結後に外径が真円に近い径2極異方
性磁石が容易に得られ、本発明の工業的価値は、極めて
高い。
As described above, when molding is performed using a die and a punch in which the outer peripheral part of the molding space is an ellipse with the major axis in the direction of magnetic field application, the outer diameter becomes a perfect circle after sintering than K. A magnet can be easily obtained, and the industrial value of the present invention is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例で、圧縮方向く成形空間を見た図
である。第2図は、従来法でのものである。第3図は、
コアビンを設げた本発明の一例で圧縮方向に成形空間を
見た図である。第4図は、コアビンを設けた従来法によ
るものである。 1・・・・・・成形空間、2.3・・・・・・ダイス内
壁、4,5・・・・・・ダイス内壁、6,7・・・・・
・コアビン外壁、8・・・・・・コアビン第1凹   
   躬2区 M                   M穢1 第30     第4肥 門          −こ−
FIG. 1 is an example of the present invention, and is a view of the molding space viewed in the compression direction. FIG. 2 shows the conventional method. Figure 3 shows
FIG. 3 is a view of a molding space in the compression direction in an example of the present invention in which a core bin is provided. FIG. 4 shows a conventional method in which a core bin is provided. 1... Molding space, 2.3... Die inner wall, 4, 5... Die inner wall, 6, 7...
・Core bin outer wall, 8... Core bin 1st recess
2nd ward MM 1st 30th 4th Himon -ko-

Claims (1)

【特許請求の範囲】 1、圧縮方向と直交するように磁界を直径方向に印加し
、圧縮成形するフェライト系径2極異方性磁石の成形方
法において、異方性方向を長径とするだ円状の成形断面
を構成するダイスおよびパンチから成る金型を用いるこ
とを特徴とする異方性磁石の製造方法。 2、コアピンを用いることを特徴とする特許請求の範囲
第1項記載の異方性磁石の製造方法。
[Claims] 1. A method for forming a ferrite-based bipolar anisotropic magnet in which a magnetic field is applied in the diametrical direction perpendicular to the compression direction and compression molded, an ellipse whose major axis is in the anisotropy direction. 1. A method for producing an anisotropic magnet, comprising using a mold consisting of a die and a punch forming a shaped cross section. 2. A method of manufacturing an anisotropic magnet according to claim 1, characterized in that a core pin is used.
JP24318685A 1985-10-30 1985-10-30 Manufacture of anisotropic magnet Pending JPS62104016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24318685A JPS62104016A (en) 1985-10-30 1985-10-30 Manufacture of anisotropic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24318685A JPS62104016A (en) 1985-10-30 1985-10-30 Manufacture of anisotropic magnet

Publications (1)

Publication Number Publication Date
JPS62104016A true JPS62104016A (en) 1987-05-14

Family

ID=17100101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24318685A Pending JPS62104016A (en) 1985-10-30 1985-10-30 Manufacture of anisotropic magnet

Country Status (1)

Country Link
JP (1) JPS62104016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217607A (en) * 1986-03-19 1987-09-25 Tohoku Metal Ind Ltd Manufacture of nd-fe-b based magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62217607A (en) * 1986-03-19 1987-09-25 Tohoku Metal Ind Ltd Manufacture of nd-fe-b based magnet

Similar Documents

Publication Publication Date Title
EP0044592B1 (en) Synthetic resin-bonded electromagnetic component and method of manufacturing same
CN102918607B (en) Sintered magnet and the manufacture method of sintered magnet
CN103548101B (en) Magneto-plumbite type ferrite magnetic material and segment permanent magnet body therefrom
JP2009027846A (en) Permanent magnet and surface magnet type motor employing the same
JPS5841646B2 (en) Manufacturing method of hexagonal plate-shaped magnetoplumbite type ferrite particle powder
JPS62104016A (en) Manufacture of anisotropic magnet
TWI686356B (en) Method of fabricating modified ferrite magnetic powder and ferrite magnet
JP2018174175A (en) Ferrite powder for bond magnet, and manufacturing method thereof
JP2020057751A (en) Ferrite powder for bonded magnet and method for producing same
JP3835729B2 (en) Ferrite sintered magnet and manufacturing method thereof
JP2791337B2 (en) Radial anisotropic cylindrical ferrite magnet and manufacturing method thereof
JP2999968B2 (en) Oxide permanent magnet and method of manufacturing the same
JP2830071B2 (en) Ferrite magnetic body and method of manufacturing the same
JPH0493002A (en) Manufacture of bond magnet molding material
CN104496453A (en) Preparation method of high-coercivity strontium-barium ferrite magnetic material
JP2003272909A (en) Dust core
JP2001006913A (en) Rotor
JPS6229116A (en) Manufacture of anisotropic magnet
JPS60233803A (en) Manufacture of anisotropic oxide permanent magnet
JPH01117002A (en) Manufacture of oxide permanent magnet
JP2001052943A (en) Manufacture of w-type sr ferrite magnet
JP2005170763A (en) Mn/Zn FERRITE, ITS MANUFACTURING METHOD AND ELECTRONIC PART
JP2023014477A (en) Ferrite powder for bond magnet and method for manufacturing the same
JP2023132421A (en) Method for manufacturing ferrite sintered magnet
JPS601820A (en) Manufacture of cylindrical permanent magnet