JPS6210302B2 - - Google Patents

Info

Publication number
JPS6210302B2
JPS6210302B2 JP58212404A JP21240483A JPS6210302B2 JP S6210302 B2 JPS6210302 B2 JP S6210302B2 JP 58212404 A JP58212404 A JP 58212404A JP 21240483 A JP21240483 A JP 21240483A JP S6210302 B2 JPS6210302 B2 JP S6210302B2
Authority
JP
Japan
Prior art keywords
gas
reaction
light source
reaction surface
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58212404A
Other languages
Japanese (ja)
Other versions
JPS60106969A (en
Inventor
Shoichi Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKU SEISAKUSHO CO Ltd
Original Assignee
OKU SEISAKUSHO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKU SEISAKUSHO CO Ltd filed Critical OKU SEISAKUSHO CO Ltd
Priority to JP21240483A priority Critical patent/JPS60106969A/en
Publication of JPS60106969A publication Critical patent/JPS60106969A/en
Publication of JPS6210302B2 publication Critical patent/JPS6210302B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、シリコンウエハ等被成膜物の反応面
に低温成膜する光CVD装置に係り、特に、反応
炉内に光源を設けた光CVD装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical CVD apparatus for forming a film at a low temperature on a reaction surface of a target object such as a silicon wafer, and particularly to an optical CVD apparatus in which a light source is provided in a reaction furnace.

被成膜物の表面に酸化膜、窒化膜等を反応成膜
する手段として、高温熱酸化、プラズマエネルギ
ーを利用したプラズマCVD等が採用されている
が、新しい低温成膜技術として光CVD法が注目
されている。
High-temperature thermal oxidation, plasma CVD using plasma energy, etc. are used as a means of reaction-forming oxide films, nitride films, etc. on the surface of the object to be film-formed, but optical CVD is a new low-temperature film-forming technology. Attention has been paid.

従来一般に採用されている光CVD装置は、第
1図に示す如く、密閉された反応炉1内に、ウエ
ハ等の被成膜物2を配設し、反応炉1外に設けら
れた水銀灯の如き光源3から紫外線を被成膜物2
等の反応面2aに照射するものである。反応炉1
の光源3と反応面2a間の壁部には、石英窓4が
設けられ、上記紫外線は、石英窓4を介し、反応
面2aに照射される。又、反応炉1内には、壁部
に設けられたガス導入口1aから亜酸化窒素
(N2O),ジシラン(Si2H6)等の反応ガスが導入さ
れる。又、被成膜物2等は、ヒーター5により適
温に加熱される。
As shown in FIG. 1, a conventionally commonly used optical CVD apparatus places a film-forming object 2 such as a wafer in a sealed reactor 1, and a mercury lamp installed outside the reactor 1. UV light is emitted from a light source 3 such as
This is to irradiate the reaction surface 2a such as. Reactor 1
A quartz window 4 is provided on the wall between the light source 3 and the reaction surface 2a, and the ultraviolet rays are irradiated onto the reaction surface 2a through the quartz window 4. Further, reaction gases such as nitrous oxide (N 2 O) and disilane (Si 2 H 6 ) are introduced into the reactor 1 through a gas inlet 1a provided in the wall. Further, the object 2 and the like to be film-formed are heated to an appropriate temperature by a heater 5.

上記の如き光CVD装置では、光源3と反応面
2a間の距離に制約があると共に、紫外線が石英
窓4に吸収され、反応面2aにおける紫外線照度
が弱くなること、紫外線の2000Å以下の短波長の
ものが酸素に吸収されるため、光源3と石英窓4
間を真空にするか、窒素ガス(N2)を満たして酸
素を除去するかしなければならず、複雑な構造と
なること、更に、反応炉1内の生成物が、石英窓
4内側に附着し、紫外線の透過を悪くすることな
どの欠点があつた。
In the above-mentioned optical CVD apparatus, there are restrictions on the distance between the light source 3 and the reaction surface 2a, and the UV light is absorbed by the quartz window 4, weakening the UV illuminance at the reaction surface 2a. light source 3 and quartz window 4.
It is necessary to create a vacuum between the reactor 1 or fill it with nitrogen gas (N 2 ) to remove oxygen, resulting in a complicated structure. There were disadvantages such as adhesion and impairing the transmission of ultraviolet rays.

本発明は、上記の欠点を解決すべく創案された
ものであり、その目的は、紫外線の減衰を少なく
すると共に、反応生成物の光源への附着を防止
し、成膜効率を向上するようにした光CVD装置
を提供することにある。
The present invention was devised to solve the above-mentioned drawbacks, and its purpose is to reduce the attenuation of ultraviolet rays, prevent reaction products from adhering to the light source, and improve film-forming efficiency. The purpose of this invention is to provide an optical CVD device with improved performance.

本発明は、上記目的を達成するために、反応炉
内に光源を設置し、適宜の間隙を距てて被成膜物
の反応面と上記光源とを直接相対向せしめて配設
すると共に、前記キヤリアガス及び反応ガスを前
記反応面に向けて個別に流出せしめるガス導入手
段を夫々設け、これらガス導入手段によるガス流
により、反応生成物の光源への拡散、附着を防止
する光CVD装置を特徴としたものである。
In order to achieve the above-mentioned object, the present invention installs a light source in a reaction furnace, and arranges the reaction surface of the object to be film-formed and the light source directly facing each other with an appropriate gap between them. The optical CVD apparatus is characterized by providing gas introduction means for individually flowing out the carrier gas and reaction gas toward the reaction surface, and preventing the reaction products from diffusing and adhering to the light source by the gas flow from these gas introduction means. That is.

以下、本発明の実施例を図面に基づき説明す
る。即ち、第2図に示す如く、密閉状の反応炉1
内のほぼ中央部には直管型の低圧水銀灯からなる
細長の光源3が所定数(本実施例では第3図に示
す如く2本)配設され、その両端側を反応炉1に
固設するフランジ部1b,1bにより支承されて
いる。フランジ部1b,1bと光源3間には、0
リングの如きシール手段6,6が介設され、反応
炉1への漏洩を防止している。又、光源3の両端
部3a,3aは反応炉1,詳しくはフランジ1b
から外部に突出し、この突出する両端部3a,3
aは、密閉室7,7により被包される。又、光源
3の両端部3a,3aにはリード線8,8が接続
している。
Embodiments of the present invention will be described below based on the drawings. That is, as shown in FIG. 2, a closed reactor 1
A predetermined number (in this embodiment, two as shown in FIG. 3) of elongated light sources 3 made of straight-tube low-pressure mercury lamps are installed approximately in the center of the reactor 1, and both ends thereof are fixed to the reactor 1. It is supported by flange portions 1b, 1b. Between the flange parts 1b, 1b and the light source 3, 0
Sealing means 6, 6, such as rings, are interposed to prevent leakage into the reactor 1. Further, both ends 3a, 3a of the light source 3 are connected to the reactor 1, specifically the flange 1b.
The projecting ends 3a, 3 project outward from the
a is enclosed by sealed chambers 7, 7. Further, lead wires 8, 8 are connected to both ends 3a, 3a of the light source 3.

光源3と相対向する位置には、被成膜物2,2
等を載置するヒーター5が設けられ、被成膜物
2,2の反応面2a,2aと光源3とは、適宜の
間隙を距てて配置される。ヒーター5には、リー
ド線9,9が接続されていると共に、反応面2
a,2aと光源3との間隙を調整するリンク機構
10が係合している。
At a position facing the light source 3, there are objects 2, 2 to be film-formed.
The reaction surfaces 2a, 2a of the objects 2, 2 to be film-formed and the light source 3 are placed with an appropriate gap between them. Lead wires 9, 9 are connected to the heater 5, and the reaction surface 2
A link mechanism 10 that adjusts the gap between a, 2a and the light source 3 is engaged.

次に第3図に示す如く、光源3,3には、ガス
導入手段11,11が係合している。ガス導入手
段11,11は、後に詳しく記載する如く、キヤ
リアガスおよび反応ガスを、光源3,3と反応面
2a,2a間の間隙部に流入せしめるものであ
る。なおガス導入手段11,11はブラケツト1
2,12により反応炉1の壁部に取着される。
Next, as shown in FIG. 3, gas introduction means 11, 11 are engaged with the light sources 3, 3. The gas introduction means 11, 11, as will be described in detail later, allow a carrier gas and a reaction gas to flow into the gap between the light sources 3, 3 and the reaction surfaces 2a, 2a. Note that the gas introduction means 11, 11 are connected to the bracket 1.
2 and 12 to the wall of the reactor 1.

反応炉1の壁部には、ヒーター5の温度を測定
するためのサーモカツプル13を支持する保持具
14が取着される。
A holder 14 that supports a thermocouple 13 for measuring the temperature of the heater 5 is attached to the wall of the reactor 1 .

ガス導入手段11,11は、キヤリアガスとし
て窒素(N2),ヘリウム(He)およびアルゴン
(Ar)等の不活性ガスが導入される第1室15,
15と、ジシラン(Si2H6),モノシラン(SiH4
等の反応ガスが導入される第2室16,16と、
亜酸化窒素(N2O),アンモニア(NH3)等の反応
ガスが導入される第3室17,17から構成され
る。これ等のガスは、各室に連続する配管18,
18により、図示しないガス源から、図示しない
流量調節弁を介し供給される。
The gas introduction means 11, 11 include a first chamber 15 into which an inert gas such as nitrogen (N 2 ), helium (He), and argon (Ar) is introduced as a carrier gas;
15, disilane (Si 2 H 6 ), monosilane (SiH 4 )
a second chamber 16, 16 into which a reaction gas such as
It is composed of third chambers 17, 17 into which reactive gases such as nitrous oxide (N 2 O) and ammonia (NH 3 ) are introduced. These gases are supplied through pipes 18, which are connected to each chamber.
18, the gas is supplied from a gas source (not shown) via a flow control valve (not shown).

第1室15,15の下方側には、光源3,3を
囲繞する円弧状部15a,15aが形成され、円
弧状部15a,15aの下端側は適宜の周長だけ
開放され、変向部15b,15bを形成してい
る。従つて、室内に導入されたN2ガス等は円弧
状部15a,15aに沿つて下向し、変向部15
b,15bで変向されて反応面2a,2aの中央
部近傍に流出するように形成される。第2室1
6,16と第3室17,17の下端側には、導入
されたSi2H6ガス,N2Oガス等を反応面2a,2
aの中央部近傍に対して同一方向に向けて流出す
るための変向部16a,16a,17a,17a
が形成される。すなわち下端側はガス流出口に向
けて傾斜角α,βを形成し、上記ガスは傾斜角
α,βに沿つて流出される。
Arcuate portions 15a, 15a surrounding the light sources 3, 3 are formed on the lower side of the first chambers 15, 15, and the lower ends of the arcuate portions 15a, 15a are opened by an appropriate circumferential length, and a direction changing portion is formed. 15b, 15b are formed. Therefore, the N 2 gas etc. introduced into the room is directed downward along the arcuate portions 15a, 15a, and is directed downward to the direction changing portion 15.
b, 15b, and is formed so as to flow out near the center of the reaction surfaces 2a, 2a. 2nd room 1
6, 16 and the lower end sides of the third chambers 17, 17, the introduced Si 2 H 6 gas, N 2 O gas, etc. are placed on the reaction surfaces 2a, 2.
Direction changing parts 16a, 16a, 17a, 17a for flowing out in the same direction near the center of a
is formed. That is, the lower end side forms inclination angles α and β toward the gas outlet, and the gas flows out along the inclination angles α and β.

なお、傾斜角α,βおよび変向部15b,15
bの形状は、光源3,3の形状、光源3,3と反
応面2a,2aの距離等に応じて適宜のものが設
定される。
Note that the inclination angles α, β and the direction changing portions 15b, 15
The shape of b is appropriately set depending on the shape of the light sources 3, 3, the distance between the light sources 3, 3 and the reaction surfaces 2a, 2a, etc.

密閉室7,7内には、ガス導入管19,19か
ら不活性ガスが導入され、0.8ないし0.9気圧に保
持される。この密閉室7,7は、光源3,3が万
一破損した場合に、反応炉1内に空気が流入する
のを防止するためのものである。密閉室7,7内
の圧力が0.5気圧以下になると、図示しない圧力
検出手段が作用し、インターロツクが働き、導入
ガス系のバルブを閉止するように動作する。
Inert gas is introduced into the sealed chambers 7, 7 through gas introduction pipes 19, 19, and maintained at 0.8 to 0.9 atmosphere. The closed chambers 7, 7 are for preventing air from flowing into the reactor 1 in the event that the light sources 3, 3 are damaged. When the pressure inside the sealed chambers 7, 7 becomes 0.5 atmosphere or less, a pressure detection means (not shown) is activated, an interlock is activated, and the valve of the introduced gas system is operated to close.

ヒーター5に係合するリンク機構10は、パン
タグラフ状に形成され、操作具20を押引するこ
とにより、光源3,3と反応面2a,2aとの間
隙を調節自在とする。
A link mechanism 10 that engages with the heater 5 is formed in a pantograph shape, and by pushing and pulling the operating tool 20, the gap between the light sources 3, 3 and the reaction surfaces 2a, 2a can be adjusted.

サーモカツプル13には図示しない温度計に接
続するリード線21が連結される。
A lead wire 21 connected to a thermometer (not shown) is connected to the thermocouple 13.

次に、本実施例の作用を説明する。 Next, the operation of this embodiment will be explained.

まず、反応面2a,2aにシリコン酸化膜を形
成する場合を説明する。
First, a case will be described in which a silicon oxide film is formed on the reaction surfaces 2a, 2a.

第1室15,15内にはN2ガスが導入され、
第2室16,16にはSi2H6ガス、第3室17,
17にはN2Oガスがそれぞれ導入される。N2Oガ
スは1849Åの波長の紫外線により、窒素ガス
(N2)と不安定の酸素原子(O)に分解される。
又、Si2H6ガスは1849Åの紫外線により、SiH4
SiH2やSiH3とSiH3などに分解される。この化学
種に、上記のOが反応し、珪酸(SiO2)が生成さ
れ、このSiO2が反応面2aに反応し、シリコン
酸化膜が形成されることになる。上記の反応中に
おいて、Si2H6ガスおよびN2Oガスは傾斜角αお
よびβに沿つて流出され、又、N2ガスも変向部
15b,15bに沿つて反応面2a,2aに向け
て流出するためSiO2の如き反応生成物が光源
3,3に拡散されず、示矢A方向に流出されなが
ら反応するため、光源3,3への反応生成物の附
着が防止される。導入される上記ガスの流量およ
び光源3,3と反応面2a,2aとの間隙は、適
宜のものに調節されるため、光源3,3への反応
生成物の附着を有効に防止しながら、効率よく成
膜形成することができる。又、光源3,3と反応
面2a,2a間には、従来技術の如き石英窓等の
障害物がなく、紫外線の減衰が少ないため成膜効
率を向上することができる。又、N2ガスは、反
応ガスが光源3,3に附着するのを防止すべく機
能する他に、発火防止のための機能も果す。
N2 gas is introduced into the first chambers 15, 15,
The second chamber 16, 16 contains Si 2 H 6 gas, the third chamber 17,
N 2 O gas is introduced into each of 17. N 2 O gas is decomposed into nitrogen gas (N 2 ) and unstable oxygen atoms (O) by ultraviolet light having a wavelength of 1849 Å.
In addition, Si 2 H 6 gas is converted into SiH 4 by 1849 Å ultraviolet rays.
It is decomposed into SiH 2 , SiH 3 , SiH 3 , etc. The above-mentioned O reacts with this chemical species to generate silicic acid (SiO 2 ), and this SiO 2 reacts with the reaction surface 2a to form a silicon oxide film. During the above reaction, Si 2 H 6 gas and N 2 O gas are flowed out along the inclination angles α and β, and N 2 gas is also directed toward the reaction surfaces 2a, 2a along the deflection parts 15b, 15b. Since reaction products such as SiO 2 are not diffused into the light sources 3, 3 and react while flowing out in the direction of the indicator A, adhesion of reaction products to the light sources 3, 3 is prevented. Since the flow rate of the introduced gas and the gap between the light sources 3, 3 and the reaction surfaces 2a, 2a are adjusted appropriately, adhesion of reaction products to the light sources 3, 3 can be effectively prevented. Film formation can be performed efficiently. Further, there is no obstacle such as a quartz window as in the prior art between the light sources 3, 3 and the reaction surfaces 2a, 2a, and the attenuation of ultraviolet rays is small, so that the film forming efficiency can be improved. Further, the N 2 gas not only functions to prevent the reaction gas from adhering to the light sources 3, 3, but also functions to prevent ignition.

次に、窒化膜を形成する場合を説明する。 Next, the case of forming a nitride film will be explained.

第1室15,15にはN2ガスが導入され、第
2室16,16には同様にSi2H6ガス又はSiH4
スが導入される。第3室17,17にはアンモニ
ア(NH3)ガスが導入される。Si2H6ガスが、上記
の如く1849Åの紫外線と反応し、SiH4とSiH2
SiH3とSiH3などに分解される。この化学種とNH3
とが反応し、Si3N4ガスを生成し、このSi3N4が反
応面2a,2aに窒化膜を形成する。
N 2 gas is introduced into the first chambers 15, 15, and Si 2 H 6 gas or SiH 4 gas is similarly introduced into the second chambers 16, 16. Ammonia (NH 3 ) gas is introduced into the third chambers 17 , 17 . Si 2 H 6 gas reacts with 1849 Å ultraviolet light as described above, forming SiH 4 and SiH 2 and
Decomposed into SiH 3 , SiH 3 , etc. This chemical species and NH3
reacts to generate Si 3 N 4 gas, and this Si 3 N 4 forms a nitride film on the reaction surfaces 2a, 2a.

この場合も、上記の酸化膜の場合と同様な成膜
効率を上げることができる。
In this case as well, it is possible to increase the film formation efficiency as in the case of the oxide film described above.

次に、アモルフアス・シリコン(a―Si)膜を
形成する場合を説明する。
Next, the case of forming an amorphous silicon (a-Si) film will be described.

第1室15,15にはN2ガスが導入される
が、第2室16,16および第3室17,17に
はSi2H6ガス又はSiH4ガスが導入される。Si2H6
スと1849Åの紫外線により生ずる化学種により、
a―Si膜が反応面に成膜される。
N 2 gas is introduced into the first chambers 15, 15, while Si 2 H 6 gas or SiH 4 gas is introduced into the second chambers 16, 16 and the third chambers 17, 17. Chemical species generated by Si 2 H 6 gas and 1849 Å ultraviolet light cause
An a-Si film is deposited on the reaction surface.

なお、各室に導入するガスを適宜設定すること
により、その他の薄膜も形成することが可能とな
る。
Note that other thin films can also be formed by appropriately setting the gas introduced into each chamber.

本実施例では、光源3,3として直管型のもの
を使用したがこれに限定されない、またガス導入
手段11,11として、第1室15,15、第2
室16,16および第3室17,17の3室を採
用したが、勿論これに限定するものではない。
又、変向部15b,15bも円弧状に限定せず、
適宜の弧状のものでも構わない。又、変向部16
a,16a,17a,17aも図示の傾斜角α,
βを形成するものに限定せず、曲管状のものであ
つても構わない。
In this embodiment, straight pipe type light sources 3, 3 are used, but the light sources 3, 3 are not limited to this.
Although three chambers, the chambers 16, 16 and the third chambers 17, 17, are employed, the present invention is not limited thereto.
Moreover, the direction changing portions 15b, 15b are not limited to the arc shape,
An appropriate arc shape may also be used. Also, the direction changing section 16
a, 16a, 17a, and 17a also have the illustrated inclination angle α,
It is not limited to a shape that forms β, and may be a shape of a curved tube.

以上の説明によつて明らかな如く、本発明によ
れば、光源を反応炉内に設けたことにより、下記
の効果を生じる。(イ)光源と反応面との距離の調整
が、光源を反応炉外に設けた従来の場合に比べて
制約がない。(ロ)光源からの紫外線が石英窓に吸収
されることがなくなつて、反応面における紫外線
が強くなる。(ハ)キヤリアガスが光源の外周を経て
反応面に向け、反応ガスをキヤリアガスの外側を
経て反応面に向くようにガス導入手段を個別に設
けたので、光源からの紫外線の短波長のものが、
酸素に吸収されないように窒素ガスを満して酸素
を容易に除去できる。(ニ)石英窓を設けないので、
石英窓に反応炉内の生成物の附着防止対策が不必
要となる。
As is clear from the above description, according to the present invention, the following effects are produced by providing a light source within the reactor. (a) There are no restrictions on adjusting the distance between the light source and the reaction surface compared to the conventional case where the light source is provided outside the reactor. (b) The ultraviolet rays from the light source are no longer absorbed by the quartz window, and the ultraviolet rays at the reaction surface become stronger. (c) Gas introduction means were separately provided so that the carrier gas was directed toward the reaction surface through the outer periphery of the light source, and the reaction gas was directed toward the reaction surface through the outside of the carrier gas, so that short-wavelength ultraviolet light from the light source
Oxygen can be easily removed by filling it with nitrogen gas to prevent it from being absorbed by oxygen. (d) Since no quartz window is provided,
There is no need to take measures to prevent products in the reactor from adhering to the quartz window.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光CVD装置の構成図、第2図
は本発明一実施例の構成を示す断面図、第3図は
第2図の―線矢視の断面図である。 1……反応炉、1b……フランジ部、2……被
成膜物、2a……反応面、3……光源、3a……
両端部、4……石英窓、5……ヒーター、6……
シール手段、7……密閉室、8,9,21……リ
ード線、10……リンク機構、11……ガス導入
手段、12……ブラケツト、13……サーモカツ
プル、14……保持具、15……第1室、15a
……円弧状部、15b,16a,17a……変向
部、16……第2室、17……第3室、18……
配管、19……ガス導入管、20……操作具。
FIG. 1 is a configuration diagram of a conventional optical CVD apparatus, FIG. 2 is a sectional view showing the configuration of an embodiment of the present invention, and FIG. 3 is a sectional view taken along the line arrow - - in FIG. DESCRIPTION OF SYMBOLS 1... Reaction furnace, 1b... Flange part, 2... Film-forming object, 2a... Reaction surface, 3... Light source, 3a...
Both ends, 4...quartz window, 5...heater, 6...
Sealing means, 7... Sealed chamber, 8, 9, 21... Lead wire, 10... Link mechanism, 11... Gas introduction means, 12... Bracket, 13... Thermo couple, 14... Holder, 15 ...Room 1, 15a
...Circular part, 15b, 16a, 17a...Direction changing part, 16...Second chamber, 17...Third chamber, 18...
Piping, 19... gas introduction pipe, 20... operating tool.

Claims (1)

【特許請求の範囲】 1 キヤリアガスおよび反応ガスが導入されてい
る反応炉内に、適温に加熱された被成膜物を収設
し、該被成膜物の反応面に、光源の紫外線を照射
し、成膜する光CVD装置において、前記光源
を、前記反応炉内に、前記反応面と適宜の間隙を
距て、相対向して配設すると共に前記キヤリアガ
スを前記光源の外周を経て前記反応面に向け、前
記反応ガスを前記キヤリアガスの外側を経て前記
反応面に向くように流出せしめるガス導入手段を
夫々個別に設けたことを特徴とする光CVD装
置。 2 光源はその両端部を前記反応炉外に突出する
と共に、該両端部を、上記反応炉に連設し適圧の
不活性ガスが導入される密閉室で被包して配設さ
れることを特徴とする特許請求の範囲第1項に記
載の光CVD装置。 3 キヤリアガス導入手段は前記反応面の中央部
近傍に向けてガスを流出せしめる変向部を形成
し、反応ガス導入手段は前記間隙に対し同一方向
にのみ流出せしめる変向部を形成してなることを
特徴とする特許請求の範囲第1項記載の光CVD
装置。 4 光源と反応面との適宜の間隙は、該光源と該
反応面を有する被成膜物とを収設した反応炉と、
上記被成膜物を加熱するヒータとに、両端が支持
されたパンタグラフ状に形成されたリンク機構に
より調整されることを特徴とする特許請求の範囲
第1項記載の光CVD装置。
[Claims] 1. A film-forming object heated to an appropriate temperature is placed in a reactor into which a carrier gas and a reaction gas are introduced, and the reaction surface of the film-forming object is irradiated with ultraviolet rays from a light source. In the optical CVD apparatus for film formation, the light source is disposed in the reaction furnace to face the reaction surface with an appropriate gap therebetween, and the carrier gas is supplied to the reaction surface through the outer periphery of the light source. 1. An optical CVD apparatus characterized in that gas introduction means for causing the reaction gas to flow out toward the reaction surface through the outside of the carrier gas are provided respectively. 2. The light source has both ends protruding outside the reactor, and both ends are enclosed in a sealed chamber that is connected to the reactor and into which an inert gas at an appropriate pressure is introduced. An optical CVD apparatus according to claim 1, characterized in that: 3. The carrier gas introduction means forms a direction change part that causes the gas to flow out toward the vicinity of the center of the reaction surface, and the reaction gas introduction means forms a direction change part that causes the gas to flow out only in the same direction with respect to the gap. The optical CVD according to claim 1, characterized in that
Device. 4. An appropriate gap between the light source and the reaction surface is a reaction furnace in which the light source and the object to be filmed having the reaction surface are housed;
2. The optical CVD apparatus according to claim 1, wherein the optical CVD apparatus is adjusted by a link mechanism formed in a pantograph shape with both ends supported by the heater that heats the object to be film-formed.
JP21240483A 1983-11-14 1983-11-14 Optical cvd apparatus Granted JPS60106969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21240483A JPS60106969A (en) 1983-11-14 1983-11-14 Optical cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21240483A JPS60106969A (en) 1983-11-14 1983-11-14 Optical cvd apparatus

Publications (2)

Publication Number Publication Date
JPS60106969A JPS60106969A (en) 1985-06-12
JPS6210302B2 true JPS6210302B2 (en) 1987-03-05

Family

ID=16622022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21240483A Granted JPS60106969A (en) 1983-11-14 1983-11-14 Optical cvd apparatus

Country Status (1)

Country Link
JP (1) JPS60106969A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3919538A1 (en) * 1989-06-15 1990-12-20 Asea Brown Boveri COATING DEVICE
TWI251506B (en) 2000-11-01 2006-03-21 Shinetsu Eng Co Ltd Excimer UV photo reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119336A (en) * 1982-01-08 1983-07-15 Ushio Inc Apparatus for vapor deposition by photochemical reaction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119336A (en) * 1982-01-08 1983-07-15 Ushio Inc Apparatus for vapor deposition by photochemical reaction

Also Published As

Publication number Publication date
JPS60106969A (en) 1985-06-12

Similar Documents

Publication Publication Date Title
JPH049369B2 (en)
WO1984002035A1 (en) Method of forming amorphous silicon film
JPS6134929A (en) Growing device of semiconductor device
JPH0772351B2 (en) Metal thin film selective growth method
JPH03107466A (en) Method and device for manufacturing adherend for inorganic and amorphous protective film on organic polymer substrate
JPS6210302B2 (en)
JPS5953674A (en) Chemical vapor deposition method
JPS59147435A (en) Formation of silicon oxide film
JPH0128830B2 (en)
JPH0468387B2 (en)
US4856458A (en) Photo CVD apparatus having no ultraviolet light window
JP2637121B2 (en) Photoexcitation reactor
JPS61289623A (en) Vapor-phase reaction device
JPS60166030A (en) Device for forming film utilizing photochemical reaction
JPS6118125A (en) Thin film forming apparatus
JPS62160713A (en) Photoexcitation film forming equipment
JPH0545053B2 (en)
JPH0544818B2 (en)
JPS61264719A (en) Light cvd device
JPS61117824A (en) Vapor phase reaction container
JPS61198733A (en) Method of forming thin-film
JPS60241217A (en) Longitudinal ultraviolet ray emission vapor growth device
JPS6052579A (en) Optical nitride film forming device
JPH03271372A (en) Method for forming oxide thin film using excimer laser
JPS61208826A (en) Semiconductor thin film