TWI686356B - Method of fabricating modified ferrite magnetic powder and ferrite magnet - Google Patents
Method of fabricating modified ferrite magnetic powder and ferrite magnet Download PDFInfo
- Publication number
- TWI686356B TWI686356B TW108116228A TW108116228A TWI686356B TW I686356 B TWI686356 B TW I686356B TW 108116228 A TW108116228 A TW 108116228A TW 108116228 A TW108116228 A TW 108116228A TW I686356 B TWI686356 B TW I686356B
- Authority
- TW
- Taiwan
- Prior art keywords
- magnetic powder
- ferrite magnetic
- weight
- modified ferrite
- modified
- Prior art date
Links
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 113
- 239000006247 magnetic powder Substances 0.000 title claims abstract description 77
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 50
- 239000002245 particle Substances 0.000 claims abstract description 48
- 239000000203 mixture Substances 0.000 claims abstract description 47
- 238000000227 grinding Methods 0.000 claims abstract description 26
- 238000010298 pulverizing process Methods 0.000 claims abstract description 18
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000001354 calcination Methods 0.000 claims abstract description 14
- 239000011324 bead Substances 0.000 claims abstract description 13
- 239000000843 powder Substances 0.000 claims abstract description 9
- 238000001238 wet grinding Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 42
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 38
- 238000000465 moulding Methods 0.000 claims description 30
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 claims description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 20
- 238000005245 sintering Methods 0.000 claims description 20
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 19
- 239000000654 additive Substances 0.000 claims description 16
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 16
- 230000000996 additive effect Effects 0.000 claims description 15
- 210000001161 mammalian embryo Anatomy 0.000 claims description 14
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052810 boron oxide Inorganic materials 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 150000001869 cobalt compounds Chemical class 0.000 claims description 6
- 150000003438 strontium compounds Chemical class 0.000 claims description 5
- 150000002601 lanthanoid compounds Chemical class 0.000 claims description 4
- 239000011802 pulverized particle Substances 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 abstract 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 14
- 239000010419 fine particle Substances 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 230000001627 detrimental effect Effects 0.000 description 4
- 238000002203 pretreatment Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 229910000018 strontium carbonate Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(2+);cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Landscapes
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
本發明係關於一種磁粉與磁石的製造方法,特別是關於一種改質鐵氧體磁粉的製造方法及改質鐵氧體磁石的製造方法。The invention relates to a method for manufacturing magnetic powder and magnet, in particular to a method for manufacturing modified ferrite magnetic powder and a method for manufacturing modified ferrite magnetic powder.
近年來,隨著電子零部件的小型化、輕量化以及高性能化,對於由氧化物構成的永磁鐵氧體磁體,也不斷要求具有較高的磁氣特性。作為永磁鐵氧體磁體的磁氣特性之指標一般以剩磁(B r)以及矯頑磁力( iH c)作為指標。一直以來,為了達到高剩磁與高矯頑磁力的特性,永磁鐵氧體磁體中的元素成份組成之探討一直在進行著。 In recent years, with the miniaturization, weight reduction, and high performance of electronic components, permanent magnet ferrite magnets composed of oxides have also been required to have high magnetic characteristics. As an index of the magnetic characteristics of the permanent ferrite magnet, the residual magnetization (B r ) and the coercive magnetic force ( i H c ) are generally used as indexes. In order to achieve the characteristics of high remanence and high coercive force, the composition of elemental components in permanent magnet ferrite magnets has been under discussion.
另外,永磁鐵氧體磁體除了具有高剩磁與高矯頑磁力之外,矩形度(Sauareness ratio)也要盡可能的高(矩形度為:在90%的B r的時候,其磁場值(H k)相對於 iH c之比例。即,如果H k/ iH c高的話,則由外部磁場和溫度變化所引起的退磁(Demagnetization)就會比較小,也代表磁體本身的磁場配向度較高,因此能夠得到更穩定的磁氣特性。除此之外,另一個永磁鐵氧體磁體生產上的指標則是需達到減少磁體於磁場成型後之生胚產生裂紋或是燒結製程中磁體出現缺陷機率,以進一步提高永磁鐵氧體磁體量產之良率。然而,現有的永磁鐵氧體磁體的製造方法並無法同時達成上述對於磁氣性質與量產良率的要求。 In addition, in addition to the high remanence and high coercive force of permanent ferrite magnets, the squareness (Sauareness ratio) should also be as high as possible (squareness: when 90% of B r , its magnetic field value ( H k ) relative to i H c . That is, if H k / i H c is high, the demagnetization caused by the external magnetic field and temperature changes will be relatively small, which also represents the magnetic field alignment of the magnet itself Higher, so you can get more stable magnetic characteristics. In addition, another indicator for the production of permanent ferrite magnets is to reduce the occurrence of cracks in the embryo of the magnet after the magnetic field is formed or the magnet during the sintering process. The probability of defects occurs to further improve the yield of permanent ferrite magnets. However, the existing manufacturing methods of permanent ferrite magnets cannot meet the above requirements for magnetic properties and mass production yield.
故,有必要提供一種改質鐵氧體磁粉及磁石的製造方法,以解決習用技術所存在的問題。Therefore, it is necessary to provide a method for manufacturing modified ferrite magnetic powder and magnets to solve the problems existing in conventional technology.
本發明之一目的在於提供一種鐵氧體磁粉及磁石的製造方法,其係利用特定的粗粉碎步驟與細粉碎步驟的搭配,以去除或減少粒徑大於0且小於等於0.05微米之間的細微顆粒,以避免或減少鐵氧體磁石中不利於磁特性的非磁性相的生成,並且可增加鐵氧體磁石的良率,進而減少生產成本。An object of the present invention is to provide a method for manufacturing ferrite magnetic powder and magnet, which utilizes a combination of specific coarse pulverization steps and fine pulverization steps to remove or reduce fine particles with a particle size greater than 0 and less than or equal to 0.05 microns Particles to avoid or reduce the formation of non-magnetic phases in the ferrite magnet that are not conducive to magnetic properties, and can increase the yield of the ferrite magnet, thereby reducing production costs.
為達上述之目的,本發明提供一種改質鐵氧體磁粉的製造方法,其包含步驟:提供一混合物,其中該混合物包含一氧化鐵粉及一鍶化物;進行一煅燒步驟,對該混合物以1260至1300℃之間的溫度持溫達50至70分鐘之間,以形成一前處理物;對該前處理物進行一粗粉碎步驟,以形成多個粗粉碎顆粒,其中以使該些粗粉碎顆粒的一平均粒徑介於1.5至2.0微米之間;以及對該些粗粉碎顆粒進行一細粉碎步驟,以獲得該改質鐵氧體磁粉,該改質鐵氧體磁粉的一平均粒徑介於0.65至0.75微米之間,其中該細粉碎步驟包含以具有0.25至0.33英吋之間的一直徑的多個研磨珠進行達17至20小時之間的一濕式研磨步驟。To achieve the above object, the present invention provides a method for manufacturing modified ferrite magnetic powder, which includes the steps of: providing a mixture, wherein the mixture includes iron oxide powder and a strontium compound; performing a calcination step, the mixture is A temperature between 1260 and 1300°C is maintained between 50 and 70 minutes to form a pre-treated product; a rough crushing step is performed on the pre-treated product to form a plurality of coarsely crushed particles, wherein An average particle size of the pulverized particles is between 1.5 and 2.0 microns; and a fine pulverization step is performed on the coarsely pulverized particles to obtain the modified ferrite magnetic powder, and the average particle size of the modified ferrite magnetic powder The diameter is between 0.65 and 0.75 microns, wherein the fine pulverization step includes a wet grinding step with a plurality of grinding beads having a diameter between 0.25 and 0.33 inches for between 17 and 20 hours.
在本發明之一實施例中,該前處理物的一分子式係SrO.nFe 2O 3,其中n介於5至6之間。 In one embodiment of the present invention, a molecular formula of the pretreatment system is SrO. nFe 2 O 3 , where n is between 5 and 6.
在本發明之一實施例中,該混合物更包含一鈷化物及一鑭化物中的至少一種。In an embodiment of the invention, the mixture further comprises at least one of a cobalt compound and a lanthanide compound.
在本發明之一實施例中,該前處理物的一分子式係(Sr 2+ 1-xLa 3+ x)O.n(Fe 3+ 12-yCo 2+ y) 2O 3,其中n介於7至9之間,以及x=2ny。 In one embodiment of the present invention, a molecular formula system of the pretreatment (Sr 2+ 1-x La 3+ x ) O. n(Fe 3+ 12-y Co 2+ y ) 2 O 3 , where n is between 7 and 9, and x=2ny.
在本發明之一實施例中,在提供該混合物的步驟中,更包含:提供一添加劑,其中該添加劑包含碳酸鈣、氧化矽、五氧化二磷以及氧化硼中的至少一種。In an embodiment of the present invention, in the step of providing the mixture, the method further includes: providing an additive, wherein the additive includes at least one of calcium carbonate, silicon oxide, phosphorus pentoxide, and boron oxide.
在本發明之一實施例中,該添加劑包含碳酸鈣及氧化矽,並且以該混合物的一總重為100重量份計,碳酸鈣係介於0.5至1.5重量份之間;以及氧化矽係介於0.2至0.8重量份之間。In one embodiment of the present invention, the additive includes calcium carbonate and silicon oxide, and based on a total weight of the mixture of 100 parts by weight, the calcium carbonate is between 0.5 and 1.5 parts by weight; Between 0.2 and 0.8 parts by weight.
在本發明之一實施例中,該添加劑包含碳酸鈣、氧化矽、五氧化二磷以及氧化硼,並且以該混合物的一總重為100重量份計,碳酸鈣係介於0.5至1.5重量份之間;氧化矽係介於0.2至0.8重量份之間;五氧化二磷係大於零且小於等於0.1重量份;以及氧化硼係大於零且小於等於1重量份。In one embodiment of the present invention, the additive includes calcium carbonate, silicon oxide, phosphorus pentoxide, and boron oxide, and based on the total weight of the mixture as 100 parts by weight, the calcium carbonate is between 0.5 and 1.5 parts by weight Between; the silicon oxide system is between 0.2 and 0.8 parts by weight; the phosphorus pentoxide system is greater than zero and less than or equal to 0.1 parts by weight; and the boron oxide system is greater than zero and less than or equal to 1 part by weight.
在本發明之一實施例中,其中在提供該混合物的步驟之後以及進行該煅燒步驟之前更包含對該混合物進行一脫水步驟,其中經該脫水步驟處理後的該混合物的含水率係介於18%至24%之間。In an embodiment of the present invention, after the step of providing the mixture and before the calcination step, a dehydration step is further included, wherein the moisture content of the mixture after the dehydration step is 18 % To 24%.
在本發明之一實施例中,該煅燒步驟的一氣氛係包含5%的氧氣。In one embodiment of the present invention, an atmosphere of the calcination step contains 5% oxygen.
為達上述之目的,本發明提供一種改質鐵氧體磁石的製造方法,其包含步驟:提供一改質鐵氧體磁粉,其中該改質鐵氧體磁粉係通過如上任一實施例所述之改質鐵氧體磁粉的製造方法所製成;對該鐵氧體磁粉進行一磁場配向成型步驟,以形成一胚體,其中該磁場配向成型步驟的一配向磁場強度係介於1.3至1.7特斯拉之間,一成型壓力係介於3至4噸/平方公分之間,以及一成型時間係介於90至110秒之間;以及進行一燒結步驟,對該胚體以介於1220至1240℃之間的溫度持續燒結達50至70分鐘之間,以製得一鐵氧體磁石。To achieve the above objective, the present invention provides a method for manufacturing a modified ferrite magnet, which includes the steps of: providing a modified ferrite magnetic powder, wherein the modified ferrite magnetic powder is passed through any of the above embodiments The modified ferrite magnetic powder is manufactured by a method of performing a magnetic field alignment molding step on the ferrite magnetic powder to form a embryo body, wherein an alignment magnetic field strength of the magnetic field alignment molding step is between 1.3 and 1.7 Between Tesla, a molding pressure is between 3 and 4 tons/cm 2, and a molding time is between 90 and 110 seconds; and a sintering step is performed to the embryo body between 1220 A temperature between 1240°C and continuous sintering for 50 to 70 minutes to produce a ferrite magnet.
為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明較佳實施例,並配合所附圖式,作詳細說明如下。再者,本發明所提到的方向用語,例如上、下、頂、底、前、後、左、右、內、外、側面、周圍、中央、水平、橫向、垂直、縱向、軸向、徑向、最上層或最下層等,僅是參考附加圖式的方向。因此,使用的方向用語是用以說明及理解本發明,而非用以限制本發明。In order to make the above and other objects, features, and advantages of the present invention more comprehensible, the preferred embodiments of the present invention will be specifically described below in conjunction with the accompanying drawings, which will be described in detail below. Furthermore, the terms of direction mentioned in the present invention, such as up, down, top, bottom, front, back, left, right, inner, outer, side, surrounding, center, horizontal, horizontal, vertical, longitudinal, axial, The radial direction, the uppermost layer or the lowermost layer, etc., are only the directions referring to the attached drawings. Therefore, the directional terminology is used to illustrate and understand the present invention, not to limit the present invention.
請參照第1圖所示,本發明一實施例之改質鐵氧體磁粉的製造方法10主要包含下列步驟11至14:提供一混合物,其中該混合物包含一氧化鐵粉及一鍶化物(步驟11);進行一煅燒步驟,對該混合物以1260至1300℃之間的溫度持溫達50至70分鐘之間,以形成一前處理物(步驟12);對該前處理物進行一粗粉碎步驟,以形成多個粗粉碎顆粒,其中以使該些粗粉碎顆粒的一平均粒徑介於1.5至2.0微米之間(步驟13);以及對該些粗粉碎顆粒進行一細粉碎步驟,以獲得該改質鐵氧體磁粉,該改質鐵氧體磁粉的一平均粒徑介於0.65至0.75微米之間,其中該細粉碎步驟包含以具有0.25至0.33英吋之間的一直徑的多個研磨珠進行達17至20小時之間的一濕式研磨步驟(步驟14)。本發明將於下文逐一詳細說明實施例之上述各步驟的實施細節及其原理。Referring to FIG. 1, a
本發明一實施例之改質鐵氧體磁粉的製造方法10首先係步驟11:提供一混合物,其中該混合物包含一氧化鐵粉及一鍶化物。在本步驟11中,該氧化鐵粉例如可以是一市售產品,亦可以是一鋼鐵製程中所產生的副產品,例如鋼鐵在進行熱加工時需將鐵表面所生成的鐵銹去除,而該鐵銹可作為該氧化鐵粉的來源。在一實施例中,該鍶化物例如可包含碳酸鍶。值得一提的是,所提供的該混合物主要用於生成鍶系鐵氧體磁粉。The
在一實施例中,在提供該混合物的步驟11中,還可提供一添加劑,其中該添加劑包含碳酸鈣(CaCO 3)、氧化矽(SiO 2)、五氧化二磷(P 2O 5)以及氧化硼(B 2O 3)中的至少一種。以下說明各種添加劑的效果,其中所涉及的重量百分比皆是以該混合物的總重為100重量份計為基准。在一實施例中,該添加劑可在粉碎步驟中加入至球磨機中。 In an embodiment, in step 11 of providing the mixture, an additive may be provided, wherein the additive includes calcium carbonate (CaCO 3 ), silicon oxide (SiO 2 ), phosphorus pentoxide (P 2 O 5 ), and At least one of boron oxide (B 2 O 3 ). The effects of various additives are described below. The weight percentages involved are based on the total weight of the mixture being 100 parts by weight. In one embodiment, the additive may be added to the ball mill during the crushing step.
碳酸鈣是一種用於促進晶粒成長的元素,於本發明中碳酸鈣之添加量例如介於0.5至1.5重量份之間,當碳酸鈣添加量過多的時候(例如大於1.5重量份),後續形成鐵氧體磁石所進行的燒結步驟中,會發生過量的晶粒增長,而導致矯頑磁力的降低。另一方面,當加入的碳酸鈣之添加量過少的時候(例如小於0.5重量份),晶粒增長的現象會被過度抑制,進而導致與晶粒增長同時發生的取向的提高不足,最終導致剩磁(B r)低落。 Calcium carbonate is an element used to promote grain growth. In the present invention, the amount of calcium carbonate added is, for example, between 0.5 and 1.5 parts by weight. When the amount of calcium carbonate added is too large (eg, more than 1.5 parts by weight), the subsequent During the sintering step performed to form a ferrite magnet, excessive grain growth occurs, resulting in a reduction in coercive force. On the other hand, when the amount of calcium carbonate added is too small (for example, less than 0.5 parts by weight), the phenomenon of grain growth will be excessively suppressed, which in turn leads to insufficient increase in the orientation that occurs simultaneously with grain growth, which ultimately leads to residual Magnetic (B r ) is low.
氧化矽之添加則是用來消除燒結時的晶粒增長,本發明中之氧化矽的添加量例如介於0.2至0.8重量份之間。當加入的氧化矽過少時(例如小於0.2重量份),在燒結階段會發生過量的晶粒增長,而導致矯頑磁力降低。當加入的氧化矽過多時(例如大於0.8重量份),在燒結階段之晶粒增長會過度消除,而導致與晶粒增長同時發生的取向之改進不足,最終而導致剩磁(B r)的下降。 The addition of silicon oxide is used to eliminate grain growth during sintering. The amount of silicon oxide added in the present invention is, for example, between 0.2 and 0.8 parts by weight. When too little silicon oxide is added (for example, less than 0.2 parts by weight), excessive grain growth occurs during the sintering stage, resulting in a decrease in coercive force. When too much silicon oxide is added (for example, greater than 0.8 parts by weight), the grain growth in the sintering stage will be excessively eliminated, resulting in insufficient improvement of the orientation that occurs concurrently with the grain growth, and ultimately resulting in residual magnetization (B r ) decline.
五氧化二磷之添加可提高矩形度(H k/ iH c)、剩磁(B r)及矯頑磁力( iH c)。本發明中之五氧化二磷的添加量例如可以是大於零且小於等於0.1重量份。若是未介於前述範圍,則無法提高前述的磁力性質。 The addition of phosphorus pentoxide can increase the squareness (H k / i H c ), remanence (B r ) and coercive force ( i H c ). The added amount of phosphorus pentoxide in the present invention may be, for example, greater than zero and less than or equal to 0.1 parts by weight. If it is not within the aforementioned range, the aforementioned magnetic properties cannot be improved.
氧化硼之添加是為了可降低在製得由永磁鐵氧體磁體構成的燒結磁體時之燒結溫度且同時能提高剩磁(B r)、矯頑磁力( iH c),本發明中之氧化硼添加量例如是大於零且小於等於1重量份。若是未介於前述範圍,則無法提高前述的磁力性質。 The addition of boron oxide is to reduce the sintering temperature when producing a sintered magnet composed of permanent ferrite magnets and at the same time increase the residual magnetization (B r ) and the coercive force ( i H c ). Oxidation in the present invention The added amount of boron is, for example, greater than zero and less than or equal to 1 part by weight. If it is not within the aforementioned range, the aforementioned magnetic properties cannot be improved.
在一實施例中,該添加劑包含碳酸鈣及氧化矽,並且以該混合物的一總重為100重量份計,碳酸鈣係介於0.5至1.5重量份之間;以及氧化矽係介於0.2至0.8重量份之間。在另一實施例中,該添加劑包含碳酸鈣、氧化矽、五氧化二磷以及氧化硼,並且以該混合物的一總重為100重量份計,碳酸鈣係介於0.5至1.5重量份之間;氧化矽係介於0.2至0.8重量份之間;五氧化二磷係大於零且小於等於0.1重量份;以及氧化硼係大於零且小於等於1重量份。In one embodiment, the additive includes calcium carbonate and silica, and based on a total weight of the mixture of 100 parts by weight, the calcium carbonate is between 0.5 and 1.5 parts by weight; and the silica is 0.2 to 0.5 parts by weight. Between 0.8 parts by weight. In another embodiment, the additive includes calcium carbonate, silicon oxide, phosphorus pentoxide, and boron oxide, and based on a total weight of the mixture of 100 parts by weight, the calcium carbonate is between 0.5 and 1.5 parts by weight ; Silicon oxide is between 0.2 and 0.8 parts by weight; Phosphorus pentoxide is greater than zero and less than or equal to 0.1 parts by weight; and Boron oxide is greater than zero and less than or equal to 1 part by weight.
本發明一實施例之改質鐵氧體磁粉的製造方法10接著係步驟12:進行一煅燒步驟,對該混合物以1260至1300℃之間的溫度持溫達50至70分鐘之間,以形成一前處理物。在本步驟12中,該煅燒步驟主要用於使該混合物在高溫反應,進行使該前處理物符合鍶系鐵氧體磁粉的分子式。在一實施例中,該前處理物的一分子式係SrO.nFe
2O
3,其中n介於5至6之間。在另一實施例中,進行該煅燒步驟處理時的一氣氛係包含5%的氧氣。
The
在一實施例中,該混合物還可包含一鈷化物及一鑭化物中的至少一種。具體而言,鈷化物中的鈷元素或是該鑭化物中的鑭元素,其皆有助於改質鐵氧體磁粉所製成的永磁鐵氧體磁石得到更高的剩磁(B r)、矯頑磁力( iH c)和矩形度(H k/ iH c)。在一範例中,該鈷化物例如是氧化鈷(Co 3O 4)。在另一範例中,該鑭化物例如是氧化鑭(La 2O 3)。在本實施例中,該混合物經煅燒步驟後所形成的該前處理物的一分子式係(Sr 2+ 1-xLa 3+ x)O.n(Fe 3+ 12-yCo 2+ y) 2O 3,其中n介於7至9之間,以及x=2ny,其中,x=2ny是La和Co元素分別取代Sr與Fe時所需滿足的電中性條件。在一具體範例中,x例如可介於0.15與0.16之間。在一實施例中,鈷化物可在後述的粉碎步驟中加入。 In one embodiment, the mixture may further include at least one of a cobalt compound and a lanthanide compound. Specifically, the cobalt element in the cobalt compound or the lanthanum element in the lanthanide compound can help the permanent ferrite magnet made of the modified ferrite magnetic powder to obtain a higher remanence (B r ) , Coercive force ( i H c ) and squareness (H k / i H c ). In one example, the cobalt compound is, for example, cobalt oxide (Co 3 O 4 ). In another example, the lanthanide is, for example, lanthanum oxide (La 2 O 3 ). In this embodiment, a molecular formula system (Sr 2+ 1-x La 3+ x ) O of the pretreatment formed after the calcination step of the mixture. n(Fe 3+ 12-y Co 2+ y ) 2 O 3 , where n is between 7 and 9, and x=2ny, where x=2ny is required when the elements La and Co replace Sr and Fe, respectively Satisfied electrical neutrality conditions. In a specific example, x may be between 0.15 and 0.16, for example. In one embodiment, the cobalt compound can be added in the pulverization step described later.
在一實施例中,在提供該混合物的步驟11之後以及進行該煅燒步驟12之前更包含對該混合物進行一脫水步驟,其中經該脫水步驟處理後的該混合物的含水率係介於18%至24%之間。In one embodiment, after step 11 of providing the mixture and before performing the
本發明一實施例之改質鐵氧體磁粉的製造方法10接著係步驟13:對該前處理物進行一粗粉碎步驟,以形成多個粗粉碎顆粒,其中以使該些粗粉碎顆粒的一平均粒徑介於1.5至2.0微米之間。在本步驟13中,相較於習知技術,該前處理物被粉碎到較小的平均粒徑。例如,習知技術的粗粉碎步驟是將該前處理物粉碎至平均粒徑達2.6微米左右,而本發明則是粉碎至平均粒徑介於1.5至2.0微米之間,此將有助於減少或去除在後續細粉碎步驟14中所產生的粒徑大於0且小於等於0.05微米之間的細微顆粒。詳細理由將在後面段落進行描述。The
本發明一實施例之改質鐵氧體磁粉的製造方法10最後係步驟14:對該些粗粉碎顆粒進行一細粉碎步驟,以獲得該改質鐵氧體磁粉,該改質鐵氧體磁粉的一平均粒徑介於0.65至0.75微米之間,其中該細粉碎步驟包含以具有0.25至0.33英吋之間的一直徑的多個研磨珠進行達17至20小時之間的一濕式研磨步驟。在本步驟14中,相較於習知技術,可以使用尺寸較大的研磨珠對該些粗粉碎顆粒進行細粉碎步驟,並且可降低細粉碎步驟的所需時間,進而去除或減少在細粉碎步驟14中所產生的粒徑大於0且小於等於0.05微米之間的細微顆粒。The
具體而言,在習知技術中,所使用的是尺寸較小(例如5/32英吋(約0.156英吋)的研磨珠來進行細粉碎處理。在研磨珠的尺寸較小的情況下,該些粗粉碎顆粒容易被研磨出粒徑大於0且小於等於0.05微米之間的細微顆粒。此外,又由於習知技術是從平均尺寸較大粗粉碎顆粒開始進行研磨,需要更長的細粉碎時間(例如約25小時以上),所以又會使細微顆粒的數量更為增加。Specifically, in the conventional technology, grinding beads with a small size (for example, 5/32 inches (about 0.156 inches)) are used for fine pulverization treatment. In the case where the size of the grinding beads is small, These coarsely crushed particles are easily ground into fine particles with a particle size greater than 0 and less than or equal to 0.05 microns. In addition, because the conventional technology starts grinding from coarsely crushed particles with a larger average size, longer fine crushing is required Time (for example, about 25 hours or more), so it will increase the number of fine particles.
相反的,本發明實施例之改質鐵氧體磁粉的製造方法不僅使用尺寸較大(例如0.25至0.33英吋)的研磨珠來進行細粉碎處理之外,更由於使從平均粒徑介於1.5至2.0微米的粗粉碎顆粒開始進行細粉碎步驟,所以使用較短的細粉碎時間(例如約17至20小時以上),所以粒徑大於0且小於等於0.05微米之間的細微顆粒的數量更為減少。On the contrary, the method for manufacturing modified ferrite magnetic powder according to the embodiment of the present invention not only uses grinding beads with a larger size (for example, 0.25 to 0.33 inches) for fine pulverization, but also because the average particle size is between The coarsely crushed particles of 1.5 to 2.0 microns start the fine crushing step, so a shorter fine crushing time (for example, about 17 to 20 hours or more) is used, so the number of fine particles with a particle size greater than 0 and less than or equal to 0.05 microns is more To reduce.
這邊要提到的是,一般而言,該改質鐵氧體磁粉的平均粒徑越小,磁氣特性越佳。但是,該改質鐵氧體磁粉中粒徑過小的部分(即上述的細微顆粒)反而有害於磁氣特性與成型良率。具體而言,粒徑過小的部分的該改質鐵氧體磁粉容易在後續燒結步驟中產生非磁性相,進而有害於磁氣特性。另一方面,在後續磁場配向成型步驟中通常會使用一模具,以使該改質鐵氧體磁粉形成預定的形狀。該模具上通常會開設有多個小孔洞,以使該改質鐵氧體磁粉中的水份在加壓時流出。然而,該改質鐵氧體磁粉中粒徑過小的部分會在加壓過程中阻塞該些小孔洞,導致需以更大的壓力才能完成磁場配向成型步驟,導致胚體中形成較大的應力進而產生裂紋或是於燒結後產生缺陷。因此,通過上述特定參數的粗粉碎步驟與細粉碎步驟,進而減少或避免上述的問題。It should be mentioned here that, generally speaking, the smaller the average particle size of the modified ferrite magnetic powder, the better the magnetic characteristics. However, the portion of the modified ferrite magnetic powder having an excessively small particle size (that is, the above-mentioned fine particles) is detrimental to the magnetic properties and molding yield. Specifically, the modified ferrite magnetic powder with a particle size that is too small is likely to generate a non-magnetic phase in the subsequent sintering step, which is detrimental to the magnetic properties. On the other hand, in the subsequent magnetic field alignment molding step, a mold is usually used to form the modified ferrite magnetic powder into a predetermined shape. The mold is usually provided with a plurality of small holes, so that the water in the modified ferrite magnetic powder flows out when pressurized. However, the excessively small part of the modified ferrite magnetic powder will block the small holes during the pressurization process, resulting in a greater pressure to complete the magnetic field alignment molding step, resulting in a larger stress in the embryo body. Cracks or defects after sintering. Therefore, the coarse grinding step and the fine grinding step with the above specific parameters can further reduce or avoid the above-mentioned problems.
本發明另一實施例提出一種改質鐵氧體磁石的製造方法20,其包含步驟21至23:提供一改質鐵氧體磁粉,其中該改質鐵氧體磁粉係如上所述任一實施例的改質鐵氧體磁粉的製造方法所製成(步驟21);對該改質鐵氧體磁粉進行一磁場配向成型步驟,以形成一胚體,其中該磁場配向成型步驟的一配向磁場強度係介於1.3至1.7特斯拉之間,一成型壓力係介於3至4噸/平方公分之間,以及一成型時間係介於90至110秒之間(步驟22);以及進行一燒結步驟,對該胚體以介於1220至1240℃之間的溫度持續燒結達50至70分鐘之間,以製得該鐵氧體磁石(步驟23)。Another embodiment of the present invention provides a
本發明將於下文逐一詳細說明實施例之上述各步驟的實施細節及其原理。In the present invention, the implementation details and principles of the above steps of the embodiment will be described in detail one by one below.
本發明一實施例之改質鐵氧體磁石的製造方法20首先係步驟21:提供一改質鐵氧體磁粉,其中該改質鐵氧體磁粉係如上所述任一實施例的改質鐵氧體磁粉的製造方法所製成。在本步驟21中,通過上述的改質鐵氧體磁粉的製造方法10製成該改質鐵氧體磁粉。A
本發明一實施例之改質鐵氧體磁石的製造方法20接著係步驟22:對該改質鐵氧體磁粉進行一磁場配向成型步驟,以形成一胚體,其中該磁場配向成型步驟的一配向磁場強度係介於1.3至1.7特斯拉之間,一成型壓力係介於3至4噸/平方公分之間,以及一成型時間係介於90至110秒之間。在本步驟22中,主要是提供成型壓力與配向磁場,以使該改質鐵氧體磁粉成型為預定的形狀並且具有預定的磁場方向。這邊要提到的是,由於使用改質鐵氧體磁粉的製造方法10製成的該改質鐵氧體磁粉,故可使用較低的成型時間即可成型為胚體,並且具有較高的良率。A
本發明一實施例之改質鐵氧體磁石的製造方法20最後係步驟23:進行一燒結步驟,對該胚體以介於1220至1240℃之間的溫度持續燒結達50至70分鐘之間,以製得該鐵氧體磁石。在本步驟23中,主要是通過燒結步驟以使該胚體中的水份去除以製得一鐵氧體磁石。The
這邊要提到的是,由於本發明實施例之改質鐵氧體磁石的製造方法20使用本發明實施例之改質鐵氧體磁粉的製造方法所製得的改質鐵氧體磁粉,其中該改質鐵氧體磁粉中的粒徑過小的部分較少。因此,在燒結步驟中不易產生非磁性相,並且在磁場配向成型步驟中也不易產生阻塞的問題,故可提高磁氣性質以及良率。It should be mentioned here that, since the
這邊要提到的是,一般而言,該改質鐵氧體磁粉的一平均粒徑越小,磁氣特性越佳。但是,該改質鐵氧體磁粉中粒徑過小的部分(即上述的細微顆粒)反而有害於磁氣特性與成型良率。具體而言,粒徑過小的部分的該改質鐵氧體磁粉容易在後續燒結步驟中產生非磁性相,進而有害於磁氣特性。另一方面,在後續磁場配向成型步驟中通常會使用一模具,以使該改質鐵氧體磁粉形成預定的形狀。該模具上通常會開設有多個小孔洞,以使該改質鐵氧體磁粉中的水份在加壓時流出。然而,該改質鐵氧體磁粉中粒徑過小的部分會在加壓過程中阻塞該些小孔洞,導致需以更大的壓力才能完成磁場配向成型步驟,導致胚體中形成較大的應力進而產生裂紋或是於燒結後產生缺陷。因此,通過上述特定參數的粗粉碎步驟與細粉碎步驟,進而減少或避免上述的問題。It should be mentioned here that, generally speaking, the smaller the average particle size of the modified ferrite magnetic powder, the better the magnetic characteristics. However, the portion of the modified ferrite magnetic powder having an excessively small particle size (that is, the above-mentioned fine particles) is detrimental to the magnetic properties and molding yield. Specifically, the modified ferrite magnetic powder with a particle size that is too small is likely to generate a non-magnetic phase in the subsequent sintering step, which is detrimental to the magnetic properties. On the other hand, in the subsequent magnetic field alignment molding step, a mold is usually used to form the modified ferrite magnetic powder into a predetermined shape. The mold is usually provided with a plurality of small holes, so that the water in the modified ferrite magnetic powder flows out when pressurized. However, the excessively small part of the modified ferrite magnetic powder will block the small holes during the pressurization process, resulting in a greater pressure to complete the magnetic field alignment molding step, resulting in a larger stress in the embryo body. Cracks or defects after sintering. Therefore, the coarse grinding step and the fine grinding step with the above specific parameters can further reduce or avoid the above-mentioned problems.
以下舉出數個實施例與比較例,以說明本發明實施例之改質鐵氧體磁粉的製造方法及本發明實施例之改質鐵氧體磁石的製造方法所製得的鐵氧體磁石確實具有上述的效果。Several examples and comparative examples are given below to illustrate the method for manufacturing modified ferrite magnetic powder according to the embodiment of the invention and the method for manufacturing modified ferrite magnetic powder according to the embodiment of the invention. It does have the aforementioned effects.
實施例1Example 1
首先,將主原料氧化鐵粉(Fe 2O 3)與另一種主原料碳酸鍶(SrCO 3)以SrO·nFe 2O 3(n=5.9)之基本組成進行配料,另同時加入4.9wt%的微量添加劑La 2O 3及水進行混合後,以料球重量比為1:5的市售球磨機(Ball Mill)混磨2小時後出料得到漿料狀態的混合物,鋼球為直徑3/16英吋的無鉻軸承鋼球。接著,將上述的混合物以市售空氣壓濾機進行脫水,脫水後的混合物的含水率約21±3%。 First, the main raw material iron oxide powder (Fe 2 O 3 ) and another main raw material strontium carbonate (SrCO 3 ) are compounded with the basic composition of SrO·nFe 2 O 3 (n=5.9), while adding 4.9wt% After mixing the trace additive La 2 O 3 and water, it was mixed with a commercial ball mill (Ball Mill) with a weight ratio of 1:5 for 2 hours and then discharged to obtain a mixture in the state of slurry. The diameter of the steel ball was 3/16 Inch chrome-free bearing steel balls. Next, the above mixture was dehydrated with a commercially available air filter, and the water content of the dehydrated mixture was about 21±3%.
接著,將脫水後的混合物進行煅燒步驟。以一市售烘乾機對該混合物進行預熱,其中烘乾機之溫度為300±10 oC,持溫時間為30至40分鐘,經過烘乾後的混合物含水率小於2%。之後,將該混合物放入一市售旋窯進行煅燒以形成一前處理物,煅燒溫度為1280±20 oC,煅燒時間為1小時,且煅燒時旋窯內之氧氣含量約5%。 Next, the dehydrated mixture is subjected to a calcination step. Preheat the mixture with a commercially available dryer, where the temperature of the dryer is 300±10 o C, the holding time is 30 to 40 minutes, and the moisture content of the mixture after drying is less than 2%. Thereafter, the mixture was placed in a commercial rotary kiln calcined to form a pretreatment composition, the calcination temperature is 1280 ± 20 o C, the calcination time was one hour, and calcined to about 5% of the oxygen content in the rotary kiln.
將經過旋窯煅燒之前處理物通過與旋窯相連結的溜管送入冷卻桶中進行冷卻。在前處理物的溫度降至90 oC以下時,通過裝置有旋風收集器之風選功能的松永式球磨機(Roller Mill)進行粗粉碎步驟,以使該些粗粉碎顆粒的平均粒徑約為1.5微米之窄單峰粒徑分佈。 The processed material before being calcined by the rotary kiln is sent to a cooling barrel through a slide pipe connected to the rotary kiln for cooling. When the temperature of the pretreated product drops below 90 o C, the coarse crushing step is carried out by a Roller Mill equipped with a cyclone collector air separation function, so that the average particle size of the coarsely crushed particles is about The narrow unimodal particle size distribution of 1.5 microns.
之後,以上述的該混合物的總重為100重量份計,再加入各個組成物,包含1.5重量份的Co 3O 4、1.0重量份的CaCO 3、0.4重量份的SiO 2、0.03重量份的P 2O 5及0.05重量份的B 2O 3至球磨機中,於球磨機(Ball Mill)以料球重量比為1:12,濕式研磨17小時進一步進行細粉碎步驟,以使該改質鐵氧體磁粉的平均粒徑約為0.75微米之間,其中鋼球為直徑7/25英吋的無鉻軸承鋼球。 After that, based on the total weight of the above mixture as 100 parts by weight, each composition is added again, including 1.5 parts by weight of Co 3 O 4 , 1.0 parts by weight of CaCO 3 , 0.4 parts by weight of SiO 2 , and 0.03 parts by weight of P 2 O 5 and 0.05 parts by weight of B 2 O 3 were transferred to a ball mill, and the ball mill (Ball Mill) with a ball weight ratio of 1:12, wet grinding for 17 hours to further perform a fine grinding step to make the modified iron The average particle size of the ferrite magnetic powder is between 0.75 microns, and the steel ball is a chrome-free bearing steel ball with a diameter of 7/25 inches.
接著,進行(濕式)磁場配向成型步驟,使用市售的25噸之半自動濕式磁場成型機,對該改質鐵氧體磁粉進行20顆胚體的磁場配向成型,配向磁場強度為1.5特斯拉(Tesla),成型壓力為3.5噸/平方公分(Ton/cm 2),成型胚件尺寸為Φ26.5、厚度約13mm之圓胚。於實施例1中,經成型20顆胚體之平均所需濕式磁場成型時間為92秒,胚體之平均良率為84%。 Next, a (wet) magnetic field alignment molding step is performed, using a commercially available 25-ton semi-automatic wet magnetic field molding machine, the modified ferrite magnetic powder is subjected to magnetic field alignment molding of 20 embryos, and the alignment magnetic field strength is 1.5 For Tesla, the forming pressure is 3.5 tons/cm 2 (Ton/cm 2 ), and the size of the shaped blank is Φ26.5 and a round blank with a thickness of about 13 mm. In Example 1, the average required wet magnetic field forming time after forming 20 embryo bodies was 92 seconds, and the average yield of the embryo bodies was 84%.
最後,進行一燒結步驟,對該胚體以介於1220至1240℃之間的溫度持續燒結達60分鐘,以製得實施例1之該鐵氧體磁石。Finally, a sintering step is performed, and the green body is continuously sintered at a temperature between 1220 and 1240°C for 60 minutes to obtain the ferrite magnet of Example 1.
實施例2至5及比較例1至6Examples 2 to 5 and Comparative Examples 1 to 6
實施例2至5及比較例1至6大致上相同於實施例1,唯其不同之處在於粗粉碎顆粒的平均粒徑、添加劑配比、細粉碎時間、所使用的研磨珠尺寸與改質鐵氧體磁粉的粒徑不同,如下表一所示。Examples 2 to 5 and Comparative Examples 1 to 6 are substantially the same as Example 1, except that the difference is the average particle size of coarsely pulverized particles, additive ratio, fine pulverization time, size and modification of grinding beads used The particle size of the ferrite magnetic powder is different, as shown in Table 1 below.
表一
接著,利用市售儀器(中國計量科學研究院NIM-2000Next, use commercially available instruments (Chinese Academy of Metrological Sciences NIM-2000
接著,利用市售儀器(中國計量科學研究院NIM-2000型 B-H Loop Tracer)量測各實施例與比較例中,各自的20顆鐵氧體磁石的各種磁氣性質,並且平均值計算,列於下表二。Next, using a commercially available instrument (Chinese Academy of Metrological Sciences NIM-2000 BH Loop Tracer) to measure various magnetic properties of each of the 20 ferrite magnets in each of the Examples and Comparative Examples, and the average value is calculated. In Table 2 below.
表二
依據日本TDK FB9B,其規格中值分別為: B r=4500G; bH c=4300Oe; iH c=4500Oe;(BH) max=4.9MGOe。若是低於上述的規格中值,則表示該鐵氧體磁石未達商用標準。因此,由上表二可知,比較例2至6並未達到日本TDK FB9B規格中值的要求,而實施例1至5全部以及比較例1皆達到日本TDK FB9B規格中值的要求。 According to Japan's TDK FB9B, the median values of their specifications are: B r = 4500G; b H c = 4300Oe; i H c = 4500Oe; (BH) max = 4.9MGOe. If it is lower than the median value of the above specifications, it means that the ferrite magnet has not reached the commercial standard. Therefore, as can be seen from Table 2 above, Comparative Examples 2 to 6 did not meet the median requirement of the Japanese TDK FB9B specification, and all of Examples 1 to 5 and Comparative Example 1 met the median requirement of the Japanese TDK FB9B specification.
然而,比較例1至6的成型時間不僅高於實施例1至5之外,比較例1至6的成型良率也低於實施例1至5。就一般工業考量,成型時間需小於120秒,並且良率需達75%以上才屬合格製程。另外值得一提的是,由於粒徑大於0且小於等於0.05微米的細微顆粒係與成型時間有正相關,故可知實施例1至5中的細微顆粒的含量少於比較例1至6的細微顆粒的含量。However, the molding times of Comparative Examples 1 to 6 are not only higher than those of Examples 1 to 5, but also the molding yields of Comparative Examples 1 to 6 are lower than those of Examples 1 to 5. For general industry considerations, the molding time needs to be less than 120 seconds, and the yield must be more than 75% to be a qualified process. It is also worth mentioning that since the fine particles with a particle size greater than 0 and less than or equal to 0.05 microns are positively correlated with the molding time, it can be seen that the content of fine particles in Examples 1 to 5 is less than that of Comparative Examples 1 to 6. The content of particles.
另一方面,請參照比較例1與實施例2至5,即便在使用較少氧化鈷含量(例如1.2重量份)的組成物的前提下,本發明實施例之改質鐵氧體磁石的製造方法所製得的鐵氧體磁石的磁力性質也符合日本TDK FB9B規格中值的要求。也就是說比較例1實際上是通過加入較多的氧化鈷含量始能達成日本TDK FB9B規格中值的要求。由於鈷元素屬於貴重元素,不僅產量稀少,而且價格也高昂。因此,本發明實施例之改質鐵氧體磁石的製造方法亦可有效的降低製造成本。On the other hand, please refer to Comparative Example 1 and Examples 2 to 5, even under the premise of using a composition with a relatively low cobalt oxide content (for example, 1.2 parts by weight), the production of the modified ferrite magnet of the embodiment of the present invention The magnetic properties of the ferrite magnets produced by the method also meet the median requirements of the Japanese TDK FB9B specifications. That is to say, Comparative Example 1 can actually achieve the median requirement of the Japanese TDK FB9B specification by adding more cobalt oxide content. Because the cobalt element is a precious element, not only is the output scarce, but also the price is high. Therefore, the method for manufacturing the modified ferrite magnet according to the embodiment of the present invention can also effectively reduce the manufacturing cost.
再一方面,請參照比較例5與6。對於比較例5,其是在細粉碎步驟中使用7/25英吋的研磨珠,然而由於需將粗粉碎顆粒從2.6微米研磨至0.75微米,所以反而需要更長的時間,此舉反而產生更多的細微顆粒,故無法有效減少成型時間與提升良率。此外,對於比較例6,其是使用5/32英吋的研磨珠對1.5微米的粗粉碎顆粒進行細粉碎步驟。由於5/32英吋的研磨珠的尺寸較小,所以也會產生較多的細微顆粒,故無法有效減少成型時間與提升良率。由此可知,本發明實施例之改質鐵氧體磁粉的製造方法及改質鐵氧體磁石的製造方法中對於粗粉碎步驟與細粉碎步驟的參數需要同時具備才能達到本發明欲達成之效果。On the other hand, please refer to Comparative Examples 5 and 6. For Comparative Example 5, it uses 7/25 inch grinding beads in the fine grinding step. However, since it needs to grind the coarsely crushed particles from 2.6 microns to 0.75 microns, it takes longer time. There are many fine particles, so it can not effectively reduce the molding time and improve the yield. In addition, for Comparative Example 6, it is a fine grinding step of coarsely pulverized particles of 1.5 microns using 5/32 inch grinding beads. Due to the smaller size of the 5/32 inch grinding beads, more fine particles are also produced, so it is impossible to effectively reduce the molding time and improve the yield. It can be seen that the method for manufacturing the modified ferrite magnetic powder and the method for manufacturing the modified ferrite magnet according to the embodiments of the present invention need to have both the parameters of the coarse grinding step and the fine grinding step in order to achieve the desired effect of the present invention .
綜上所述,本發明實施例之改質鐵氧體磁石的製造方法可節省成型所需時間,並且良率皆大於75%,並且對於永磁鐵氧體磁體的剩磁、矯頑磁力、矩形度以及磁場配向度也起到顯著提升的效果。In summary, the method for manufacturing modified ferrite magnets of the embodiments of the present invention can save the time required for molding, and the yields are all greater than 75%, and the residual magnetism, coercive force, rectangular shape of permanent magnet ferrite magnets Degrees and magnetic field alignment also play a significant role in improving.
雖然本發明已以較佳實施例揭露,然其並非用以限制本發明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍內,當可作各種更動與修飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in preferred embodiments, it is not intended to limit the present invention. Anyone who is familiar with this skill can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be as defined in the scope of the attached patent application.
10:方法
11~14:步驟
20:方法
21~23:步驟
10: Method
11~14: Steps
20:
第1圖:本發明一實施例之改質鐵氧體磁粉的製造方法之流程方塊圖。 第2圖:本發明一實施例之改質鐵氧體磁石的製造方法之流程方塊圖。 Fig. 1: Flow block diagram of a method for manufacturing modified ferrite magnetic powder according to an embodiment of the invention. Fig. 2: Flow chart of a method for manufacturing a modified ferrite magnet according to an embodiment of the invention.
10:方法 10: Method
11~14:步驟 11~14: Steps
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108116228A TWI686356B (en) | 2019-05-10 | 2019-05-10 | Method of fabricating modified ferrite magnetic powder and ferrite magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108116228A TWI686356B (en) | 2019-05-10 | 2019-05-10 | Method of fabricating modified ferrite magnetic powder and ferrite magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI686356B true TWI686356B (en) | 2020-03-01 |
TW202041468A TW202041468A (en) | 2020-11-16 |
Family
ID=70767090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108116228A TWI686356B (en) | 2019-05-10 | 2019-05-10 | Method of fabricating modified ferrite magnetic powder and ferrite magnet |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI686356B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI728886B (en) * | 2020-07-30 | 2021-05-21 | 中國鋼鐵股份有限公司 | Method of evaluating moldability of ferrite magnetic powder |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI758224B (en) * | 2021-08-26 | 2022-03-11 | 國立高雄科技大學 | Method of fabricating modified ferrite magnetic powder and ferrite magnet |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102471162A (en) * | 2009-07-08 | 2012-05-23 | Tdk株式会社 | Ferrite magnetic material |
CN102898144A (en) * | 2012-09-25 | 2013-01-30 | 绵阳市东辰磁性材料有限公司 | Method for manufacturing high-performance permanent magnetic ferrites for automobile motors |
CN108585822A (en) * | 2018-07-05 | 2018-09-28 | 马鞍山高科磁性材料有限公司 | A kind of preparation method of high performance La-Co systems strontium permanent-magnet ferrite material |
-
2019
- 2019-05-10 TW TW108116228A patent/TWI686356B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102471162A (en) * | 2009-07-08 | 2012-05-23 | Tdk株式会社 | Ferrite magnetic material |
CN102898144A (en) * | 2012-09-25 | 2013-01-30 | 绵阳市东辰磁性材料有限公司 | Method for manufacturing high-performance permanent magnetic ferrites for automobile motors |
CN108585822A (en) * | 2018-07-05 | 2018-09-28 | 马鞍山高科磁性材料有限公司 | A kind of preparation method of high performance La-Co systems strontium permanent-magnet ferrite material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI728886B (en) * | 2020-07-30 | 2021-05-21 | 中國鋼鐵股份有限公司 | Method of evaluating moldability of ferrite magnetic powder |
Also Published As
Publication number | Publication date |
---|---|
TW202041468A (en) | 2020-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3364426B1 (en) | Ferrite magnetic material and ferrite sintered magnet | |
CN101844914B (en) | Magnetoplumbate-type permanent magnetic ferrite and manufacturing method thereof | |
EP3473606B1 (en) | Ferrite sintered magnet | |
TWI636016B (en) | Methods of fabricating modified iron oxide powder and fabricating ferrite magnet | |
CN112209707B (en) | Preparation method of high-performance permanent magnetic ferrite | |
TWI686356B (en) | Method of fabricating modified ferrite magnetic powder and ferrite magnet | |
CN112174654B (en) | Preparation method of high-performance permanent magnetic ferrite magnetic powder | |
CN111704452A (en) | Permanent magnetic ferrite material and preparation method thereof | |
CN111056832A (en) | Ferrite permanent magnetic material and preparation method thereof | |
TWI758224B (en) | Method of fabricating modified ferrite magnetic powder and ferrite magnet | |
CN104446418B (en) | A kind of method improving permanent magnetic ferrite residual magnetization and HCJ | |
TWI693206B (en) | Method of fabricating modified ferrite magnetic powder and method of fabricating ferrite magnet | |
CN111423226B (en) | Permanent magnetic ferrite and preparation method and application thereof | |
CN113651608A (en) | Dry-pressing permanent magnetic ferrite and preparation method and application thereof | |
Huang et al. | Preparation and magnetic properties of high performance Ca–Sr based M-type hexagonal ferrites | |
CN108585821B (en) | Solid solution structure additive, preparation method and application in preparation of ferrite permanent magnet material | |
TWI691471B (en) | Method of fabricating modified ferrite magnetic powder and ferrite magnet | |
TWI766827B (en) | Method of fabricating modified ferrite magnetic powder and ferrite magnet | |
TWI728913B (en) | Method of fabricating modified ferrite magnetic powder and method of fabricating modified ferrite magnet | |
KR102430475B1 (en) | Method for preparing ferrite sintered magnet and ferrite sintered magnet | |
TW202214526A (en) | Method of fabricating modified ferrite magnetic powder and method of fabricating modified ferrite magnet | |
CN116120049B (en) | Preparation method of calcium lanthanum cobalt ferrite magnet, calcium lanthanum cobalt ferrite magnet and application | |
CN105236950A (en) | High-performance strontium permanent magnetic ferrite preparation method | |
CN115784733B (en) | High-performance calcium lanthanum cobalt ferrite material and preparation method thereof | |
CN117383923A (en) | Calcium barium strontium permanent magnetic ferrite and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |