JPS63141639A - Preparation of molecular oriented thin film - Google Patents

Preparation of molecular oriented thin film

Info

Publication number
JPS63141639A
JPS63141639A JP61288783A JP28878386A JPS63141639A JP S63141639 A JPS63141639 A JP S63141639A JP 61288783 A JP61288783 A JP 61288783A JP 28878386 A JP28878386 A JP 28878386A JP S63141639 A JPS63141639 A JP S63141639A
Authority
JP
Japan
Prior art keywords
film
liquid surface
monomolecular
monomolecular film
molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61288783A
Other languages
Japanese (ja)
Inventor
Yasushi Tomioka
安 冨岡
Shuji Imazeki
周治 今関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61288783A priority Critical patent/JPS63141639A/en
Publication of JPS63141639A publication Critical patent/JPS63141639A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/20Processes for applying liquids or other fluent materials performed by dipping substances to be applied floating on a fluid
    • B05D1/202Langmuir Blodgett films (LB films)
    • B05D1/206LB troughs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To form a thin film having the structure controlled in molecular orientation in a process for preparing a monomolecular film on a liquid surface by preparing the monomolecular film while generating flow between the liquid surface and the monomoleclar film, thereby forming a molecular oriented thin film. CONSTITUTION:A merocyanine dye and having molecular structure 10 is prepd. in chloroform at 1X10<-3>mol/l concn. and several drops thereof are developed on a developing tank 9. After the chloroform evaporates completely, a rhombic barrier 8 is moved at 100cm<2>/min compressing speed in the direction of an arrow alpha to compress the molecular film, by which the condensed film state is formed. Five layers of the resultant monomolecular films of the merocyanine dye are built-up on a glass substrate by using an HL method. By adopting this method, the prepn. of thin org. film having the higher order structure controlled in the orientation of the constituting molecules is enabled by flowing and orienting the monomolecular film in the process of preparing the monomolecular film on the liquid surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単分子膜を形成する成膜方法に関する。詳し
くはラングミュア・プロジェット法または水平付着法に
より積層可能な液面上単分子膜の成膜方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a film forming method for forming a monomolecular film. Specifically, the present invention relates to a method for forming a monomolecular film on a liquid surface that can be stacked by the Langmuir-Prodgett method or the horizontal deposition method.

〔従来の技術〕[Conventional technology]

未来の電子デバイス、いわゆる「分子エレクトロニクス
」の背景技術のひとつとしてラングミュア・プロジェッ
ト膜(以後LB膜という)がある。
Langmuir-Prodgett film (hereinafter referred to as LB film) is one of the background technologies for future electronic devices, so-called "molecular electronics."

これは、積層方向に分子オーダーの優れた周期的°層状
構造をもつ有機超薄膜でアシ、近年、学問的工業的重要
性が認識され活発に研究されている。
This is an ultra-thin organic film with a periodic layered structure on the order of molecules in the stacking direction, and its academic and industrial importance has been recognized in recent years and it has been actively researched.

また最近では、LB膜を用いれば簡便に有機色素の多層
構造が作製できることから、有機材料を用いた光記録媒
体への応用研究も盛んに行われている。
Furthermore, recently, since a multilayer structure of organic dyes can be easily produced by using an LB film, application research to optical recording media using organic materials has been actively conducted.

このLB膜は、公知の単分子膜累積方法すなわち垂直浸
漬法(以後LB法という)または水平付着法(以後HL
法という)(新実験化学講座18巻、498〜507頁
)によって形成することができる。
This LB film can be produced by a known monolayer deposition method, namely the vertical dipping method (hereinafter referred to as LB method) or the horizontal deposition method (hereinafter referred to as HL method).
method) (New Experimental Chemistry Course, Vol. 18, pp. 498-507).

以下に従来の成膜方法、特に液面上の単分子膜の作製方
法について第1図を用いて簡単に説明する。第1図は従
来から用いられている一般的な製膜装置を示したもので
ある。浅くて広い角型の液槽1の内側に、水平に固定し
た枠2があり、さらにその枠の内側の液面4の面積を調
節できる棒状の浮子3がある。これらの枠2と可動浮子
3に囲まれた展開用の液面4は通常四角形に構成され、
この液面4上に成膜分子群を展開する。次に展開槽4の
一辺である可動浮子3を動かすことによシ、液面上の分
子群の占有面積を次第に縮め、凝縮膜すなわち液面上で
分子が秩序正しく密に配列した単分子膜状態を形成する
。さらにLB法またはHL法を用いて、上記単分子膜を
一層ずつ順次固体基板上に移し取り、累積膜いわゆるL
B膜を作製する。
Hereinafter, a conventional film forming method, particularly a method for forming a monomolecular film on a liquid surface, will be briefly explained with reference to FIG. FIG. 1 shows a conventionally used general film forming apparatus. There is a horizontally fixed frame 2 inside a shallow and wide rectangular liquid tank 1, and a rod-shaped float 3 that can adjust the area of the liquid surface 4 inside the frame. The liquid surface 4 for deployment surrounded by the frame 2 and the movable float 3 is usually configured in a rectangular shape,
A film-forming molecule group is spread on this liquid surface 4. Next, by moving the movable float 3, which is one side of the developing tank 4, the area occupied by the molecules on the liquid surface is gradually reduced. form a state. Furthermore, using the LB method or the HL method, the above monomolecular film is transferred layer by layer onto a solid substrate, and the cumulative film is so-called L.
Prepare B film.

〔発明が解決しようとする問題点〕 上記の方法で作製されたLB膜に、電子的、化学的、お
よび光学的機能を付与・発現させようとする試みが近年
盛んに行われている。またそれらの機能をより高度に発
現させるためには、薄膜を構成している各分子の配向や
配列などの分子集合体の高度な構造の制御が不可欠であ
るといわれている。しかしながら、上述の従来のLB膜
作製方法では、単分子膜の累積方向の周期的秩序は達成
されても、各層における膜の2次元面内の秩序形成は非
常に困難であるとされており、高度な構造制御に問題が
あった。
[Problems to be Solved by the Invention] In recent years, many attempts have been made to impart and develop electronic, chemical, and optical functions to the LB film produced by the above method. Furthermore, in order to express these functions to a higher degree, it is said that it is essential to control the advanced structure of the molecular assembly, such as the orientation and arrangement of each molecule that makes up the thin film. However, in the conventional LB film manufacturing method described above, although periodic order in the cumulative direction of the monomolecular film is achieved, it is said that it is extremely difficult to form order in the two-dimensional plane of the film in each layer. There was a problem with advanced structural control.

本発明の目的は、上記不利な点を回避することができ、
かつ2次元膜面内の異方性および分子の配向配列を高度
に発現させることが可能な製膜方法を提供することにあ
る。
The object of the present invention is to avoid the above disadvantages,
Another object of the present invention is to provide a film forming method that can highly exhibit anisotropy and molecular orientation in a two-dimensional film plane.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、本発明によれば液面上の単分子膜作製の過
程において、単分子膜を液面上である方向に流動させな
がら作製することにより達成される。
According to the present invention, the above object is achieved by producing the monomolecular film while flowing it in a certain direction on the liquid surface in the process of producing the monomolecular film on the liquid surface.

〔作用〕[Effect]

液面上の単分子膜作製に用いる成膜分子(典型とされる
ステアリン酸のような直鎖脂肪酸から種種の機能性有機
分子に長鎖アルキルを付加した成膜分子)のほとんどが
、液面上に展開した直後に既に島状の凝集体を形成して
いることが知られている。特に光電変換や光記録などの
機能と関連の深い成膜分子としてよく知られている、長
鎖アルキル置換型のメロシアニン系色素、シアニン系色
素、スクアリリウム系色素などの分子は1分子自身のも
つ強い凝集力により会合体を形成することが知られてい
る。またそれらの会合体の構造は、非常に優れた結晶性
を有している。なかでもメロシアニン系色素やシアニン
系色素に見られるJ会合体の構造は分子が規則正しく並
んだ杉綾状の結晶構造を示す。つまり、これらの成膜分
子、又はその会合体は非球状の形状となり、構造上の異
方性を有する。
Most of the film-forming molecules used to create monomolecular films on the liquid surface (film-forming molecules consisting of straight chain fatty acids such as stearic acid, to various functional organic molecules with long-chain alkyl added) are mostly on the liquid surface. It is known that island-like aggregates are already formed immediately after spreading on top. In particular, molecules such as long-chain alkyl-substituted merocyanine dyes, cyanine dyes, and squarylium dyes, which are well known as film-forming molecules that are closely related to functions such as photoelectric conversion and optical recording, have strong strength within their own molecules. It is known that aggregates are formed due to cohesive force. In addition, the structure of these aggregates has excellent crystallinity. Among them, the structure of the J aggregate found in merocyanine dyes and cyanine dyes exhibits a herringbone-like crystal structure in which molecules are regularly arranged. In other words, these film-forming molecules or aggregates thereof have a non-spherical shape and have structural anisotropy.

また、本発明の製膜方法を用いれば、成膜分子を展開す
る液面と単分子膜の間に一方向の流動を発生させること
ができる。またその流動の大きさは、圧縮速度の調節や
、単分子膜を液面上ですべらせる速度の調節により制御
することができる。
Further, by using the film forming method of the present invention, it is possible to generate a unidirectional flow between the monomolecular film and the liquid surface where the film forming molecules are spread. Further, the magnitude of the flow can be controlled by adjusting the compression speed or the speed at which the monomolecular film is slid on the liquid surface.

さらに通常展開する液体として用いられている純水以外
に、粘性の異なる流体を用いることによっても流動の大
きさを変化させることができる。
Furthermore, the magnitude of the flow can be changed by using a fluid with a different viscosity in addition to pure water, which is normally used as the developing liquid.

したがって、非球形の成膜分子及びその会合体の液面上
での単分子膜作製において、本発明の製膜方法を用いれ
ば、液面と単分子膜の間の流動によって分子が一様に一
方向に配向した単分子膜を作製することができる。これ
は、一般に流体の速度勾配により非球形の分子が流動複
屈折や流動二色性を示す現象(一般に流動配向と呼ばれ
る)と同様の効果である。本発明は、上記現象を流面上
の2次元面内で発現させ、面内配向性の優れた単分子膜
を作製する方法である。
Therefore, if the film forming method of the present invention is used to fabricate a monomolecular film of non-spherical film-forming molecules and their aggregates on the liquid surface, the molecules will be uniformly formed by the flow between the liquid surface and the monomolecular film. A monomolecular film oriented in one direction can be produced. This effect is similar to the phenomenon in which non-spherical molecules exhibit flow birefringence or flow dichroism (generally referred to as flow orientation) due to the velocity gradient of the fluid. The present invention is a method for producing a monomolecular film with excellent in-plane orientation by causing the above phenomenon to occur within a two-dimensional plane on a flow surface.

〔実施例〕〔Example〕

以下、本発明の一実施例を第2図によシ説明する。 An embodiment of the present invention will be explained below with reference to FIG.

第2図(a)および第2図(C)に示したように、純水
を入れた水槽7に、4枚のテフロン製の板で作られた菱
形の圧縮バリアー8、その菱形のバリアーに囲まれた成
膜分子の展開槽9、また展開槽の表面圧をモニターし、
それを帰還しながら展開槽の面積を圧縮する装置から成
る単分子膜作製装置を用いた。
As shown in Fig. 2(a) and Fig. 2(C), a diamond-shaped compression barrier 8 made of four Teflon plates is placed in a water tank 7 containing pure water. Monitoring the development tank 9 of the surrounded film-forming molecules and the surface pressure of the development tank,
A monomolecular film production device was used, which consists of a device that compresses the area of the developing tank while returning the monomolecular film.

第2図(C)に示す分子構造10を有するメロシアニン
系色素をクロロホルム中にI X 10−3mot/l
の濃度で調整し、展開槽9上に数滴展開した。クロロホ
ルムが完全に揮発した後に、菱形バリアーを図中の矢印
αの方向に圧縮速度100Crn2/而nで動かし、単
分子膜を圧縮し凝縮膜状態を形成した。
A merocyanine dye having the molecular structure 10 shown in FIG. 2(C) was dissolved in chloroform at I
The concentration was adjusted to , and several drops were developed on the development tank 9. After chloroform was completely volatilized, the diamond-shaped barrier was moved in the direction of the arrow α in the figure at a compression speed of 100 Crn2/n to compress the monomolecular film and form a condensed film state.

以上の操作で作製したメロシアニン系色素の単分子膜を
HL法を用いガラス基板上に5層累積した。また累積に
際しては、基板の方向を固定して行った。その結果得ら
れた累積膜の偏光吸収スペクトルを第2図(d)に示す
。偏光軸は光の電気ベクトルが展開槽のβ方向に平行の
ときをβ7.垂直のときをβ上とした。得られた二色比
R=(β//β工)は第1表に示したように、約2,5
と大きな値を示し、従来法で作製した膜の二色比が約1
であることと比較すれば、本方法により膜面内に大第1
表 きな異方性を付与できたことがわかる。また、単分子膜
作製時の圧縮速度の依存性を二色比Rとの対比として表
に示した。この結果は、本方法によ゛る膜面内異方性の
発現が、菱形バリアーの圧縮によるβ方向への流動配向
に起因していることを示している。
Five monomolecular films of the merocyanine dye prepared by the above procedure were stacked on a glass substrate using the HL method. Further, during the accumulation, the direction of the substrate was fixed. The polarized light absorption spectrum of the resulting cumulative film is shown in FIG. 2(d). The polarization axis is β7 when the electric vector of the light is parallel to the β direction of the development tank. When it is vertical, it is assumed to be on β. The obtained dichroic ratio R=(β//βtechnique) is approximately 2.5 as shown in Table 1.
The dichroic ratio of the film prepared by the conventional method is approximately 1.
Compared to the fact that
It can be seen that significant anisotropy could be imparted. In addition, the dependence of the compression speed during monolayer production is shown in the table as a comparison with the dichroic ratio R. This result shows that the expression of in-plane anisotropy in the film by this method is due to the flow orientation in the β direction due to compression of the rhombic barrier.

したがって、本発明による水面上の流動を利用すること
により、膜面内異方性の高い有機薄膜を作製することが
できた。
Therefore, by utilizing the flow on the water surface according to the present invention, it was possible to fabricate an organic thin film with high in-plane anisotropy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、液面上の単分子膜作製の過程において
単分子膜を流動配向させることにより、構成分子の配向
が制御された高次構造を有する有機薄膜が作製可能とな
った。
According to the present invention, by fluidly orienting a monomolecular film in the process of producing a monomolecular film on a liquid surface, it has become possible to produce an organic thin film having a higher-order structure in which the orientation of constituent molecules is controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の成膜方法を説明するための成膜装置の
一例、第2図は、本発明に係る成膜方法の実施例を説明
するだめの図である。 1・・・液槽、2・・・枠、3・・・可動浮子、4・・
・展開液面、5・・・滑車、6・・・おもり、7・・・
水槽、8・・・菱形圧縮バリアー、9・・・展開液面、
10・・・メロシアニン系第 l  口
FIG. 1 is an example of a film forming apparatus for explaining a conventional film forming method, and FIG. 2 is a diagram for explaining an embodiment of the film forming method according to the present invention. 1...Liquid tank, 2...Frame, 3...Movable float, 4...
・Development liquid level, 5...pulley, 6...weight, 7...
Water tank, 8...Rhombus compression barrier, 9...Development liquid level,
10...Merocyanine-based 1st mouth

Claims (1)

【特許請求の範囲】 1、液面上の単分子膜作製過程において、液面と単分子
膜の間に流動を発生させながら単分子膜を作製すること
を特徴とする分子配向薄膜の製法。 2、成膜分子群を圧縮バリアーで囲まれた液面上に展開
し、前記圧縮バリアーがある方向で前記分子群を圧縮し
、同時に前記方向と垂直な方向で前記分子群を拡散させ
る両方の機能を合わせ持つ圧縮方法を用い、流動を発生
させることを特徴とする特許請求の範囲第1項記載の分
子配向薄膜の製法。 3、成膜分子群を圧縮バリアーで囲まれた液面上に展開
し、流動性の高い単分子膜状態を形成する前記流動性の
高い単分子膜を圧縮バリアーと共に液面上をある方向に
すべらせることにより流動を発生させ、徐々に圧縮する
方法を用い液面上の単分子膜を形成することを特徴とす
る特許請求の範囲第1項記載の分子配向薄膜の製法。
[Claims] 1. A method for producing a molecularly oriented thin film, which comprises producing a monomolecular film while generating a flow between the liquid surface and the monomolecular film in the process of producing the monomolecular film on the liquid surface. 2. Deploy the film-forming molecular group on a liquid surface surrounded by a compression barrier, and the compression barrier compresses the molecular group in a certain direction, and at the same time diffuses the molecular group in a direction perpendicular to the said direction. A method for producing a molecularly oriented thin film according to claim 1, characterized in that a compression method having both functions is used to generate flow. 3. Spread the film-forming molecule group on the liquid surface surrounded by a compression barrier to form a highly fluid monomolecular film.The highly fluid monomolecular film is moved along the liquid surface together with the compression barrier in a certain direction. A method for producing a molecularly oriented thin film according to claim 1, characterized in that a monomolecular film on the liquid surface is formed using a method of generating a flow by sliding and gradually compressing the film.
JP61288783A 1986-12-05 1986-12-05 Preparation of molecular oriented thin film Pending JPS63141639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288783A JPS63141639A (en) 1986-12-05 1986-12-05 Preparation of molecular oriented thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288783A JPS63141639A (en) 1986-12-05 1986-12-05 Preparation of molecular oriented thin film

Publications (1)

Publication Number Publication Date
JPS63141639A true JPS63141639A (en) 1988-06-14

Family

ID=17734662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288783A Pending JPS63141639A (en) 1986-12-05 1986-12-05 Preparation of molecular oriented thin film

Country Status (1)

Country Link
JP (1) JPS63141639A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357357A (en) * 1989-09-20 1994-10-18 Hitachi, Ltd. Liquid crystal display devices with organic thin film formed by compressing molecules on liquid surface and transferring to substrate by horizontal lifting
US6619576B2 (en) 2000-09-26 2003-09-16 Komatsu Ltd. Outlet clearance adjustment mechanism of jaw crusher and self-propelled crushing machine loaded with jaw crusher having outlet clearance adjustment mechanism of jaw crusher

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357357A (en) * 1989-09-20 1994-10-18 Hitachi, Ltd. Liquid crystal display devices with organic thin film formed by compressing molecules on liquid surface and transferring to substrate by horizontal lifting
US6619576B2 (en) 2000-09-26 2003-09-16 Komatsu Ltd. Outlet clearance adjustment mechanism of jaw crusher and self-propelled crushing machine loaded with jaw crusher having outlet clearance adjustment mechanism of jaw crusher

Similar Documents

Publication Publication Date Title
Seki A wide array of photoinduced motions in molecular and macromolecular assemblies at interfaces
Zhang et al. Breath figure: a nature-inspired preparation method for ordered porous films
Park et al. Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition
Ahn et al. Nanoporous block copolymer membranes for ultrafiltration: a simple approach to size tunability
Peterson Langmuir-blodgett films
Ma et al. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings
Li Intelligent stimuli-responsive materials: from well-defined nanostructures to applications
US20150321149A1 (en) Selective membranes formed by alignment of porous materials
Kuila et al. Supramolecular assembly of poly (styrene)-b-poly (4-vinylpyridine) and 1-pyrenebutyric acid in thin film and their use for nanofabrication
Li et al. Solution processable poly (vinylidene fluoride)-based ferroelectric polymers for flexible electronics
CN105271110A (en) Method of manufacturing dense nano granular film and ordered nanowire film by using coffee-ring effects
Kuila et al. A synergistic coassembly of block copolymer and fluorescent probe in thin film for fine-tuning the block copolymer morphology and luminescence property of the probe molecules
Mihali et al. Self‐Assembly of Strongly Amphiphilic Janus Nanoparticles into Freestanding Membranes
CN111944177B (en) Polymer ultrathin film forming system and polymer ultrathin film
JPS63141639A (en) Preparation of molecular oriented thin film
Singh Langmuir and Langmuir–Blodgett films of aromatic amphiphiles
Ko et al. Selective Template Wetting Routes to Hierarchical Polymer Films: Polymer Nanotubes from Phase-Separated Films via Solvent Annealing
CN110606962A (en) Method for preparing nano-cellulose liquid crystal micro-grid membrane by two-dimensional domain-limited self-organization
Biegajski et al. An unusual conformational transition in monomolecular and Langmuir-Blodgett films of the poly (diacetylene), Poly (5, 7-dodecadiyne-1, 12-diyl-1, 12-bis [(4-butoxycarbonylmethyl) urethane])
CN105776126A (en) Method for fabricating columnar or lamellar structures of organic molecules aligned into large-area single domain
Vapaavuori et al. Photocontrol of supramolecular azo-containing block copolymer thin films during dip-coating: toward nanoscale patterned coatings
Xin et al. Interfacial polymerization at unconventional interfaces: an emerging strategy to tailor thin-film composite membranes
Zheng et al. Control of the pore size of honeycomb polymer film from micrometers to nanometers via substrate-temperature regulation and its application to photovoltaic and heat-resistant polymer films
Wang et al. Directional photo-manipulation of self-assembly patterned microstructures
JP2005283899A (en) Polymer polarizing element and manufacturing method therefor