JPS62102852A - Apparatus for producing thin organic film - Google Patents

Apparatus for producing thin organic film

Info

Publication number
JPS62102852A
JPS62102852A JP60243306A JP24330685A JPS62102852A JP S62102852 A JPS62102852 A JP S62102852A JP 60243306 A JP60243306 A JP 60243306A JP 24330685 A JP24330685 A JP 24330685A JP S62102852 A JPS62102852 A JP S62102852A
Authority
JP
Japan
Prior art keywords
film
compression
belt
liquid
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60243306A
Other languages
Japanese (ja)
Inventor
Atsushi Sugiyama
淳 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP60243306A priority Critical patent/JPS62102852A/en
Publication of JPS62102852A publication Critical patent/JPS62102852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Apparatus (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To easily form a monomolecular film consisting of a material having softness by moving a belt toward the lateral side with respect to the direction where the film is pressurized in the central part thereby releasing the pressure in the stage of compressing the monomolecular film on the boundary face by the belt. CONSTITUTION:This invention relates to an apparatus for producing a thin org. film by sticking and accumulating the monomolecular film developed on the liquid-liquid or gas-liquid boundary face to a substrate, in which the belt is put on in such a manner as to release part of the compression in the direction lateral with the compression direction in the central part of the compression corresponding to lateral side of the immersing position of the substrate 5. Then the apparatus is made applicable widely to dynamic sticking methods except a horizontal sticking method is sufficiently in a vertical dipping method, etc., the method is successfully operable at a high accumulating of 3-7 times the speed and the productivity of the uniform and stable film is remarkably im proved. A material which is required to considerably decrease the accumulating speed is particularly stably formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液−液又は気−液界面上に展開した単分子膜を
基板に付着、累積させることによる有機薄膜の製造装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for producing an organic thin film by depositing and accumulating a monomolecular film developed on a liquid-liquid or gas-liquid interface on a substrate.

この様にして得られた有機薄膜は、オングストロームオ
ーダーの厚みの制御が可能で、高い機能を持たせること
ができ、光学、電気・電子部品やその製造工程、金属の
表面処理や医薬品等に幅広い利用分野がある。
The organic thin films obtained in this way can be controlled in thickness on the order of angstroms and have high functionality, and are widely used in optical, electrical and electronic components and their manufacturing processes, metal surface treatment, pharmaceuticals, etc. There are fields of use.

〔発明の概要〕[Summary of the invention]

本発明は、液−液又は気−液界面上の単分子膜を基板に
付着累積させるために界面上の単分子膜をベルトによっ
て圧縮するときに、基板の浸積が行われる中央部分で圧
力する方向に対して横にベルトを移動して、圧力の一部
分を逃がしてやることにより、界面上の単分子膜の崩壊
を押え、従来作製の困難だった柔軟性の低い物質の単分
子膜を容易に作ることができる。
The present invention uses a belt to compress the monolayer on the liquid-liquid or gas-liquid interface to deposit and accumulate the monolayer on the substrate, while applying pressure in the central part of the substrate where the immersion takes place. By moving the belt sideways to the direction of the movement and releasing a portion of the pressure, the monomolecular film on the interface is prevented from collapsing, and the monomolecular film of a material with low flexibility, which was difficult to produce in the past, can be formed. It can be easily made.

〔従来の技術〕[Conventional technology]

従来、気−液界面上の単分子膜を基板に付着・累積させ
るために界面上の単分子膜を圧縮するために、Bloc
lgettが考案したピストン油による圧縮や、フロー
トを移動して圧縮する方法は実験質規模では行なわれて
いる。また第2回に示す様に回転する円筒によって膜物
質の移動と圧縮を行うものもある。
Conventionally, Bloc was used to compress the monomolecular film on the gas-liquid interface in order to adhere and accumulate it on the substrate.
Compression using piston oil and the method of compressing by moving a float, devised by John Lgett, have been carried out on an experimental scale. In addition, as shown in Part 2, there is also a method in which the membrane material is moved and compressed using a rotating cylinder.

また、気−液、液−液両界面上の単分子膜の圧縮に適応
できる図3の様にベルトを凹型にがけ、ベルトのへこん
だ部分を内側に移動することによる圧縮方法は、電子天
秤等による界面圧のフィードバック機構との適合性が良
く、広く用いられている。
In addition, a compression method in which a belt is wrapped in a concave shape and the concave portion of the belt is moved inward as shown in Figure 3, which can be applied to the compression of monomolecular films on both gas-liquid and liquid-liquid interfaces, is an electronic balance. It has good compatibility with the interfacial pressure feedback mechanism proposed by et al., and is widely used.

〔発明が解決しようとする問題点及び目的〕しかし、前
記のピストン油やフロートによる方法では、基板のサイ
ズを大きくできないことや、ピストン油のもれによる単
分子膜の汚染や、フロートのすきまからのもれなどによ
って安定した成膜をしにくいなどの問題点がある。また
、回転円筒による方法では高い表面圧に適せず、円筒へ
の付着、剥離によって単分子膜の構造を乱すなどの欠点
がある。
[Problems and objectives to be solved by the invention] However, with the above-mentioned method using piston oil or float, it is not possible to increase the size of the substrate, contamination of the monomolecular film due to leakage of piston oil, and problems due to gaps in the float. There are problems such as difficulty in forming a stable film due to leakage. Furthermore, the method using a rotating cylinder is not suitable for high surface pressure, and has drawbacks such as adhesion to the cylinder and peeling, which disturbs the structure of the monomolecular film.

凹型にかけたベルトの移動による圧縮では、基本的にベ
ルトと単分子膜が接触している部分での両者の移動が一
致していないために、応力が働いて単分子膜の構造を破
壊している。これはこの形式のみに限らず一般的に圧縮
による膜物質の移動と基板への付着のための膜物質の移
動が一敗しておらず、境界領域ですり、すべり等の応力
が働いており、その緩和のために膜物質への圧縮・付着
速度を速くできなかった。
In compression caused by the movement of a belt placed in a concave shape, the movement of the belt and monomolecular film is basically inconsistent at the part where they are in contact, so stress acts and destroys the structure of the monomolecular film. There is. This is not limited to only this type of work, but in general, the movement of the film material due to compression and the movement of the film material due to adhesion to the substrate has never failed, and stress such as rubbing and slipping is working in the boundary area. , due to its relaxation, the speed of compression and adhesion to the membrane material could not be increased.

本発明では上記のような単分子膜の膜構造の破壊や汚染
を無くし、膜圧縮・付着速度を上げて生産性を高めても
、均一で安定した有機薄膜を得ることを目的として解決
するものである。
The present invention aims to eliminate the destruction and contamination of the monomolecular film structure as described above, and to obtain a uniform and stable organic thin film even if the productivity is increased by increasing the film compression and adhesion speed. It is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の基本的構成は、第1図に示す様に基板の浸積位
置の横にあたる、圧縮の中心部分で圧縮方向に対して横
の方向に一部の圧縮を逃がす様にベルトをかけることを
特徴とする。第1図は基本的な概念を示しただけであり
、本発明は必ずしもこの形にとられれることなく第3〜
6図のように圧縮の中心部分で圧縮を一部分逃がすもの
すべてに適応するものである。
The basic structure of the present invention is to apply a belt so as to release part of the compression in the direction transverse to the compression direction at the center of the compression, which is next to the immersion position of the substrate, as shown in Figure 1. It is characterized by FIG. 1 merely shows the basic concept, and the present invention does not necessarily take this form;
As shown in Figure 6, this is applicable to all systems that partially release compression at the center of the compression.

〔実施例〕〔Example〕

二界逆浸透、二回イオン交換した純水をさらに蒸留した
水と空気の界面に、ステアリン酸のヘキサン溶液(濃度
0. 05 g/ 100m1)を静かに滴下し、(d
cl、を水層が10−’Mになる様に加えた後、溶媒ヘ
キサンの除去と、水面上の遊離は単分子膜のカドミウム
塩の置き換えを行った後、第3図〜第6図に示す形にか
けたテフロンコートしたガラスベルトによって圧縮し、
基板に付着・累積させた。表面圧は30dyn /am
、通常の凹型にかけたベルトによる圧縮では基板の浸積
速度が2On+m/winを超えると膜構造が不安定と
なっていたが、本発明による方法では100+am/m
inでも安定した成膜ができ、偏光顕微鏡及びSEMに
よる観察でも表面構造の乱れは見い出せなかった。
A hexane solution of stearic acid (concentration 0.05 g/100 ml) was gently dropped onto the interface between water and air, which was further distilled from pure water that had been subjected to double-field reverse osmosis and ion exchange twice.
After adding Cl so that the aqueous layer was 10-'M, the solvent hexane was removed, and the free cadmium salt on the water surface was replaced with the cadmium salt in the monolayer, as shown in Figures 3 to 6. Compressed with a Teflon-coated glass belt placed in the shape shown,
It adhered and accumulated on the substrate. Surface pressure is 30dyn/am
In the conventional compression using a concave belt, the film structure becomes unstable when the immersion rate of the substrate exceeds 2 On+m/win, but with the method of the present invention, the film structure becomes unstable when the substrate immersion rate exceeds 100+ am/m.
A stable film could be formed even when the film was injected, and no disturbance in the surface structure was found even when observed using a polarizing microscope and SEM.

また、FT−IHによる測定では膜物質の配向が確認さ
れ、X線回折による面間隔も変化していなかった。
Further, the orientation of the film material was confirmed by FT-IH measurement, and the interplanar spacing by X-ray diffraction was also unchanged.

さらに膜物質をオクタデシルアクリル酸やジアセチレン
のカルボン酸誘導体、オメガ−トリコセン酸等の不飽和
アルキルを含むもの及びシアニン、メロシアニン、スク
アリリウム等の色素を含有するLB膜原料についても同
様にして単分子膜の圧縮・付着・累積を行なったが、い
ずれも3倍〜7倍の累積速度まで、均一で安定した成膜
ができた。
Furthermore, monomolecular membranes were similarly applied to film materials containing unsaturated alkyls such as octadecyl acrylic acid, diacetylene carboxylic acid derivatives, and omega-tricosenic acid, and LB film materials containing dyes such as cyanine, merocyanine, and squarylium. Compression, adhesion, and accumulation were carried out, and uniform and stable film formation was possible in all cases up to a cumulative speed of 3 to 7 times.

また回転円筒方に適応した場合も同様に累積速度の向上
がみられたが、その度合いは低く、1.5倍〜4倍であ
った。
Furthermore, when applied to a rotating cylinder, a similar improvement in cumulative speed was observed, but the degree of improvement was low, ranging from 1.5 to 4 times.

〔発明の効果〕〔Effect of the invention〕

本発明は水平付着性以外の動的な付着法に広く適用でき
、その生産性を向上させることができる。
The present invention can be widely applied to dynamic adhesion methods other than horizontal adhesion, and can improve the productivity thereof.

特に垂直浸積法及びそれに類する基板の浸積法では3倍
から7倍の大きな累積速度に対応することができ、均一
で安定な膜の生産性を大幅に向上することができる。ま
た従来作製が困難で、累積速度を極端に低下させる必要
があワた物質については特に安定した成膜が可能である
In particular, the vertical immersion method and similar substrate immersion methods can accommodate a 3 to 7 times higher accumulation rate, and can greatly improve the productivity of uniform and stable films. Furthermore, it is possible to form a particularly stable film with respect to substances that are conventionally difficult to produce and require an extremely low accumulation rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はベルトのかけ方の上面図の一例であり第2図は
回転円筒による圧縮の断面図である。また第3図〜第6
図はベルトのかけ方の上面図のその他の例である。 以  上
FIG. 1 is an example of a top view of how the belt is applied, and FIG. 2 is a sectional view of compression by a rotating cylinder. Also, Figures 3 to 6
The figure is another example of a top view of how to put on the belt. that's all

Claims (1)

【特許請求の範囲】[Claims] 液−液又は気−液界面に単分子膜を展開し、それを基板
に付着累積させるために、界面上の単分子膜をベルトに
よって圧縮するときに、圧縮される中心部分で圧縮方向
に対して横の方向に一部の圧力を逃がす様にベルトを設
定・移動することを特徴とする有機薄膜製造装置。
When the monomolecular film on the interface is compressed by a belt in order to spread the monomolecular film on the liquid-liquid or gas-liquid interface and deposit it on the substrate, the center part of the film is compressed in the direction of compression. An organic thin film production device characterized by setting and moving a belt so as to release part of the pressure laterally.
JP60243306A 1985-10-30 1985-10-30 Apparatus for producing thin organic film Pending JPS62102852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60243306A JPS62102852A (en) 1985-10-30 1985-10-30 Apparatus for producing thin organic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60243306A JPS62102852A (en) 1985-10-30 1985-10-30 Apparatus for producing thin organic film

Publications (1)

Publication Number Publication Date
JPS62102852A true JPS62102852A (en) 1987-05-13

Family

ID=17101870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60243306A Pending JPS62102852A (en) 1985-10-30 1985-10-30 Apparatus for producing thin organic film

Country Status (1)

Country Link
JP (1) JPS62102852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229569A (en) * 1988-11-02 1990-09-12 Nippon Laser Denshi Kk Device for depositing monomolecular film on substrate in single or multiple layers
JP2017521265A (en) * 2014-04-29 2017-08-03 ソル ヴォルテイックス エービーSol Voltaics Ab Method for collecting and aligning nanowire assemblies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229569A (en) * 1988-11-02 1990-09-12 Nippon Laser Denshi Kk Device for depositing monomolecular film on substrate in single or multiple layers
JP2017521265A (en) * 2014-04-29 2017-08-03 ソル ヴォルテイックス エービーSol Voltaics Ab Method for collecting and aligning nanowire assemblies

Similar Documents

Publication Publication Date Title
US6180239B1 (en) Microcontact printing on surfaces and derivative articles
US5900160A (en) Methods of etching articles via microcontact printing
EP1772186B1 (en) Process for producing nanoparticle or nanostructure with use of nanoporous material
Sweeney et al. Effect of ion structure on nanoscale friction in protic ionic liquids
WO2007096082A1 (en) Patterning method and device with a patterned surface
SG173731A1 (en) A high aspect ratio adhesive structure and a method of forming the same
JPS62102852A (en) Apparatus for producing thin organic film
CN105177502B (en) A kind of preparation method of ultra-smooth metal film surfaces
GB1582860A (en) Device
FR2441195A1 (en) METHOD FOR BONDING HYDROPHILIC COLLOIDAL LAYERS TO A PLASTIC MATERIAL
JPS63141639A (en) Preparation of molecular oriented thin film
JPH04139005A (en) Production of inorganic thin film
EP0729793B1 (en) Organic thin film having structure orientated with high regularity and making method thereof
US20220066315A1 (en) Method and Apparatus for Manufacturing Nanostructures from a Material Layer Having a Thickness Below 1 µm
JPH0824888B2 (en) Method for producing monomolecular cumulative film
JPH02172567A (en) Preparation of organic membrane
DE102006049432A1 (en) Process for the preparation of self-aggregating monolayers on solid surfaces
Aytug et al. Anti-fingerprint coatings
CN117067746A (en) Mould pressing micro-nano texture compounding process
JPS59149931A (en) Production of thin metallic film
JP3263114B2 (en) Bilayer film fabrication substrate
JPS63151373A (en) Organic membrane manufacturing device
JPS63236558A (en) Lb film forming apparatus
CH703245A2 (en) Depositing metal nanoparticles on surface, preferably electrode, which is partially immersed in aqueous anion containing solution, comprises depositing nanoparticles on surface, and simultaneously immersing surface in liquid organic phase
FUJIMASA Research Center for Advanced Science and Technologies, The University of Tokyo Micromachines are products of microtechnology and nanotechnology, of production on the micro-and submicro-meter scale. Although the production