JPS6210292B2 - - Google Patents

Info

Publication number
JPS6210292B2
JPS6210292B2 JP59249234A JP24923484A JPS6210292B2 JP S6210292 B2 JPS6210292 B2 JP S6210292B2 JP 59249234 A JP59249234 A JP 59249234A JP 24923484 A JP24923484 A JP 24923484A JP S6210292 B2 JPS6210292 B2 JP S6210292B2
Authority
JP
Japan
Prior art keywords
alloy
oxide film
amount
glass
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59249234A
Other languages
Japanese (ja)
Other versions
JPS61127850A (en
Inventor
Daiji Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP24923484A priority Critical patent/JPS61127850A/en
Publication of JPS61127850A publication Critical patent/JPS61127850A/en
Publication of JPS6210292B2 publication Critical patent/JPS6210292B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Joining Of Glass To Other Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は軟質ガラス用の封着合金に関するもの
である。 〔従来の技術〕 従来より軟質ガラスとの封着に用いられる合金
として42Ni―6Cr―Fe合金、52Ni―Fe合金、
18Cr―Fe合金などが知られている。これらの合
金のうち18Cr―Fe合金は、その熱膨張係数が軟
質ガラスとよく一致しておりしかも安価であるこ
とから種々の封着体に使用されている。この
18Cr―Fe合金は、ガラス封着に先立ち、水素露
点+5℃〜+50℃の湿水素雰囲気中にて加熱温度
900〜1200℃、加熱時間10〜60mm、の条件で予備
酸化処理を施し、合金表面に0.2〜5μ程度の酸
化膜を形成させたのち、その酸化膜を介してガラ
スと封着される。しかしながらこの合金は酸化膜
と地金との密着強度が弱く、またα相からγ相を
析出し易く、このγ相の析出は熱膨張係数を大き
く変化させ、さらに合金の耐食性を劣化させるな
ど多くの欠点を有していた。そこでγ相の析出を
抑えるため、本合金にTiやVを含有させたり、
また密着強度を高めるため、AlやCaを含有させ
るなどの方法が検討され、そのガラス封着特性は
かなり改良されてきている(例えば特開昭49―
4615号)。 しかしながら、酸化膜と地金との密着強度はま
だ充分に改良されたとは言えず、特に予備酸化処
理が不充分な場合に酸化膜密着性の劣化が著し
く、ガラス封着の信頼性の面で非常に不安定な要
素を有していた。 〔発明が解決しようとする問題点〕 本発明はFe―Cr系フエライトステンレス鋼の
上記欠点を改良し、酸化膜密着強度の良好な軟質
ガラス封着用合金を提供するものである。 〔問題点を解決するための手段〕 発明者らは、酸化膜密着の機構ならびに酸化膜
密着性におよぼす合金元素の影響について詳細に
検討を行つた結果、本合金の酸化膜密着性には合
金中の金属Ti量(炭化物TiCや窒化物TiNの形と
して存在するTiではなく、合金中に固溶したTi
の量で、分析手法的には、10%H2SO4に溶解する
Tiの量)が大きく影響し、金属Ti量を0.1〜0.45
%にすることにより非常に安定して良好な酸化膜
密着性が得られることを見出した。 従来、合金中のCやNを固定して合金を安定化
させる(γ相の析出を抑える)目的で含有せしめ
ていたTiを、CやNの固定に必要な量を越えて
含有させ、合金中に固溶した形で存在させること
により酸化膜密着性が向上するのであり、具体的
発明の内容は、重量%にてCr15〜30%、Ti0.15
〜0.8%残部実質的にFeより成るフエライト系ス
テンレス鋼であり、合金中の金属Ti量が0.1〜
0.45%であることを特徴とする軟質ガラス封着用
合金である。 〔作用〕 合金中の金属Tiは予備酸化処理時にTiO2の微
細な内部酸化粒子を形成し酸化膜直下の合金中に
分散した形となる(図参照)。この内部酸化粒子
の形成が酸化膜密着性にどのような効果を有して
いるのかはまだ明確ではないが、おそらく、この
内部酸化粒子が合金中を移動してくる原子空孔の
捕獲点として働き、酸化膜と合金との界面にvoid
(空孔)が形成されるのを防ぎ、その密着性を向
上させているものと推定される。 次に組成範囲の限定理由について述べる。 Cr含有量は15%未満になると合金の熱膨張係
数が大きくなり過ぎるため軟質ガラスとのマツチ
ング性が悪くなり、また高温でγ相が析出しやす
くなる。逆にCr含有量が30%を越えるとδ相析
出による機械的特性の劣化をまねく。従つてCr
含有量は15〜30%とした。 Ti含有量は、合金中のCおよびNを固定させ
るため、通常0.15%以上必要であり、逆に0.8%
を越えると合金の加工性を劣化させるため0.15〜
0.8%とした。 金属Ti含有量については0.1%未満では酸化膜
密着性の向上に充分なる効果がなく、0.45%を越
えると酸化膜の膜厚が厚くなり過ぎ、ガラス封着
部の歪が大きくなるという欠点が生じるため0.1
〜0.45%に限定した。 〔実施例〕 以下本発明を実施例により詳細に説明する。真
空誘導溶解炉により表に示す8種類の合金を溶解
し熱間圧延および冷間圧延により0.5mm厚さの板
材に仕上げたのち20mm角の試料を切り出しガラス
封着実験を行い酸化膜の密着強度を調べた。密着
強度測定結果を表に合わせて示す。 なお、ここでは実験材のTi量の調整は、総Ti
量に対するCおよびNの添加量を加減することに
より行つた。CおよびNの添加量を増せば炭化物
および窒化物として固定されるTi量も増し、そ
の分金属Ti量は減る。 ガラス封着に先立つ予備酸化処理は、水素露点
+20℃〜+40℃の湿潤水素中、加熱温度は1100
℃、加熱時間60mmの条件下で行い、ガラス封着は
予備酸化処理した試料の上に軟質ガラス片を乗せ
バーナーにて約1200℃に加熱する方法で行つた。 酸化膜密着強度については、封着部のガラスを
衝撃的に破壊し、その時の合金表面からの酸化膜
の剥離度合(ガラス溶着面積に対する膜剥離面積
の比率)で判定した。
[Industrial Field of Application] The present invention relates to a sealing alloy for soft glass. [Prior art] As alloys conventionally used for sealing with soft glass, 42Ni-6Cr-Fe alloy, 52Ni-Fe alloy,
18Cr-Fe alloy etc. are known. Among these alloys, 18Cr--Fe alloy is used in various sealed bodies because its coefficient of thermal expansion closely matches that of soft glass and is inexpensive. this
Prior to glass sealing, the 18Cr-Fe alloy is heated in a wet hydrogen atmosphere with a hydrogen dew point of +5°C to +50°C.
A preliminary oxidation treatment is performed under the conditions of 900 to 1200°C and a heating time of 10 to 60 mm to form an oxide film of approximately 0.2 to 5 μm on the alloy surface, and then the alloy is sealed with glass via the oxide film. However, this alloy has a weak adhesion strength between the oxide film and the base metal, and also tends to precipitate the γ phase from the α phase. The precipitation of the γ phase greatly changes the coefficient of thermal expansion and further deteriorates the corrosion resistance of the alloy. It had the following drawbacks. Therefore, in order to suppress the precipitation of the γ phase, this alloy contains Ti and V,
Furthermore, in order to increase the adhesion strength, methods such as incorporating Al or Ca have been studied, and the glass sealing properties have been considerably improved (for example, JP-A-49
No. 4615). However, it cannot be said that the adhesion strength between the oxide film and the base metal has been sufficiently improved. Especially when the preliminary oxidation treatment is insufficient, the oxide film adhesion deteriorates significantly, and the reliability of glass sealing is affected. It had very unstable elements. [Problems to be Solved by the Invention] The present invention improves the above-mentioned drawbacks of Fe--Cr ferrite stainless steel and provides a soft glass sealing alloy with good oxide film adhesion strength. [Means for Solving the Problems] The inventors conducted detailed studies on the mechanism of oxide film adhesion and the influence of alloying elements on oxide film adhesion. The amount of metallic Ti in the alloy (not Ti existing in the form of carbide TiC or nitride TiN, but Ti dissolved in solid solution in the alloy)
Analytically, dissolve in 10% H2SO4 in an amount of
The amount of Ti) has a large effect, and the amount of metallic Ti is 0.1 to 0.45.
%, it has been found that very stable and good oxide film adhesion can be obtained. Conventionally, Ti was included for the purpose of stabilizing the alloy by fixing C and N in the alloy (suppressing the precipitation of γ phase), but by adding Ti in excess of the amount necessary for fixing C and N, The adhesion of the oxide film is improved by having the oxide film present as a solid solution in
It is a ferritic stainless steel with the balance essentially consisting of ~0.8% Fe, and the amount of metallic Ti in the alloy is ~0.1~
This is a soft glass sealing alloy characterized by a content of 0.45%. [Operation] The metal Ti in the alloy forms fine internal oxidized particles of TiO 2 during the preliminary oxidation treatment and becomes dispersed in the alloy directly under the oxide film (see figure). It is not yet clear what effect the formation of internal oxide particles has on oxide film adhesion, but it is likely that these internal oxide particles act as capture points for atomic vacancies moving through the alloy. void at the interface between the oxide film and the alloy
It is presumed that this prevents the formation of pores and improves the adhesion. Next, the reason for limiting the composition range will be described. If the Cr content is less than 15%, the coefficient of thermal expansion of the alloy becomes too large, resulting in poor matching with soft glass, and the γ phase tends to precipitate at high temperatures. Conversely, if the Cr content exceeds 30%, mechanical properties deteriorate due to δ phase precipitation. Therefore Cr
The content was 15-30%. Ti content is normally required to be 0.15% or more in order to fix C and N in the alloy, and conversely 0.8%
0.15~
It was set at 0.8%. Regarding the metallic Ti content, if it is less than 0.1%, it will not have a sufficient effect on improving oxide film adhesion, and if it exceeds 0.45%, the oxide film will become too thick, resulting in large distortion in the glass sealing area. to occur 0.1
Limited to ~0.45%. [Example] The present invention will be explained in detail below with reference to Examples. The eight types of alloys shown in the table were melted in a vacuum induction melting furnace and finished into 0.5 mm thick plates by hot rolling and cold rolling. 20 mm square samples were cut out and glass sealing experiments were conducted to determine the adhesion strength of the oxide film. I looked into it. The adhesion strength measurement results are also shown in the table. Note that the adjustment of the amount of Ti in the experimental materials is based on the total amount of Ti.
This was done by adjusting the amounts of C and N added. As the amount of C and N added increases, the amount of Ti fixed as carbides and nitrides also increases, and the amount of metallic Ti decreases accordingly. Pre-oxidation treatment prior to glass sealing is performed in wet hydrogen with a hydrogen dew point of +20°C to +40°C at a heating temperature of 1100°C.
℃ and a heating time of 60 mm, and glass sealing was performed by placing a piece of soft glass on top of the pre-oxidized sample and heating it to about 1200℃ with a burner. The oxide film adhesion strength was determined by shockingly breaking the glass in the sealed portion and determining the degree of peeling of the oxide film from the alloy surface (ratio of the peeled area to the glass weld area).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明合金は酸化膜と合金
素地との密着強度が強く、軟質ガラスとの封着に
使用すればその信頼性は著しく向上するものであ
る。
As explained above, the alloy of the present invention has strong adhesion strength between the oxide film and the alloy base, and when used for sealing with soft glass, its reliability is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸化膜の断面形態を示す金属組織顕微
鏡写真である。aは金属Tiが0.02%、bは金属Ti
が0.28%の場合である。
FIG. 1 is a metallographic micrograph showing the cross-sectional form of the oxide film. a is 0.02% metal Ti, b is metal Ti
is 0.28%.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%にてCr15〜30%、Ti0.15〜0.8%残部
実質的にFeより成るフエライト系ステンレス鋼
であり、合金中の金属Ti量が0.1〜0.45%である
ことを特徴とする酸化膜密着性の高い軟質ガラス
封着用合金。
1. Ferritic stainless steel consisting of 15 to 30% Cr, 0.15 to 0.8% Ti, and the balance substantially Fe, and an oxide film characterized in that the amount of metallic Ti in the alloy is 0.1 to 0.45%. Alloy for soft glass sealing with high adhesion.
JP24923484A 1984-11-26 1984-11-26 Alloy for seal bonding to soft glass Granted JPS61127850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24923484A JPS61127850A (en) 1984-11-26 1984-11-26 Alloy for seal bonding to soft glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24923484A JPS61127850A (en) 1984-11-26 1984-11-26 Alloy for seal bonding to soft glass

Publications (2)

Publication Number Publication Date
JPS61127850A JPS61127850A (en) 1986-06-16
JPS6210292B2 true JPS6210292B2 (en) 1987-03-05

Family

ID=17189915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24923484A Granted JPS61127850A (en) 1984-11-26 1984-11-26 Alloy for seal bonding to soft glass

Country Status (1)

Country Link
JP (1) JPS61127850A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2672414A (en) * 1950-01-27 1954-03-16 United States Steel Corp Chromium-titanium steel adapted for sealing to glass
JPS493722A (en) * 1972-05-01 1974-01-14
JPS51137616A (en) * 1975-05-26 1976-11-27 Nippon Steel Corp Ferritic stainless steel having high tough ness and excellent forming property

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2672414A (en) * 1950-01-27 1954-03-16 United States Steel Corp Chromium-titanium steel adapted for sealing to glass
JPS493722A (en) * 1972-05-01 1974-01-14
JPS51137616A (en) * 1975-05-26 1976-11-27 Nippon Steel Corp Ferritic stainless steel having high tough ness and excellent forming property

Also Published As

Publication number Publication date
JPS61127850A (en) 1986-06-16

Similar Documents

Publication Publication Date Title
US20040131493A1 (en) Iron-chrome aluminium-alloy
JPS6210292B2 (en)
JPS58213846A (en) Electrical contact material made of internally oxidized ag-sn alloy and its manufacture
CA1156523A (en) Reduction of loss of zinc by vaporization when heating zinc-aluminum coatings on ferrous metal base
JPH05283149A (en) Heater material with excellent surface insulation property and its manufacture
Arnold et al. A contribution to the understanding of the metallic coating of iron base alloys
JP4259151B2 (en) Heat resistant material
JPH1112644A (en) Antioxidant, and hot working method using the antioxidant
JP3351837B2 (en) Al-containing ferritic stainless steel with excellent manufacturability and high-temperature oxidation resistance
JPH076038B2 (en) Oxidation resistance Fe-Cr-Al alloy
JP3237921B2 (en) Solid wire for gas shielded arc welding and method of manufacturing the same
JPH05140766A (en) Aluminum-clad iron-chrome foil containing additive of rare earth element or yttrium
JPH0261544B2 (en)
JPH02243743A (en) Material for durable heating wire
JPH0820846A (en) High chromium high nickel alloy excellent in molten carbonate corrosion resistance
JP4355782B2 (en) Ferritic heat resistant steel with improved oxidation resistance
JPS597344B2 (en) Alloy for soft glass sealing
RU2030479C1 (en) Heat-resistant alloy for electric heating cells
JPH1112566A (en) Antioxidant
KR920006606B1 (en) Making process for ferrite stainless steel
JP3301845B2 (en) Manifold converter based on high Al content ferritic stainless steel
JPS6013057A (en) Aluminized steel sheet with superior strength at high temperature and superior heat resistance
JPS62151291A (en) Brazing filler metal
JPH09263901A (en) Ferritic stainless steel sheet for enameling base material excellent in enameling adhesion
JP3471415B2 (en) Stainless steel for enamel and its pretreatment method