JPS62103370A - Apparatus for manufacturing electrophotographic sensitive body - Google Patents

Apparatus for manufacturing electrophotographic sensitive body

Info

Publication number
JPS62103370A
JPS62103370A JP24148985A JP24148985A JPS62103370A JP S62103370 A JPS62103370 A JP S62103370A JP 24148985 A JP24148985 A JP 24148985A JP 24148985 A JP24148985 A JP 24148985A JP S62103370 A JPS62103370 A JP S62103370A
Authority
JP
Japan
Prior art keywords
amorphous silicon
plasma
poles
film
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24148985A
Other languages
Japanese (ja)
Inventor
Kunihiro Tamahashi
邦裕 玉橋
Masatoshi Wakagi
政利 若木
Shigeharu Konuma
重春 小沼
Megumi Naruse
成瀬 恵
Noritoshi Ishikawa
文紀 石川
Toshiyuki Ono
俊之 大野
Mitsuo Chikazaki
充夫 近崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24148985A priority Critical patent/JPS62103370A/en
Publication of JPS62103370A publication Critical patent/JPS62103370A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase the speed of forming the film of amorphous silicon and to improve production efficiency by arraying permanent magnets to the outside periphery of a reaction vessel by alternating N poles and S poles over the entire periphery. CONSTITUTION:The bar magnets 3, 4 and 7 are formed like a cusp on the inside wall of the cylindrical reaction vessel 1 of a thin film forming device utilizing plasma for forming the amorphous silicon film by alternately arranging the N poles and S poles thereof around the vessel 1. The diffusion of the plasma to the inside wall is thereby shut out and the high-density plasma is formed in the state of floating the same from the wall of the vessel 1. The sticking of the amorphous silicon to the inside wall of the vessel 1 and the formation of the pulverized powder-like amorphous silicon are decreased by such constitution and the high production efficiency is obtd.; in addition, the speed of forming the amorphous silicon film is increased.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電子写真感光体作製装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an apparatus for producing an electrophotographic photoreceptor.

〔発明の背景〕[Background of the invention]

従来、高速で水素化アモルファス・シリコン感光体を作
製するには、主原料のモノ7ランガス(SIH4)等の
水素化硅素ガスを多量に用い、高電力で分解していた。
Conventionally, in order to produce a hydrogenated amorphous silicon photoreceptor at high speed, a large amount of silicon hydride gas such as mono-7 run gas (SIH4) as the main raw material has been used and decomposed with high power.

しかし、ガスの利用効率が高々10%であるため、主原
料のガスは大部分が大気へ排出されるか、反応管内壁に
付着する等の極めて製造効率の悪い方法であった。
However, since the gas utilization efficiency is at most 10%, most of the main raw material gas is either exhausted to the atmosphere or attached to the inner wall of the reaction tube, making this method extremely inefficient.

これまでのプラズマCVD装置を第9図〜第11図に示
す。第9図の場合(この方式が一般的である)、プラズ
マを制御していないため、図示の如くプラズマが広がり
反応容器壁面に到達するため、アモルファス・シリコン
膜が壁面に付着する。第10図の場合、メツシュ状の電
極で囲むことにより、プラズマの広がりは第9図の方式
に比べ改善されるが、このメツシュ状の電極への付着が
多く、実製造効率は高くない。第11図の方式は特開昭
57−47710及び57−45224に示されるよう
に、反応容器外壁にセットした電磁石によシ形成される
磁場によりプラズマ全中央部にとじ込めようとする方式
である。この方式ではとじ込めに効果があるものの磁場
が第11図に示すようになるため、磁力線に沿ってプラ
ズマが逃げ易くなる。
Conventional plasma CVD apparatuses are shown in FIGS. 9 to 11. In the case of FIG. 9 (this method is common), since the plasma is not controlled, the plasma spreads as shown in the figure and reaches the wall surface of the reaction vessel, so that an amorphous silicon film adheres to the wall surface. In the case of FIG. 10, by surrounding it with a mesh-like electrode, the spread of plasma is improved compared to the method shown in FIG. 9, but there is a lot of adhesion to this mesh-like electrode, and the actual manufacturing efficiency is not high. The method shown in Fig. 11, as shown in Japanese Patent Laid-Open Nos. 57-47710 and 57-45224, attempts to confine plasma in the entire center using a magnetic field formed by an electromagnet set on the outer wall of the reaction vessel. . Although this method is effective in confinement, the magnetic field becomes as shown in FIG. 11, making it easier for plasma to escape along the lines of magnetic force.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、外部磁場により、プラズマを反応容器
壁面から隔離すると共に、プラズマ密度の向上を画り、
高速堆積が可能でかつ高製造効率の電子写真感光体製造
装置を提供することにある。
The purpose of the present invention is to isolate the plasma from the wall surface of the reaction vessel and improve the plasma density by using an external magnetic field.
It is an object of the present invention to provide an electrophotographic photoreceptor manufacturing apparatus that is capable of high-speed deposition and has high manufacturing efficiency.

〔発明の概要〕[Summary of the invention]

本発明は基本的な立脚点は以下の2点に絞られ机 (1)プラズマのとじ込めは磁場を用いる。 The basic points of this invention are narrowed down to the following two points. (1) Plasma confinement uses a magnetic field.

(2)磁場の形成には第1図に示すように棒状のN極、
S極を交互に配列させ、磁場を容器内壁上にカプス状に
形成させる。第2図には容器上方から見た時の磁場を示
す。
(2) To form the magnetic field, as shown in Figure 1, a rod-shaped N pole,
The south poles are arranged alternately to form a cup-like magnetic field on the inner wall of the container. Figure 2 shows the magnetic field when viewed from above the container.

このような磁場分布を反応容器内壁上に形成させること
により、プラズマの内壁への拡散をシャットアウトでき
、高密度のプラズマ全容壁から浮かした状態で形成させ
ることができる。
By forming such a magnetic field distribution on the inner wall of the reaction vessel, diffusion of the plasma to the inner wall can be shut out, and the entire high-density plasma can be formed in a state floating from the wall.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 アモルファス・シリコン(a−8iiH)膜作製のため
の装置は第1図に示したものを用いた。円筒状の反応容
器lのまわシには棒状の永久磁石3゜4及び7が配置さ
れている。この磁石は反応容器1の内壁での強さは10
00ガウスであり、更に内へ向って4〜5cmの所で1
00ガワスに低下する。これらの磁石により形成される
磁場(第2図参照)は荷電粒子に対する反射バリアとし
ての働きヲ1−、プラズマを囲むことになる。反応容器
1の中心部には基板2がホルタ責内熱式ヒータ含む)に
より固定されておシ、成膜時は200〜350℃間の所
定の温度に保持されている。反応容器下部には熱電子放
出用フィラメント5があす、20〜30A通電すること
により、プラズマを生成させ、アーク電流として最大1
0Aまで発生させ得る。主原料のモノシランガスは必要
に応じて水素又はジボランガス等を混合し、パイプ8よ
シ導入され、未反応ガスは排気口9よりメカニカルポン
プ、ロー、タリ・ポンプ及び廃ガス処理槽を経て大気に
放出される。
Example 1 The apparatus shown in FIG. 1 was used for producing an amorphous silicon (a-8iiH) film. Rod-shaped permanent magnets 3, 4 and 7 are arranged around the cylindrical reaction vessel 1. The strength of this magnet at the inner wall of reaction vessel 1 is 10
00 Gauss, and 1 at 4-5 cm further inward.
It drops to 00 Gawasu. The magnetic field created by these magnets (see Figure 2) acts as a reflective barrier for charged particles and surrounds the plasma. A substrate 2 is fixed at the center of the reaction vessel 1 by a Holter internal heater (including a Holter internal heater), and is maintained at a predetermined temperature between 200 and 350° C. during film formation. At the bottom of the reaction vessel, a filament 5 for emitting thermionic electrons generates plasma by passing a current of 20 to 30 A, and an arc current of up to 1
It can generate up to 0A. Monosilane gas, the main raw material, is mixed with hydrogen or diborane gas as necessary and introduced through pipe 8, and unreacted gas is released into the atmosphere from exhaust port 9 via a mechanical pump, rotary pump, tari pump, and waste gas treatment tank. be done.

まず反応容器内をI Xt 0−aTorrに排気した
後、基板CAt等の導体)i250℃に加熱する。
First, the inside of the reaction vessel is evacuated to IXt 0-a Torr, and then a conductor such as a substrate CAt is heated to 250°C.

その後モノシランガスを反応槽内に導入し、1mTor
rとし、フィラメント5に3OA通電し、プラズマを励
起させる。一方、基板にはバイアス電圧6から一200
v印加させる。このようにして1時開成膜した後、基板
を20℃まで冷却させる。
After that, monosilane gas was introduced into the reaction tank and the temperature was set at 1 mTorr.
r, and a current of 3OA is applied to the filament 5 to excite plasma. On the other hand, the substrate has a bias voltage of 6 to 1200
Apply v. After one-time open film formation in this manner, the substrate is cooled to 20°C.

この条件での成膜速度は10μm/hである。The film formation rate under these conditions was 10 μm/h.

以下同様にしてバイアス電圧1−300.−400vと
した時の成膜速度は16.5及び20μm/hであった
。これらの結果を第3図に示す。
Bias voltage 1-300. The film formation speed when set to -400v was 16.5 and 20 μm/h. These results are shown in FIG.

実施例2 実施例1と同様な方法で、モノ7う/ガスを2mTor
r導入した。フィラメント5には30A通亀し、プラズ
マを励起させる。一方、基板にはバイアス電圧6から一
200v印加させる。このようにして1時間成膜した後
、基板全20℃まで冷却させる。この条件での成膜速度
は17μm / hである。以下同様にして、バイアス
電圧を一300y、−400Vとした場合の成膜速度は
25゜35μm/hである。第4図にまとめて示す。
Example 2 In the same manner as in Example 1, mono7/gas was heated to 2 mTor.
r was introduced. A current of 30 A is passed through the filament 5 to excite plasma. On the other hand, a bias voltage of 6 to 200 V is applied to the substrate. After forming a film in this manner for one hour, the entire substrate was cooled to 20°C. The film formation rate under these conditions was 17 μm/h. Similarly, when the bias voltage is -300y and -400V, the film forming rate is 25°35 μm/h. A summary is shown in Figure 4.

実施例1及び2共に反応容器内壁に付着するアモルファ
ス・シリコン膜はN又はS極の磁石の中心・部(第2図
で説明すると磁力線の湧出部)に集中しており、プラズ
マの収束度が良好で、モノシランガスが分解した時に生
成される粉末状のアモルファス・シリコンも微量である
In both Examples 1 and 2, the amorphous silicon film adhering to the inner wall of the reaction vessel is concentrated at the center/portion of the N or S pole magnet (explained in Figure 2, the source of the magnetic field lines), and the degree of plasma convergence is It is good, and there is only a trace amount of powdered amorphous silicon produced when monosilane gas decomposes.

実施例3 実施例1及び2と比較するため、反応容器外周部に付け
である永久磁石をはずして、成膜した。
Example 3 For comparison with Examples 1 and 2, a film was formed by removing the permanent magnet attached to the outer periphery of the reaction vessel.

反応容器内に導入したモノシランガスは1mTorrで
ある。フィラメント5に3OA通電し、プラズマを励起
させる。一方、基板KHバイアス電圧6から一200V
印加させる。このようにして1時間成膜した後、基板を
20℃まで冷却させる。この条件での成膜速度は5μm
/hである。以下同様にして、バイアス電圧を−300
,−400Vとした場合の成膜速度は7.10μm/h
である。
The monosilane gas introduced into the reaction vessel was at 1 mTorr. A current of 3OA is applied to the filament 5 to excite plasma. On the other hand, the substrate KH bias voltage is 6 to 200V.
Apply it. After forming a film in this manner for one hour, the substrate is cooled to 20°C. The film formation rate under these conditions is 5 μm
/h. Similarly, increase the bias voltage to -300.
, -400V, the film formation rate is 7.10μm/h
It is.

これらの結果を第5図にまとめて示す。この永久磁石の
ない場合は反応容器内壁にアモルファス・シリコン膜が
全周に渡シ付着し、粉末状のアモルファス・シリコンが
多量に生成している。
These results are summarized in FIG. In the absence of this permanent magnet, an amorphous silicon film would adhere to the entire circumference of the inner wall of the reaction vessel, and a large amount of powdered amorphous silicon would be produced.

以上実施例1及び2と実施例3とを比較すると磁場によ
るプラズマとじ込めが有効であることが判る(即ち、磁
場を設けた方が成膜速度が早く、微粉末の発生及び容器
内壁への付着が少なく、製造効率が艮好なことが判る) 実施例4 実施例1及び2ではプラズマ励起にフィラメントから放
出される熱電子を用いているが、フィラメントの寿命が
100h程度と短かい。その欠点を補うために高周波電
源(周波数13.56MHz)を用いてプラズマを励起
させる。第6図に装置を示す。(第1図と異なる個所は
15に高周波用のコイルを用いている点及びバイアス電
圧を削除している点である。)なお、このコイルは反応
容器外周部にとりつけても同様の効果があり、更には第
7図に示すように相対する電極板を用いても同じ効果が
期待できる。
Comparing Examples 1 and 2 and Example 3 above, it can be seen that plasma confinement using a magnetic field is effective (that is, the film formation rate is faster when a magnetic field is provided, and the generation of fine powder and the inner wall of the container are Example 4 In Examples 1 and 2, thermoelectrons emitted from the filament were used for plasma excitation, but the filament life was short, about 100 hours. To compensate for this drawback, plasma is excited using a high frequency power source (frequency: 13.56 MHz). Figure 6 shows the apparatus. (The difference from Figure 1 is that a high-frequency coil is used for 15 and the bias voltage is omitted.) This coil can have the same effect even if it is attached to the outer periphery of the reaction vessel. Furthermore, the same effect can be expected even if opposing electrode plates are used as shown in FIG.

まず前記実施例と同様に反応容器内6txto−’To
r rに排気した後、基板を250℃に加熱する。
First, as in the above example, 6txto-'To in the reaction vessel
After evacuation to r r, the substrate is heated to 250°C.

その後モノシランガスを反応槽内に導入し、1mTor
rとし、窩周波!極間に50W入力し放tv開始させる
。一方、基板は電気的に接地させた状態にしておく。こ
のようにして1時間成膜した後、基板’t20’cまで
冷却させる。この条件での成膜速度は8μm / hで
ある。前実施例と異なりバイアス電圧を用いない理由は
、高周波電極の一方が荷電粒子の蓄積効果からバイアス
電圧(セルフバイアス)が印加されたと同様の条件がつ
くり出されているからである。そこで、成膜速度を向上
させるために高周波出力を100,150,300Wと
上昇させて、成膜した。この時の成膜速度は15.19
.37μm / hであった。結果をまとめて第8図に
示す。
After that, monosilane gas was introduced into the reaction tank and the temperature was set at 1 mTorr.
Let r be the fossa frequency! Input 50W between the poles and start broadcasting TV. On the other hand, the board is kept electrically grounded. After forming a film in this manner for one hour, the substrate is cooled to 't20'c. The film formation rate under these conditions was 8 μm/h. The reason why no bias voltage is used, unlike the previous embodiment, is that the same condition as when a bias voltage (self-bias) is applied to one of the high-frequency electrodes is created due to the accumulation effect of charged particles. Therefore, in order to improve the film formation speed, the high frequency output was increased to 100, 150, and 300 W to form a film. The film formation rate at this time was 15.19
.. It was 37 μm/h. The results are summarized in Figure 8.

本実施例の場合も管壁及び電極へのアモルファス・シリ
コン膜の付着は少ない。
In this example as well, there is little adhesion of the amorphous silicon film to the tube wall and electrodes.

また、 ・本方式でのプラズマ励起の方法では、マイクロ波を用
いる方法、紫外光、遠紫外光等で励起する方法等が挙げ
られる。
In addition, - Examples of the method of plasma excitation in this method include a method using microwaves, a method of exciting with ultraviolet light, far ultraviolet light, etc.

・バイアス電圧を正にするとエツチング装置となり得る
・If the bias voltage is positive, it can become an etching device.

・スパッタリング装置におけるプラズマとじ込めに利用
できる。
・Can be used to contain plasma in sputtering equipment.

〔発明の効果〕〔Effect of the invention〕

本発明によればアモルファス・シリコン膜の成膜速度は
従来法に比べ2倍以上の速度を達成でき、反応容器内壁
へのアモルファス・シリコン付着及び微粉末状のアモル
ファス・シリコンを低減できるので、高い製造効率のア
モルファス・シリコン製造装置を提供できる。
According to the present invention, the deposition rate of the amorphous silicon film can be more than twice as fast as that of the conventional method, and the adhesion of amorphous silicon to the inner wall of the reaction vessel and the amount of amorphous silicon in the form of fine powder can be reduced. It is possible to provide amorphous silicon manufacturing equipment with high manufacturing efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の′直子写真感光体作裂装置の実施例の
磁場重畳型のプラズマCVD装置断面図、第2図は第1
図の平面図、第3図、第4図、第5図は第1図の装置に
よる製造の場合のそれぞれバイアス電圧と成膜速度の関
係説明図、第6図、第7図はそれぞれ本発明の電子写真
感光体炸裂装置の他の実施例の磁場重畳型の高周波プラ
ズマCVD装置断面図、第8図は第6図、第7図の高周
波出力と成膜速度の関係説明図、第9図は従来のプラズ
マCVD装置の断面図、第10図は従来のメツシュ電極
併用のプラズマCVD装置の断面図、第11図は従来の
磁場重畳型の高周波プラズマCVD装置断面図である。 1・・・反応容器、2・・・基板、3.4・・・永久磁
石、5・・・熱電子源(フィラメント)、6・・・バイ
アス電圧。
FIG. 1 is a cross-sectional view of a magnetic field superimposed type plasma CVD device according to an embodiment of the Naoko photographic photoconductor cleaving device of the present invention, and FIG.
3, 4, and 5 are explanatory diagrams of the relationship between bias voltage and film-forming rate in the case of manufacturing using the apparatus shown in FIG. FIG. 8 is a cross-sectional view of a magnetic field superimposition type high frequency plasma CVD device of another embodiment of the electrophotographic photoreceptor explosion device, and FIG. 10 is a cross-sectional view of a conventional plasma CVD apparatus using mesh electrodes, and FIG. 11 is a cross-sectional view of a conventional magnetic field superimposition type high-frequency plasma CVD apparatus. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Substrate, 3.4... Permanent magnet, 5... Thermionic source (filament), 6... Bias voltage.

Claims (1)

【特許請求の範囲】[Claims] 1、プラズマを利用する薄膜形成装置において、反応容
器の外周に永久磁石の列をN極、S極と交互に全周に並
べることを特徴とする電子写真感光体作製装置。
1. An electrophotographic photoreceptor manufacturing apparatus that uses plasma to form a thin film, and is characterized in that rows of permanent magnets are arranged around the outer periphery of a reaction container, alternating with N poles and S poles.
JP24148985A 1985-10-30 1985-10-30 Apparatus for manufacturing electrophotographic sensitive body Pending JPS62103370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24148985A JPS62103370A (en) 1985-10-30 1985-10-30 Apparatus for manufacturing electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24148985A JPS62103370A (en) 1985-10-30 1985-10-30 Apparatus for manufacturing electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS62103370A true JPS62103370A (en) 1987-05-13

Family

ID=17075077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24148985A Pending JPS62103370A (en) 1985-10-30 1985-10-30 Apparatus for manufacturing electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS62103370A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326405A2 (en) * 1988-01-27 1989-08-02 Semiconductor Energy Laboratory Co., Ltd. Plasma chemical vapour reaction apparatus
US5433788A (en) * 1987-01-19 1995-07-18 Hitachi, Ltd. Apparatus for plasma treatment using electron cyclotron resonance
WO1998011764A1 (en) * 1996-09-13 1998-03-19 Aea Technology Plc Radio frequency plasma generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433788A (en) * 1987-01-19 1995-07-18 Hitachi, Ltd. Apparatus for plasma treatment using electron cyclotron resonance
EP0326405A2 (en) * 1988-01-27 1989-08-02 Semiconductor Energy Laboratory Co., Ltd. Plasma chemical vapour reaction apparatus
US5039548A (en) * 1988-01-27 1991-08-13 Semiconductor Energy Laboratory Co., Ltd. Plasma chemical vapor reaction method employing cyclotron resonance
WO1998011764A1 (en) * 1996-09-13 1998-03-19 Aea Technology Plc Radio frequency plasma generator

Similar Documents

Publication Publication Date Title
US4532199A (en) Method of forming amorphous silicon film
JPS593018A (en) Manufacture of silicon-base film by plasma deposition
JPH01149965A (en) Plasma reactor
JPS58125820A (en) Electronic cyclotron resonance type discharger
US5366586A (en) Plasma formation using electron cyclotron resonance and method for processing substrate by using the same
JPS61213377A (en) Method and apparatus for plasma deposition
JPS62103370A (en) Apparatus for manufacturing electrophotographic sensitive body
JP2626339B2 (en) Thin film forming equipment
JPH0687440B2 (en) Microwave plasma generation method
JPS62254419A (en) Plasma deposition device
JP2590112B2 (en) Microwave plasma processing equipment
JPS6254083A (en) Formation of film
JPH01187824A (en) Plasma processor
JP2649914B2 (en) Microwave plasma generator
JPH03264674A (en) Cvd device
JPS5855328A (en) Manufacture of amorphous silicon
JPH09283449A (en) Plasma chemical vapor deposition system
JPS6380523A (en) Microwave plasma treatment apparatus
JPH0252855B2 (en)
JPH0760798B2 (en) Method and apparatus for forming amorphous thin film
JPS59133364A (en) Electric discharge chemical reaction device
JPS61222533A (en) Plasma treatment apparatus
JP2570805B2 (en) Plasma deposition equipment
JPS63240013A (en) Reaction device
JPH03158474A (en) Plasma cvd device