JPS6210385B2 - - Google Patents

Info

Publication number
JPS6210385B2
JPS6210385B2 JP1175280A JP1175280A JPS6210385B2 JP S6210385 B2 JPS6210385 B2 JP S6210385B2 JP 1175280 A JP1175280 A JP 1175280A JP 1175280 A JP1175280 A JP 1175280A JP S6210385 B2 JPS6210385 B2 JP S6210385B2
Authority
JP
Japan
Prior art keywords
modulation
circuit
signal
outputs
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1175280A
Other languages
Japanese (ja)
Other versions
JPS56109054A (en
Inventor
Tomoya Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1175280A priority Critical patent/JPS56109054A/en
Publication of JPS56109054A publication Critical patent/JPS56109054A/en
Publication of JPS6210385B2 publication Critical patent/JPS6210385B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/44Arrangements characterised by circuits or components specially adapted for broadcast
    • H04H20/46Arrangements characterised by circuits or components specially adapted for broadcast specially adapted for broadcast systems covered by groups H04H20/53-H04H20/95
    • H04H20/47Arrangements characterised by circuits or components specially adapted for broadcast specially adapted for broadcast systems covered by groups H04H20/53-H04H20/95 specially adapted for stereophonic broadcast systems
    • H04H20/48Arrangements characterised by circuits or components specially adapted for broadcast specially adapted for broadcast systems covered by groups H04H20/53-H04H20/95 specially adapted for stereophonic broadcast systems for FM stereophonic broadcast systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Stereo-Broadcasting Methods (AREA)

Description

【発明の詳細な説明】 本発明はFM変調雑音(残留FM成分)を大幅
に減少させた標準信号発生器に関するものであ
る。さらに具体的に説明すると、FMステレオ放
送用の複合ステレオ信号で変調する標準信号発生
器のFM変調雑音を、システム的に、今までの標
準信号発生器では得られないような値にまで減少
させることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a standard signal generator with significantly reduced FM modulation noise (residual FM component). More specifically, the FM modulation noise of a standard signal generator that modulates with a composite stereo signal for FM stereo broadcasting is systematically reduced to a value that cannot be obtained with conventional standard signal generators. The purpose is to

一般的なFM標準信号発生器を第1図に示す。
同図において、発振回路1で発振した高周波電圧
は緩衝増幅回路2を経て可変増幅回路3に加えら
れる。この緩衝増幅回路2は負荷変動の影響が発
振回路1に及び発振周波数の変動とならないよう
にする働きがある。可変増幅回路3を通つた高周
波電圧は電力増幅回路4に加えられて標準信号発
生器として必要な電圧にまで増幅される。電力増
幅回路4の出力は2分され、一方は減衰器5を経
て出力端子9から標準信号発生器の出力として取
出され、他方は検波器6に加えられて高周波の電
圧に比例した直流電圧となつて自動出力電圧制御
回路の検出信号となる。すなわち、上記検波器6
の直流出力電圧は直流増幅回路7に加えられる。
この直流増幅回路7には検波器6からの直流電圧
のほかに端子10を介して出力電圧設定用の直流
電圧(出力電圧設定信号)が加えられており、こ
の2つの信号の差が直流増幅回路7で増幅されて
可変増幅回路3に加えられる。可変増幅回路3は
直流増幅回路7からの直流電圧によつて高周波の
増幅度が変わる特性をもち、可変増幅回路3→電
力増幅回路4→検波器6→直流増幅回路7→可変
増幅回路3よりなる負帰環ループでもつて自動出
力電圧制御回路を構成する。この自動出力電圧制
御回路の働きによつて発振回路1の発振電圧の変
動や増幅回路の増幅度の変動等があつても、電力
増幅回路4の出力電圧は常に一定電圧に保たれ
る。また発振回路1の発振周波数を決める共振回
路の一部として可変リアクタンス回路8が組込ま
れ、この可変リアクタンス回路8にFM変調信号
ならびに19KHzパイロツト信号を加えることによ
つて、発振回路1で発振する高周波電圧にFM変
調をかけている。FM変調ON/OFFスイツチ1
1は端子12に加わるFM変調信号を可変リアク
タンス回路8に加えるか、加えないかを選択する
スイツチであり19KHzパイロツト信号ON/OFF
スイツチ13は端子14に加わる19KHzパイロツ
ト信号を可変リアクタンス回路に加えるか、加え
ないかを選択するスイツチである。
Figure 1 shows a typical FM standard signal generator.
In the figure, a high frequency voltage oscillated by an oscillation circuit 1 is applied to a variable amplifier circuit 3 via a buffer amplifier circuit 2. This buffer amplifier circuit 2 has the function of preventing the influence of load fluctuations from affecting the oscillation circuit 1 and causing fluctuations in the oscillation frequency. The high frequency voltage that has passed through the variable amplification circuit 3 is applied to the power amplification circuit 4 and amplified to a voltage required for a standard signal generator. The output of the power amplifier circuit 4 is divided into two parts, one of which is taken out from the output terminal 9 through an attenuator 5 as the output of a standard signal generator, and the other is applied to a detector 6 to generate a DC voltage proportional to the high frequency voltage. This becomes the detection signal for the automatic output voltage control circuit. That is, the detector 6
The DC output voltage is applied to the DC amplifier circuit 7.
In addition to the DC voltage from the detector 6, a DC voltage for setting the output voltage (output voltage setting signal) is applied to the DC amplifier circuit 7 via a terminal 10, and the difference between these two signals is the DC voltage from the detector 6. The signal is amplified by circuit 7 and applied to variable amplification circuit 3. The variable amplifier circuit 3 has a characteristic that the degree of amplification of high frequencies changes depending on the DC voltage from the DC amplifier circuit 7, and from the variable amplifier circuit 3 → power amplifier circuit 4 → detector 6 → DC amplifier circuit 7 → variable amplifier circuit 3 An automatic output voltage control circuit is constructed with a negative feedback loop. Due to the function of this automatic output voltage control circuit, the output voltage of the power amplifier circuit 4 is always maintained at a constant voltage even if there are fluctuations in the oscillation voltage of the oscillation circuit 1 or fluctuations in the amplification degree of the amplifier circuit. A variable reactance circuit 8 is incorporated as a part of the resonant circuit that determines the oscillation frequency of the oscillation circuit 1, and by adding an FM modulation signal and a 19KHz pilot signal to the variable reactance circuit 8, the high frequency oscillation in the oscillation circuit 1 can be adjusted. FM modulation is applied to the voltage. FM modulation ON/OFF switch 1
1 is a switch that selects whether or not to apply the FM modulation signal applied to the terminal 12 to the variable reactance circuit 8, and is a 19KHz pilot signal ON/OFF switch.
Switch 13 is a switch for selecting whether or not to apply the 19KHz pilot signal applied to terminal 14 to the variable reactance circuit.

このような標準信号発生器を使つてFMステレ
オ受信機のS/Nを測定する場合の手順を次に説
明する。測定法としてIHF規格を例にとり、ま
ず、モノラルのS/N測定について説明する。
今、スイツチ13をOFFの状態に、スイツチ1
1をONの状態にし、FM変調信号を1KHzのサイ
ン波として標準信号発生器に1KHzの変調信号で
75KHz偏移のFM変調をかける(モノラルの場合
の標準変調)。このときの被FM変調波(標準信
号発生器の出力)をFM受信機で受信し、1KHzの
信号がFM受信機によつて決つた標準出力となる
ようにFM受信機のボリウムを調整する。次に標
準信号発生器のFM変調ON/OFFスイツチを
「OFF」にして、標準信号発生器からは搬送波だ
けが出ている状態にしたときのFM受信機の出力
電圧(雑音)を測定する。そしてこの雑音と最初
の標準出力との比を求めてS/Nとする。
The following describes the procedure for measuring the S/N of an FM stereo receiver using such a standard signal generator. Using the IHF standard as an example of a measurement method, monaural S/N measurement will first be explained.
Now, switch 13 is in the OFF state, and switch 1 is in the OFF state.
1 to the ON state, and send the FM modulation signal as a 1KHz sine wave to the standard signal generator with a 1KHz modulation signal.
Apply FM modulation with 75KHz deviation (standard modulation for monaural). At this time, the FM modulated wave (output of the standard signal generator) is received by the FM receiver, and the volume of the FM receiver is adjusted so that the 1KHz signal becomes the standard output determined by the FM receiver. Next, measure the output voltage (noise) of the FM receiver when the standard signal generator's FM modulation ON/OFF switch is turned OFF so that only the carrier wave is emitted from the standard signal generator. Then, the ratio between this noise and the initial standard output is determined and taken as S/N.

次にステレオのS/N測定について説明する。
この場合、モノラルの場合と違う点は次の2点で
ある。
Next, stereo S/N measurement will be explained.
In this case, the following two points differ from the monaural case.

(i) 信号を測定するときにも、雑音を測定すると
きにも常に19KHzパイロツト信号ON/OFFス
イツチ13を「ON」の状態にして19KHzの変
調周波数で6.75KHz偏移のパイロツト信号用の
FM変調をかけておく。
(i) Always keep the 19KHz pilot signal ON/OFF switch 13 in the "ON" state both when measuring signals and when measuring noise.
Apply FM modulation.

(ii) 信号測定時には変調周波数:1KHz、L=−
Rのステレオ時の標準変調をかける。
(ii) When measuring the signal, modulation frequency: 1KHz, L = -
Apply standard modulation for R stereo.

以上のようにしてFM受信機のS/Nを測定す
るが、正確な測定をするためには最低でも標準信
号発生器のS/NはFM受信機より10dB以上良い
ことが必要である。最近のFMチユーナの性能は
非常に向上しており、充分な強度の信号が入つた
場合のS/Nは局部発振器のFM変調雑音が大き
く影響するような値になつている。良く設計され
た局部発振回路のFM変調雑音は主に発振用の能
動素子の実効雑音と共振回路の実効Qによつて決
まる。現在の高級チユーナではこれらの要因につ
いて性能を厳選し、非常に良いものを使つてい
る。
The S/N of the FM receiver is measured as described above, but in order to make accurate measurements, the S/N of the standard signal generator must be at least 10 dB better than the FM receiver. The performance of recent FM tuners has improved significantly, and the S/N ratio when a sufficiently strong signal is input has reached a value where the FM modulation noise of the local oscillator has a large effect. The FM modulation noise of a well-designed local oscillator circuit is mainly determined by the effective noise of the oscillating active element and the effective Q of the resonant circuit. Current high-end tuners are carefully selected for their performance in terms of these factors, and use very good quality products.

一方、標準信号発生器の発振回路を考えてみる
と、(i)回路的には特別な回路が存在するわけでは
なく、ほぼFMチユーナと同じ回路を使つてい
る。また、一般的にいつて標準信号発生器の方が
測定器という関係上、周波数範囲を広くとるため
にS/Nに対する条件はチユーナより悪いといえ
る。(ii)素子についてはトランジスタやFETの場
合、雑音指数の数dBの特性をもつものが簡単に
手に入る反面、それより良いものは非常に入手し
難い。また、原理的に0dB以下のトランジスタや
FETが無いことを考え合わせると、高性能な素
子を使つたとしても、チユーナに比べてさほど条
件が良いとは言えない。(iii)QについてはFM受信
機と違つて標準信号発生器では空洞共振器等を使
つて高いQの発振回路を作ることが可能である
が、充分なQの値を得ようとした場合、非常に大
きくなるとともに、機械的に大がかりなものであ
るために取扱いが困難であつて、コスト的にも非
常に高価なものとなつてしまう欠点があつた。(iv)
また標準信号発生器ではFM変調をかけるために
共振回路に可変リアクタンス回路を接続してお
り、この可変リアクタンス回路に加わる雑音によ
つて残留FM成分が発生するのも、受信機の局部
発振と比べて非常に条件の悪い点である。このよ
うに標準信号発生器もFMチユーナも共に発振回
路の性能によつてS/Nが押えられ、回路的にも
条件はあまり変わらない状態にあつて、しかも標
準信号発生器のS/NはFMチユーナに比べて10
〜20dB程度良いものでないと正確な測定ができ
ない。このようなことからFM変調のS/Nにつ
いて本当に充分な性能をもつた標準信号発生器が
存在しないのが現状である。
On the other hand, if we consider the oscillation circuit of a standard signal generator, (i) there is no special circuit, and it uses almost the same circuit as an FM tuner. Furthermore, since standard signal generators are generally measuring instruments and have a wider frequency range, they can be said to have worse S/N conditions than tuners. (ii) Regarding elements, in the case of transistors and FETs, while it is easy to obtain ones with characteristics of a noise figure of several dB, it is extremely difficult to obtain ones that are better than that. In addition, in principle, a transistor with a voltage of 0 dB or less
Considering the fact that there is no FET, even if a high-performance element is used, the conditions are not much better than that of a tuner. (iii) Regarding Q, unlike FM receivers, it is possible to create a high Q oscillation circuit with a standard signal generator using a cavity resonator, etc., but if you try to obtain a sufficient Q value, It has disadvantages in that it is very large and mechanically large, making it difficult to handle and very expensive. (iv)
In addition, in standard signal generators, a variable reactance circuit is connected to the resonant circuit in order to apply FM modulation, and residual FM components are generated due to noise added to this variable reactance circuit, compared to the receiver's local oscillation. This is a very poor condition. In this way, the S/N of both standard signal generators and FM tuners is suppressed by the performance of the oscillation circuit, and the circuit conditions do not change much, and the S/N of the standard signal generator is 10 compared to FM Chuna
Accurate measurements cannot be made unless it is about ~20 dB good. For this reason, there is currently no standard signal generator with truly sufficient performance regarding S/N of FM modulation.

また第2図はアームストロング位相変調のよう
な、位相変調を使つたFM放送局を示すもので、
標準信号発生器として使用できる。同図において
発振回路21で発振した高周波電圧は負荷変動の
影響を除くための緩衝増幅回路22を通つたのち
位相変調回路23に加えられる。この位相変調回
路23には−6dB/オクターブの周波数特性をも
つ回路24を通して端子25に加わつたFM変調
信号が加えられ、この信号で高周波電圧は位相変
調を受ける。このようにして得られたFM被変調
波のFM偏移は小さいので、必要なFM偏移にす
るために逓倍回路26を通して所要のFM偏移を
もつたFM被変調波とし、電力増幅回路で必要な
電力に増幅して出力端子28に送る。
Figure 2 also shows an FM broadcast station that uses phase modulation, such as Armstrong phase modulation.
Can be used as a standard signal generator. In the figure, a high frequency voltage oscillated by an oscillation circuit 21 is applied to a phase modulation circuit 23 after passing through a buffer amplifier circuit 22 for eliminating the influence of load fluctuations. An FM modulation signal applied to a terminal 25 is applied to this phase modulation circuit 23 through a circuit 24 having a frequency characteristic of -6 dB/octave, and the high frequency voltage is phase modulated by this signal. Since the FM deviation of the FM modulated wave obtained in this way is small, in order to obtain the required FM deviation, the FM modulated wave is passed through the multiplier 26 to have the required FM deviation, and then the power amplifier circuit It is amplified to the required power and sent to the output terminal 28.

このような位相変調器を使つた方式は一般に単
一あるいは周波数変化範囲の狭い機器に使われ
る。またこのような機器では発振回路にQの非常
に高い水晶振動子を使つてS/Nを向上させるこ
とが可能である。しかし水晶振動子を使つた場合
でも水晶振動子の共振インピーダンスが高いため
に、搬送波周波数から±1KHz以内といつた、ご
く近傍では雑音が非常に改善されるが、より離れ
た周波数での雑音はQの向上分ほどは改善されな
い。これはFM受信機で復調した、FM受信機の
出力の雑音として考えると、1KHz以下の雑音は
非常に改善されるが、高い周波数の雑音はQの向
上分に見合つた程は改善されないということにな
る。このような水晶発振回路のFM変調雑音の周
波数の高い成分の雑音があまり改善されないとい
う欠点を補う方法として、第3図に示すように位
相変調回路23と緩衝増幅回路22の間に狭帯域
の水晶フイルタ29を入れる方法がある。しかし
このような回路は周波数を可変するに際して逓倍
回路26に入つている多数の同調回路を全て連動
して可変する必要があり、構造が複雑となる欠点
がある。
A system using such a phase modulator is generally used for a single device or a device with a narrow frequency change range. Furthermore, in such equipment, it is possible to improve the S/N by using a crystal resonator with a very high Q in the oscillation circuit. However, even when a crystal oscillator is used, because the resonant impedance of the crystal oscillator is high, the noise is greatly improved in the close vicinity, such as within ±1KHz from the carrier frequency, but the noise at frequencies further away is reduced. The improvement is not as great as the improvement in Q. Considering this as the noise of the output of the FM receiver demodulated by the FM receiver, the noise below 1KHz is greatly improved, but the noise at higher frequencies is not improved to the extent commensurate with the improvement in Q. become. As a way to compensate for the drawback that the high-frequency component noise of the FM modulation noise of the crystal oscillator circuit is not improved much, a narrow-band filter is installed between the phase modulation circuit 23 and the buffer amplifier circuit 22 as shown in FIG. There is a method of inserting a crystal filter 29. However, such a circuit has the disadvantage that, when varying the frequency, it is necessary to vary all of the many tuning circuits included in the multiplier circuit 26 in conjunction with each other, resulting in a complicated structure.

本発明は上述した欠点を除去するもので、以下
にその実施例とともに説明する。第4図において
第1図と対応する部分には同符号を付している。
31,32は連動する変調様式切換スイツチであ
る。33は水晶フイルタ回路、34は位相変調回
路、35は位相変調回路用19KHzパイロツト信号
ON/OFFスイツチである。
The present invention eliminates the above-mentioned drawbacks and will be described below with examples thereof. In FIG. 4, parts corresponding to those in FIG. 1 are given the same reference numerals.
31 and 32 are interlocking modulation mode changeover switches. 33 is a crystal filter circuit, 34 is a phase modulation circuit, and 35 is a 19KHz pilot signal for the phase modulation circuit.
It is an ON/OFF switch.

次にこの実施例の動作について説明する。変調
様式切換スイツチ31,32が通常変調側にある
場合には、この構成の標準信号発生器の動作は第
1図とともに前述したものと全く同じである。
Next, the operation of this embodiment will be explained. When the modulation format selector switches 31 and 32 are on the normal modulation side, the operation of the standard signal generator having this configuration is exactly the same as that described above with reference to FIG.

次に変調様式切換スイツチ31,32が低FM
変調雑音側にある場合の動作を説明する。
Next, modulation mode selector switches 31 and 32 are set to low FM.
The operation when it is on the modulation noise side will be explained.

電力増幅回路4の出力は水晶フイルタ回路33
に加えられる。この水晶フイルタ33は狭帯域特
性をもつており、その特性を発振回路1の発振周
波数を水晶フイルタ33の通過周波数に合わせる
と、電力増幅回路の高周波出力電圧は水晶フイル
タ33、位相変調回路34を通つた後、2分され
る。その一方は減衰器5を通つて出力端子9に導
かれ、他方は検波器6に加えられて自動出力電圧
制御回路の検出信号となる。電力増幅回路4の出
力は水晶フイルタ33でFM変調雑音(AM変調
雑音によるものも含む)による側帯波が除去され
てS/Nが改善される。しかしながら当然のこと
として可変リアクタンス回路8によるFM変調成
分も同時に除去される。先に説明したようにFM
受信機のステレオ時のS/Nを測定するのには常
に19KHzの信号で6.75KHz偏移のFM変調をかけて
おく必要がある。そこで本実施例では、FM変調
の最大周波数偏移△mと位相変調の最大位相推
移θmとの関係が変調周波数をPとすると、θm
=△m/pの関係から約±0.355radの位相変調を 19KHzのパイロツト信号でかけると、これが
6.75KHzのFM偏移となり、この値は第2図で示
したような周波数逓倍をしてFM偏移を大きくす
ることなしに、位相変調回路のみで達成できると
いう点に着目している。すなわち、ステレオ時の
S/Nを測定するのに、S/N改善の目的で水晶
フイルタ回路33を入れると19KHzのパイロツト
信号を通すことができないが、水晶フイルタ回路
33の後に位相変調回路34を設けて19KHzの信
号で位相変調すると、19KHzのパイロツト信号用
のFM変調ができる。
The output of the power amplifier circuit 4 is sent to the crystal filter circuit 33
added to. This crystal filter 33 has narrow band characteristics, and when the oscillation frequency of the oscillation circuit 1 is matched to the passing frequency of the crystal filter 33, the high frequency output voltage of the power amplifier circuit is After passing, it is divided into two parts. One of them is guided to the output terminal 9 through the attenuator 5, and the other is applied to the detector 6 to become a detection signal for the automatic output voltage control circuit. The output of the power amplifier circuit 4 is filtered through a crystal filter 33 to remove sidebands due to FM modulation noise (including AM modulation noise), thereby improving the S/N ratio. However, as a matter of course, the FM modulation component by the variable reactance circuit 8 is also removed at the same time. FM as explained earlier
To measure the stereo S/N of the receiver, it is necessary to always apply FM modulation with a 19KHz signal with a deviation of 6.75KHz. Therefore, in this embodiment, the relationship between the maximum frequency deviation △m of FM modulation and the maximum phase shift θm of phase modulation is determined by θm, where P is the modulation frequency.
= △m/p When applying phase modulation of approximately ±0.355 rad with a 19KHz pilot signal, this becomes
The FM deviation is 6.75KHz, and we are focusing on the fact that this value can be achieved using only the phase modulation circuit without increasing the FM deviation by frequency multiplication as shown in Figure 2. In other words, when measuring the S/N in stereo mode, if the crystal filter circuit 33 is inserted for the purpose of improving the S/N, the 19KHz pilot signal cannot pass through, but if the phase modulation circuit 34 is inserted after the crystal filter circuit 33. If you set it up and perform phase modulation with a 19KHz signal, you can perform FM modulation for the 19KHz pilot signal.

以上、各ブロツクの動作説明をしたが、次に標
準信号発生器として使用する場合について説明す
る。標準信号発生器を従来と同じ通常の状態で使
う場合には変調様式切換スイツチ31,32を通
常変調側にして使う。次に特にS/N比の高い測
定をしたい場合には、まず発振回路の発振周波数
を水晶フイルタ回路33の通過周波数にする。変
調様式切換スイツチ31,32は通常変調例にし
て、モノラルの場合には1KHzの変調信号で75K
Hz偏移のモノラルの標準変調、ステレオの場合に
は19KHzの変調周波数で6.75KHz偏移のパイロツ
ト信号用のFM変調と変調周波数1KHz、L=−R
のステレオ時の標準変調をかけ、この被FM変調
波をFM受信機で受信して受信機で決まつた標準
出力になるようにFM受信機のボリウムを調整す
る。
The operation of each block has been explained above, and next, the case where it is used as a standard signal generator will be explained. When the standard signal generator is used in the same normal state as the conventional one, the modulation mode changeover switches 31 and 32 are set to the normal modulation side. Next, when a measurement with a particularly high S/N ratio is desired, first the oscillation frequency of the oscillation circuit is set to the passing frequency of the crystal filter circuit 33. The modulation mode selector switches 31 and 32 are used for normal modulation, and in the case of monaural, the modulation signal is 75K with a 1KHz modulation signal.
Mono standard modulation with Hz deviation, FM modulation for pilot signal with 6.75KHz deviation and modulation frequency 1KHz with modulation frequency of 19KHz for stereo, L = -R
Standard modulation for stereo is applied, this FM modulated wave is received by the FM receiver, and the volume of the FM receiver is adjusted so that the standard output is determined by the receiver.

次にFM変調ON/OFFスイツチ11、および
19KHzパイロツト信号ON/OFFスイツチ13を
共に「OFF」にして可変リアクタンス回路8に
は信号が加わらない状態にし、変調様式切換スイ
ツチ31,32は低FM変調雑音側にする。そし
て、位相変調回路34に加わる19KHzパイロツト
信号は位相変調回路用19KHzパイロツト信号
ON/OFFスイツチ35でモノラルの場合は
「OFF」に、ステレオの場合には「ON」にす
る。この状態でのFM受信器の雑音レベルを測定
し、標準変調のときの出力との比を求めS/Nと
する。
Next, FM modulation ON/OFF switch 11, and
Both the 19KHz pilot signal ON/OFF switches 13 are turned "OFF" so that no signal is applied to the variable reactance circuit 8, and the modulation mode selection switches 31 and 32 are set to the low FM modulation noise side. The 19KHz pilot signal applied to the phase modulation circuit 34 is a 19KHz pilot signal for the phase modulation circuit.
Turn ON/OFF switch 35 to "OFF" for monaural and "ON" for stereo. Measure the noise level of the FM receiver in this state, and calculate the ratio to the output during standard modulation and use it as the S/N.

以上の説明で明らかなように、高S/N測定が
行なえるのは水晶フイルタ回路33のポイントの
周波数に限られる。一般にステレオチユーナの測
定ポイントは日本バンド、外国バンド共5点の周
波数が標準であつて、第4図には表わしてないが
水晶フイルタ回路33は、これら必要な周波数を
スイツチで切換えできるようになつていて必要な
ポイントをカバーする。
As is clear from the above explanation, high S/N measurements can be performed only at the frequencies of the points of the crystal filter circuit 33. In general, the standard measurement points of a stereo tuner are five frequencies for both Japanese and foreign bands, and although it is not shown in Figure 4, the crystal filter circuit 33 allows these necessary frequencies to be switched with a switch. Covers the familiar and necessary points.

以上の説明では発振回路を従来例と同じ発振回
路を使つて説明しているが、変調様式切換スイツ
チ31,32と連動で発振回路1を水晶フイルタ
回路33の通過周波数の信号を発振する水晶発振
回路と切換えることが可能であり、この場合には
より高度のS/Nの値が得られることは言うまで
もない。また、通常の発振器をPLL技術を使つて
基準の水晶発振器にロツクしても、ほぼ同様の効
果が得られる。また水晶フイルタ回路33として
いるのは現在のところ、このような高周波信号の
側帯波として存在する雑音成分を除去するのに使
える素子としては水晶共振子によるフイルタ以外
入手できないためであつて、将来このような目的
に使える狭帯域通過フイルタ素子が開発されれ
ば、その素子が使えることは言うまでもない。
In the above explanation, the oscillation circuit is explained using the same oscillation circuit as in the conventional example, but the oscillation circuit 1 is operated by a crystal oscillation circuit that oscillates a signal at the frequency passed by the crystal filter circuit 33 in conjunction with the modulation mode changeover switches 31 and 32. It goes without saying that it is possible to switch between different circuits, and in this case, a higher S/N value can be obtained. Also, almost the same effect can be obtained by locking a regular oscillator to a reference crystal oscillator using PLL technology. The reason why the crystal filter circuit 33 is used is that at present, the only element that can be used to remove noise components that exist as sidebands of such high-frequency signals is a filter using a crystal resonator. It goes without saying that if a narrow band pass filter element that can be used for such a purpose is developed, that element can be used.

本発明は上記実施例より明らかなように、従来
のFM変調信号発生器の可変増幅回路のループ内
に、特定周波数の水晶フイルタ回路と、19KHzパ
イロツト信号により位相変調する位相変調回路と
を設けるよう構成したので、上記特定周波数では
高度のS/N特性が得られるという効果を有す
る。
As is clear from the above embodiment, the present invention includes a crystal filter circuit of a specific frequency and a phase modulation circuit that performs phase modulation using a 19KHz pilot signal in the loop of a variable amplifier circuit of a conventional FM modulation signal generator. This configuration has the effect that high S/N characteristics can be obtained at the specific frequency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は従来の標準信号
発生器のブロツク図、第4図は本発明の一実施例
による標準信号発生器のブロツク図である。 31,32……変調様式切換スイツチ、33…
…水晶フイルタ回路、34……位相変調回路。
1, 2, and 3 are block diagrams of conventional standard signal generators, and FIG. 4 is a block diagram of a standard signal generator according to an embodiment of the present invention. 31, 32...Modulation mode selection switch, 33...
...Crystal filter circuit, 34...Phase modulation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 FM変調信号を可変リアクタンス素子に入力
してFM信号を出力する発振回路と、この発振回
路の出力信号を入力し、制御信号に応じて増幅度
を変更して出力する可変増幅回路と、この可変増
幅回路の出力信号を入力し、通常変調側または低
FM変調雑音側のいずれか一方に切換えて出力す
る第1の変調様式切換スイツチと、このスイツチ
の上記低FM変調雑音側の出力信号を入力し、狭
帯域特性を有する水晶フイルタと、この水晶フイ
ルタの出力信号を入力し、位相変調信号に応じて
位相変調して出力する位相変調回路と、この位相
変調回路の出力信号を低FM変調雑音側に、上記
第1の変調様式切換スイツチの通常変調側を通常
変調側に接続し、いずれか一方の出力信号を、上
記第1の変調様式切換スイツチに連動して切換え
て出力する第2の変調様式切換スイツチと、この
第2の変調様式切換スイツチの出力信号と出力電
圧設定信号との差信号を上記可変増幅回路へ制御
信号として出力する直流増幅回路とを備え、上記
発振回路へ上記FM変調信号とともに、ON/
OFFスイツチを介した19KHzパイロツト信号を出
力し、この19KHzパイロツト信号をON/OFFス
イツチを介して上記位相変調信号として出力する
ことを特徴とする標準信号発生器。
1. An oscillation circuit that inputs an FM modulation signal to a variable reactance element and outputs an FM signal, a variable amplifier circuit that inputs the output signal of this oscillation circuit, changes the amplification degree according to a control signal, and outputs it. Input the output signal of the variable amplification circuit, normally on the modulation side or low
A first modulation format selector switch that switches to either the FM modulation noise side and outputs the output signal, a crystal filter that inputs the output signal of the low FM modulation noise side of this switch and has narrow band characteristics, and this crystal filter. a phase modulation circuit that inputs the output signal of the phase modulation circuit, modulates the phase according to the phase modulation signal, and outputs the output signal; a second modulation format changeover switch whose side is connected to the normal modulation side and which switches and outputs one of the output signals in conjunction with the first modulation changeover switch; and a DC amplifier circuit that outputs the difference signal between the output signal of
A standard signal generator characterized in that it outputs a 19KHz pilot signal via an OFF switch, and outputs this 19KHz pilot signal as the above-mentioned phase modulation signal via an ON/OFF switch.
JP1175280A 1980-02-01 1980-02-01 Standard signal generator Granted JPS56109054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1175280A JPS56109054A (en) 1980-02-01 1980-02-01 Standard signal generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1175280A JPS56109054A (en) 1980-02-01 1980-02-01 Standard signal generator

Publications (2)

Publication Number Publication Date
JPS56109054A JPS56109054A (en) 1981-08-29
JPS6210385B2 true JPS6210385B2 (en) 1987-03-05

Family

ID=11786727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1175280A Granted JPS56109054A (en) 1980-02-01 1980-02-01 Standard signal generator

Country Status (1)

Country Link
JP (1) JPS56109054A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113900071B (en) * 2021-12-07 2022-03-04 湖南宜通华盛科技有限公司 Output power detection circuit, adjustment method, detection method and phased array radar

Also Published As

Publication number Publication date
JPS56109054A (en) 1981-08-29

Similar Documents

Publication Publication Date Title
US4211975A (en) Local signal generation arrangement
JPS6223931B2 (en)
JPH0628338B2 (en) Phase locked loop and direct mixed sync AM receiver using the same
TWI251404B (en) Tuner DSP
KR100256455B1 (en) Receiver
US3939424A (en) Radio receiver with a phase locked loop for a demodulator
JPH04252503A (en) Fm demodulator
JPH0234213B2 (en)
JPS6210385B2 (en)
JPS6259941B2 (en)
CA1277373C (en) Tweet elimination, or reduction, in superheterodyne receivers
US4520475A (en) Duplex communication transceiver with modulation cancellation
JPS58205323A (en) Synthesizer receiver
JPS5812773B2 (en) Amplitude modulation stereo signal transmitter
JPS6239858B2 (en)
JP2000174652A (en) Fm receiver
JPS639153Y2 (en)
JP2975821B2 (en) AM / FM radio receiver
JPS6334359Y2 (en)
JPS6236368Y2 (en)
KR830000672B1 (en) AM stereo receiver
JPH07177051A (en) Fm radio telephone equipment
JPH1032515A (en) Radio equipment
JPH08172371A (en) Fm receiver
JPH06104788A (en) Superheterodyne receiver