JPS6210266B2 - - Google Patents

Info

Publication number
JPS6210266B2
JPS6210266B2 JP54047516A JP4751679A JPS6210266B2 JP S6210266 B2 JPS6210266 B2 JP S6210266B2 JP 54047516 A JP54047516 A JP 54047516A JP 4751679 A JP4751679 A JP 4751679A JP S6210266 B2 JPS6210266 B2 JP S6210266B2
Authority
JP
Japan
Prior art keywords
copper phthalocyanine
solvent
sulfur
highly chlorinated
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54047516A
Other languages
Japanese (ja)
Other versions
JPS55139457A (en
Inventor
Akira Matsura
Tomio Segawa
Yukio Nomyama
Yoichi Kumada
Hideo Sawada
Ritsu Ninomya
Sakae Kuramoto
Genichi Suyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Kasei Chemicals Ltd
Original Assignee
Kawasaki Kasei Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Kasei Chemicals Ltd filed Critical Kawasaki Kasei Chemicals Ltd
Priority to JP4751679A priority Critical patent/JPS55139457A/en
Publication of JPS55139457A publication Critical patent/JPS55139457A/en
Publication of JPS6210266B2 publication Critical patent/JPS6210266B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

【発明の詳細な説明】 本発明は高塩素化銅フタロシアニン顔料の製造
法に関する。 銅フタロシアニンは青色の顔料であるが、銅フ
タロシアニン分子のベンゼン環を塩素置換してい
くと色相は次第に青色から緑色に変化する。理論
的には塩素原子は銅フタロシアニン分子に16個ま
で置換し得るが、置換数12個程度以上から緑色を
帯び、通常13個以上が実用的な緑色顔料分子の塩
素原子置換数とされており、特に14個以上の塩素
原子を置換すれば黄色を帯びた鮮明な緑色顔料と
なる。しかもこのものは、きわめて耐光性、耐溶
剤性に優れた緑色顔料である。 従来、かかる優れた緑色顔料である高塩素化銅
フタロシアニンの製造法として広く行われている
方法は、無水塩化アルミニウム及び食塩の混融物
に銅フタロシアニンを溶解して200℃前後の高温
度で塩素を通じて塩素化した後、該反応生成物を
大量の氷水中に投入して塩素化反応生成物を分離
する方法である。しかしながら、この方法は、無
水塩化アルミニウムを多量に使用し、しかも反応
生成物を水中に投じるため無水塩化アルミニウム
及び食塩の回収が不可能となるので工業的に不利
であるほか、200℃前後の高い温度で長時間塩素
化反応を行うため種々の副生物を生成し易く収率
の底下は避けられない、という欠点を有する。ま
た、塩素化無水フタル酸、塩素化フタルイミドあ
るいはその誘導体等を原料とし銅化合物及び尿素
と触媒の存在下有機溶媒中で200〜300℃の温度で
加熱反応させる方法があるが、副反応が起き易
く、反応後精製してもなおかつ不純物を含有する
ため鮮明な色相の緑色顔料は得がたいという欠点
を有する。一方、クロルスルホン酸に銅フタロシ
アニンを溶解せしめて触媒の存在下塩素ガスを通
じて高塩素化銅フタロシアニンを製造する方法
(米国特許第2662085号明細書1958年)も知られて
いるが、この方法は本発明者らが追試した結果、
塩化アルミニウム―含塩法に比べて収率がかなり
低く、約50%(対理論)程度であつた。しかも生
成した顔料の色調は、不鮮明で青味を帯びてお
り、鮮明な帯黄緑色のものは得られなかつた。 そこで本発明者らは、上記の従来の欠点を除
き、鮮明な帯黄緑色を有する高塩素化銅フタロシ
アニンを高収率でしかも工業的有利に製造する方
法として、すでに特願昭52―148081号明細書にお
いて、「硫黄の酸素酸の酸塩化物溶媒としてクロ
ルスルホン酸又は塩化ピロスルフリルを用い、触
媒として硫黄及び/又は硫黄の塩化物を加え、そ
の他の塩素化触媒を添加又は添加せずに、塩素を
用いて銅フタロシアニンを塩素化する高塩素化銅
フタロシアニンの製造法において、クロルスルホ
ン酸に対しては硫黄として7重量%以上200重量
%以下、塩化ピロスルフリルに対しては硫黄とし
て1重量%以上200重量%以下、それぞれの硫黄
及び/又は硫黄の塩化物を加え、1〜20Kg/cm2
(ゲージ)の加圧下で塩素化することを特徴とす
る高塩素化銅フタロシアニンの製造法、並びに、
上記の硫黄の酸素酸の酸塩化物溶媒としてクロル
スルホン酸又は塩化ピロスルフリルを用いる二つ
の方法により、銅フタロシアニンを塩素化し、得
られた塩素化反応生成物を蒸留して得た留出物を
そのまま用いこれに銅フタロシアニンを添加して
再び塩素化し、更に得られた塩素化反応生成物を
蒸留して得た留出物を用いこれに銅フタロシアニ
ンを添加して塩素化する操作を繰り返してもよい
ことを特徴とする高塩素化銅フタロシアニンの製
造法。」を明らかにして詳細に説明した。 上記の製造法では、得られた塩素化反応生成物
を大量の氷水中に投入後濾過する場合は勿論、溶
媒を回収する場合でも、得られた塩素化反応生成
物を蒸留して溶媒を分離した後の高塩素化銅フタ
ロシアニンを含むカマ残又は得られた塩素化反応
生成物から析出した結晶を濾別して得た高塩素化
銅フタロシアニンを含む湿ケーキは、水又は希硫
酸等で洗い出し、酸洗濾過、アルカリ洗濾過、水
洗、乾燥するという従来の後処理方法を実施する
ことによつて粗製高塩素化銅フタロシアニンを高
収率で得、得られた粗製物は、常法の顔料化(ソ
ルトグラインデイング法等による)を行うことに
より鮮明性の優れた帯黄緑色の顔料を得ている。
しかるに、本発明者らは、更に鋭意研究を進めた
結果、上記の製造法により塩素化して得られた塩
素化反応生成物を蒸留して溶媒を分離した後の高
塩素化銅フタロシアニンを含むカマ残又は得られ
た塩素化反応生成物から析出した結晶を濾別して
得た高塩素化銅フタロシアニンを含む湿ケーキ
を、上述の如く酸・アルカリ洗浄等の後処理を何
ら行うことなく簡略化し、塩素化反応溶媒が含ま
れたまま直接ソルトグラインデイング法等の機械
的な力の下に磨砕して顔料化を行うと、驚くべき
ことには、上述の如く後処理したものを顔料化し
た場合に比べ、非常に鮮明でしかも極めて優れた
着色力をもつ帯黄緑色の顔料が得られることを見
い出し本発明に到達した。 すなわち、本発明は、前記した従来公知の方法
の欠点を解消すると同時により一層鮮明かつ着色
力のより優れた帯黄緑色を有する高塩素化銅フタ
ロシアニン顔料の特に工業的見地から有利な製造
法を提供せんとするもので、その要旨とするとこ
ろは、硫黄の酸素酸の酸塩化物溶媒としてクロル
スルホン酸又は塩化ピロスルフリルを用い、触媒
として硫黄及び/又は硫黄の塩化物を加え、その
他の塩素化触媒を添加又は添加せずに、塩素を用
いて銅フタロシアニンを塩素化して高塩素化銅フ
タロシアニン顔料を製造するに当り、クロルスル
ホン酸に対しては硫黄として7重量%以上200重
量%以下、塩化ピロスルフリルに対しては硫黄と
して1重量%以上200重量%以下、それぞれに相
当する量の硫黄及び/又は硫黄の塩化物を加え、
1〜20Kg/cm2G(ゲージ)の加圧下で塩素化し、
得られた塩素化反応生成物を蒸留して溶媒を分離
した後の高塩素化銅フタロシアニンを含むカマ残
又は得られた塩素化反応生成物から析出した結晶
を濾別して得た高塩素化銅フタロシアニンを含む
湿ケーキを、塩素化反応溶媒が含まれたままで磨
砕することを特徴とする高塩素化銅フタロシアニ
ン顔料の製造法、並びに、上記と同様にして塩素
化し、得られた塩素化反応生成物を蒸留して回収
した留出物をそのまま用いこれに銅フタロシアニ
ンを添加して再び塩素化し更に得られた塩素化反
応生成物を蒸留して回収した留出物を用いこれに
銅フタロシアニンを添加して塩素化する操作を繰
り返しその都度得られた塩素化反応生成物を蒸留
して溶媒を分離した後の高塩素化銅フタロシアニ
ンを含むカマ残、又は得られた塩素化反応生成物
から析出した結晶を濾別して得た濾液をそのまま
用いこれに銅フタロシアニンを添加して再び塩素
化し更に得られた塩素化反応生成物を濾別して得
た濾液を用いこれに銅フタロシアニンを添加して
塩素化する操作を繰返しその都度得られた塩素化
反応生成物を濾別して溶媒を分離した後の高塩素
化銅フタロシアニンを含む湿ケーキを、塩素化反
応溶媒が含まれたままで磨砕することを特徴とす
る高塩素化銅フタロシアニン顔料の製造法に存す
る。 本発明の方法において、硫黄の酸素酸の酸塩化
物溶媒としては、一般にはクロスルホン酸又は塩
化ピロスルフリルが用いられ、塩化スルフリル、
塩化チオニルを用いる場合はこれと併用するのが
好ましい。塩素化反応混合物から蒸留等で溶媒を
回収すればこれらの混合物を得ることができ、該
混合物を溶媒として再使用し得る。上記の溶媒の
使用量は、基本的には原料の銅フタロシアニンを
溶解又は懸濁し塩素ガスとの接触が充分行われる
範囲がよいが、通常、工業的に一般に用いられる
撹拌機で反応溶液を撹拌することができる量が好
ましく、原料銅フタロシアニンの約3重量倍から
約50重量倍、工業的には4〜8重量倍が好まし
い。 本発明の方法における塩素化反応は、まず触媒
として硫黄もしくは硫黄の塩化物(以下、A触媒
という。)を加えて行われる。該反応は、その他
の塩素化触媒(以下、B触媒という。)の添加又
は不添加のいずれでも実施しうるが、通常はヨウ
素等のB触媒を併用する方が好ましく、B触媒を
溶媒に対し0.01〜10重量%添加することによつて
鮮明な帯黄緑色の顔料が高収率で得られる。前記
A触媒と併用するB触媒としては、ヨウ素、一塩
化ヨウ素、三塩化ヨウ素等のヨウ素の塩化物、無
水塩化アルミニウム、無水塩化第二鉄、三塩化ア
ンチモン、塩化第二銅等の金属塩化物などがあげ
られる。 上記のA触媒は、硫黄もしくは硫黄の塩化物単
独でもよいが、もちろん併用してもよい。その添
加量としては、クロルスルホン酸溶媒に対しては
硫黄として換算して7重量%以上、塩化ピロスル
フリル溶媒に対しては硫黄として換算して1重量
%以上、のそれぞれに相当する量が好ましい。一
方、A触媒の含有量は、上記の両溶媒のいずれに
対してもあまり多くなると溶媒の相対的な割合が
低下し、溶媒に対する銅フタロシアニンの割合は
適当でもA触媒及び溶媒の合計量に対する銅フタ
ロシアニアンの割合が大きく低下して好ましくな
いので、溶媒に対し硫黄として900重量%以下、
工業的には8〜100重量%がよいといえるが、200
重量%以上になるとやや塩素化しにくくなるた
め、高塩素化銅フタロシアニン1分子中の塩素置
換数は13個以上が緑色顔料の実用的置換数とされ
ることからすれば、A触媒の含有量の好ましい上
限は、上記の溶媒に対し硫黄として200重量%以
下であるといえる。 なお、本発明方法の塩素化反応において、溶媒
としてクロルスルホン酸を用いた場合は、主とし
てクロルスルホン酸がA触媒及び塩素と次式のよ
うに反応して塩化ピロスルフリルを主成分とする
混合物を生成し、しかる後銅フタロシアニンの塩
素化反応が進行するものと推定される。 8SO2(OH)Cl+2S+6Cl2 →4S2O5Cl2+2SO2Cl2+8HCl 8SO2(OH)Cl+S2Cl2+5Cl2 →4S2O5Cl2+2SO2Cl2+8HCl I2+Cl2→2IClorICl3 S2Cl2+Cl2→2SCl2 すなわち、前記したように、クロルスルホン酸
溶媒に対しては硫黄として7重量%以上、好まし
くは8重量%以上のA触媒を用いなければならな
いが、公知の方法により別途調製した塩化ピロス
ルフリル(粗製品で十分である。)を溶媒として
用いる場合には、該溶媒に対し硫黄として1重量
%以上のA触媒を用いればよく、上記のクロルス
ルホン酸溶媒を用いる場合よりも約6重量%減少
させることができるのは、上記反応式により塩化
ピロスルフリルを生成するに要するA触媒が不必
要なことによるものと推定される。 本発明方法の塩素化反応において、反応圧力は
高収率で帯黄緑色の鮮明な顔料を得るためには顕
著な効果を示し、1〜20Kg/cm2G(ゲージ)、好
ましくは2〜8Kg/cm2G、さらに好ましくは3〜
7Kg/cm2Gがよい。1〜2Kg/cm2Gでは粗製高塩
素化銅フタロシアニンの収率は96%(対理論)以
上で鮮明な顔料が得られるがやや青味が強い。2
Kg/cm2G、とくに3Kg/cm2G以上では帯黄緑色の
鮮明な粗製高塩素化銅フタロシアニンを高収率で
得ることができる。塩素は液状又はガス状で加え
ることもできるが一般的にはガス状で加える。す
なわち、20Kg/cm2G以上は工業的に不利であり、
一般的には10Kg/cm2G以下、通常は常温で塩素の
液化が起こらない8Kg/cm2G以下、とくに7Kg/
cm2G以下が好ましい。また、反応温度は初期は低
く、例えば常温から反応の進行に従い100〜120℃
まで昇温する。最高反応温度においては反応圧力
をできるだけ昇温するのが有利である。120℃以
上になると得られた顔料の色調は帯黄緑色で充分
に鮮明だが収率は著しく減少する。 本発明の方法において塩素化反応を実施するに
は、通常、硫黄の酸素酸の酸塩化物溶媒としてク
ロルスルホン酸又は塩化ピロスルフリルを用い、
A触媒及び場合によりヨウ素等のB触媒並びに銅
フタロシアニンの所定量を加え、所定の塩素加圧
下で塩素と接触せしめて、一般に常温から徐々に
100〜115℃まで昇温する。通常はさらにその温度
に約1時間〜4時間保持したのち塩素化反応を終
了する。 本発明の方法において、上記のようにして得た
塩素化反応生成物から溶媒の大部分もしくは一部
分を蒸留、通常は常圧もしくは減圧蒸留によつて
回収することができるが、この回収溶媒を使用す
ることは一般に予想される以上の効果を有する。
すなわち、蒸留により回収した溶媒中には、塩化
ピロスルフリル、塩化スルフリル等の硫黄の酸素
酸の酸塩化物の他、A触媒及びヨウ素化合物等の
B触媒も含まれるので、その回収溶媒を新たにA
触媒やB触媒を加えることなくそのまま用い、こ
れに所定量の原料銅フタロシアニンを加え前記の
本発明方法の圧力及び温度条件下で塩素を用いて
再び塩素化し、更に得られた塩素化反応生成物を
蒸留して得た留出物を用いこれに銅フタロシアニ
ンを添加して塩素化する操作を繰り返すことも可
能であり、かかる方法により同様に優れた高塩素
化銅フタロシアニンを高収率で得ることができ
る。また、上記の回収溶媒に反応時及び溶媒回収
時の損失分に相当する溶媒量及び触媒量を補充
し、再び本発明方法の塩素化反応の溶媒及び触媒
として再使用できることはいうまでもない。 塩素化反応生成物の蒸留は、通常、まず常圧下
で行い低沸点溶媒成分を留去し、次いで減圧下で
実施する。例えば、常圧下80〜130℃で行つた
後、最終的には減圧下30〜40Torr程度で150℃ま
で昇温して留出液がほとんど認められなくなつた
時点で終了する。また、常圧下のみで行うことも
できる。蒸留後に得られたカマ残は、高塩素化銅
フタロシアニンのほかに塩素化反応溶媒成分を含
有しており、この塩素化反応溶媒成分と高塩素化
銅フタロシアニンとがいかなる形で結合している
かは明らかでないが、この塩素化反応溶媒成分が
顔料化工程において後述の如き優れた効果をもた
らすものと考えられる。該溶媒成分の含有量は、
蒸留の際の条件(減圧度、温度等)により異な
り、多すぎると、顔料の色調にさほどの影響はな
いが溶媒の回収率が低下して結果的に溶媒の損失
量が多くなるため、工業的には不利であり、一
方、逆になすぎるとその優れた効果が減少して好
ましくない。すなわち、上記のカマ残としては、
塩素化反応溶媒の含有率が粗製高塩素化銅フタロ
シアニンに対し20〜350重量%の範囲のものでよ
く、工業的には30〜250重量%のものが好まし
い。 また、上述のカマ残の代りに、塩素化反応溶媒
の蒸留回収の段階で溶媒の一部分を留去して濃縮
した後、冷却して結晶(高塩素化銅フタロシアニ
ン)を析出せしめ、次いでこれを濾過して得られ
た湿ケーキを用いることができる。或いは、塩素
化反応において、原料である銅フタロシアニンの
仕込量を多くして高濃度で塩素化反応を行い、次
いで反応終了後、通常室温に冷却した状態で結晶
を析出せしめ、これを濾過して得られた湿ケーキ
を用いることも可能である。これらの湿ケーキと
しては、塩素化反応溶媒を前記カマ残の場合と同
程度含有するものが好ましく、この溶媒成分が顔
料化工程において前記カマ残の場合と同様の優れ
た効果をもたらすものと考えられる。 上記濾過工程において湿ケーキを濾別して得ら
れる濾液(溶媒の一部を留去して濃縮した場合に
はその留出物を濾液と合せる)には、塩化ピロス
ルフリル、塩化スルフリル等の硫黄の酸素酸の酸
塩化物の他、A触媒及びヨウ素等のB触媒も含ま
れるので、その回収溶媒に新たにA触媒やB触媒
を加えることなくそのまま繰返し用いることがで
きる。即ち、上記濾液に所定量の原料銅フタロシ
アニンを加え前記の本発明方法の圧力及び温度条
件下で塩素を用いて再び塩素化し、更に得られた
塩素化反応生成物を濾別して得た濾液を用いこれ
に銅フタロシアニンを添加して塩素化する操作を
繰返し、その都度得られた塩素化反応生成物を濾
別して溶媒を分離した後の湿ケーキを本発明の方
法に用いることも可能であり、かかる方法により
同様に優れた高塩素化銅フタロシアニンを高収率
で得ることができる。また、上記の回収溶媒に反
応時及び溶媒回収時の損失分に相当する溶媒量及
び触媒量を補充し、再び本発明方法の塩素化反応
の溶媒及び触媒として再使用することができるこ
とはいうまでもない。 本発明の方法にあつては、以上のようにして得
られた高塩素化銅フタロシアニンを含むカマ残又
は湿ケーキは、何ら後処理せずに塩素化反応溶媒
が含まれたままで、例えばニーダー、ボールミ
ル、サンドミル、バンバリーミキサー等の装置に
より磨砕して顔料化する。この際、磨砕助剤は必
ずしも必要ではないが、通常は硫酸ナトリウム
(無水芒硝)、酸性硫酸ナトリウム、食塩等が助剤
として用いられる。磨砕時に溶媒を用いる場合
は、磨砕時の温度で液状のものを用い、その具体
例としてはグリセリン、ポリエチレングリコー
ル、ジエチレングリコール等のアルコール系溶媒
及びセロソルブ(エチレングリコールのエーテ
ル)系溶媒、ケトン系溶媒並びに芳香族系溶媒等
の一般に知られているものがあげられるが、又硫
酸等の無機酸を用いることもできる。しかしなが
ら、カマ残又は湿ケーキ中の粗製高塩素化銅フタ
ロシアニンに対する塩素化反応溶媒成分の含有率
が大きい場合(例えば100重量%以上の場合)に
は、上記の磨砕時の溶媒は必ずしも使用する必要
はない。磨砕は、室温で行つてもよく、加熱する
場合は100℃以下で行い、通常は室温 〜60℃の
範囲で行うのが好ましい。 磨砕後は公知の精製の後処理操作を行う。すな
わち、水溶性の溶媒は、磨砕助剤の塩を水或いは
希鉱酸で洗浄して除去する際に一緒に除去し、又
非水溶性の溶媒は、蒸留ないし水蒸気蒸留等によ
つて除去した後、水又は希鉱酸で洗浄する。次い
で希アルカリ洗浄し、水洗し、乾燥する。必要な
らば乾燥に先だつて、界面活性剤等によるコーテ
イング処理を行つてもよい。 以上のようにして、本発明の方法により得られ
た高塩素化銅フタロシアニン顔料は、非常に柔ら
かくて展色剤中での分散性は極めて良好、かつ鮮
明性及び着色力等の点においても非常に優れた帯
黄緑色の顔料である。 以上詳記したように、本発明の方法は、容易に
高収率で得られる銅フタロシアニンの高塩素化反
応生成物から溶媒回収後のカマ残又は湿ケーキの
後処理工程、即ち水又は希硫酸等で洗い出した
後、酸洗濾過、アルカリ洗濾過、水洗、乾燥等の
各工程を省略できる点で工業操作上極めて有利で
あり、しかも驚くべきことに、上述の後処理を行
つたものを通常の顔料化方法で顔料化した場合に
比べ、鮮明性や着色力等についてもより優れた高
塩素化銅フタロシアニンの帯黄緑色顔料が得られ
る、という工業的価値ある格別な効果を奏し得る
ものである。 次に本発明を実施例により具体的に説明する。
なお、実施例及び比較例中、%は重量%を、部は
重量部を、それぞれ表わす。 実施例 1 銅フタロシアニンの塩素化: クロルスルホン酸380部、硫黄59部(16%対ク
ロルスルホン酸)及びヨウ素3.7部をまず反応器
に入れ、これに粗製銅フタロシアニン75部(純度
92%)を加え撹拌溶解せしめた。次に該溶液に塩
素ガスを常温から徐々に100℃まで昇温しながら
供給した。この時反応器の圧力は約20分で3Kg/
cm2Gとなり、以後この圧力を保持するように供給
塩素量に適合せしめて反応器出口の調節弁の開度
を調整した。該溶液の色が緑黒色から次第に赤味
を帯び深紅色になるまで、5時間にわたつて360
部の塩素を供給した。 その結果、塩素化反応生成物(溶液)630部が
得られた、高塩素化銅フタロシアニン収率は98%
(対理論)、フタロシアニン分子の塩素置換数は
14.5ケであつた。 実施例 2 実施例1と同様にして得られた塩素化反応生成
物630部を、まず常圧下、110℃に加熱して低沸留
分を蒸留回収し、次いで最終的に減圧下40Torr
で150℃まで昇温して溶媒を溜出せしめ、191部の
カマ残が得られた。カマ残中の溶媒成分含有率は
粗製高塩素化銅フタロシアニンに対し45%であつ
た。 次いで顔料化を次の通り行つた。すなわち、該
カマ残100部(粗製高塩素化銅フタロシアニン69
部含有)、ポリエチレングリコール120部及び無水
芒硝500部をニーダーに仕込み、30〜60℃で8時
間磨砕した後、2%硫酸水溶液4300部中に入れ、
90℃で1時間撹拌後、濾過、水洗した。次に、こ
の濾過ケーキを2%カセイソーダ水溶液中で同様
に処理した後、乾燥した。得られた顔料は、比較
例1で得られたものに比べて、鮮明性及び着色力
とも優れていた。 なお、鮮明性(NBS)は、National Bureau of
StandardによりHunterのLab方式で測定した色素
絶対値という客観的数値で示すこともできる。
又、着色力(%)は、比較例の顔料の着色力を
100%としたときの相対値であり、例えば着色力
が120%なら、顔料の使用量は1/1.2×100=87%
にすることができる。そこで、本実施例2並びに
以下の実施例3〜11及び比較例1〜2の各顔料に
つき同様の方式で測定して得られた着色力および
鮮明性の各測定値を後記第1表にまとめて比較表
示する。 比較例 1 実施例1と同様に反応して得られた塩素化反応
生成物630部を実施例2と同様に蒸留して溶媒回
収を行つた。得られたカマ残191部に2%硫酸水
溶液300部を加えて90℃で1時間撹拌した後、濾
過、水洗し、次いでこの濾過ケーキを、2%カセ
イソーダ水溶液3000部中に投入して90℃で1時間
撹拌後、濾過、水洗、乾燥して粗製高塩素化銅フ
タロシアニン132部を得た。 次いで、該粗製高塩素化銅フタロシアニン69
部、ポリエチレングリコール120部及び無水芒硝
500部をニーダーに仕込み、以後実施例2と全く
同様にして顔料化及び後処理操作を行つた。得ら
れた顔料は、実施例2で得られたものに比べて、
鮮明性及び着色力ともやや低いものであつた(後
記第1表参照)。 実施例 3 実施例1と同様にして得られた塩素化反応生成
物630部を、減圧下330Torr、150℃の条件で溶媒
を回収し、カマ残238部が得られた。カマ残中の
溶媒成分含有率は粗製高塩素化銅フタロシアニン
に対し80%であつた。 次いで、該カマ残の顔料化及び後処理操作は、
実施例2と同様に行つた。得られた顔料は実施例
2で得られたものとほぼ同等であつた(後記第1
表参照)。 実施例 4 実施例1と同様にして得られた塩素化反応生成
物630部を、まず常圧下、130℃に加熱して低沸留
分を蒸留回収し、カマ残440部が得られた。カマ
残中の溶媒成分含有率は粗製高塩素化銅フタロシ
アニンに対し233%であつた。 次いで該カマ残350部と酸性硫酸ナトリウム616
部をニーダーに仕込み、30〜60℃で7時間磨砕し
た後、実施例2と同様に後処理操作を行つた。得
られた顔料は、実施例2で得られたものとほぼ同
等であつた(後記第1表参照)。 実施例 5 実施例1と同様にして得られた塩素化反応生成
物716部を、実施例4と同様に常圧下、加熱して
低沸留分を回収し、カマ残500部が得られた。カ
マ残中の溶媒成分含有率は粗製高塩素化銅フタロ
シアニンに対し233%であつた。 次いで該カマ残470部をニーダー中の無水芒硝
500部と硫酸385部との混合物中へ仕込み、30〜60
℃で7時間磨砕した後、実施例2と同様に後処理
操作を行つた。得られた顔料は、実施例2で得ら
れたものとほぱ同等であつた(後記第1表参
照)。 実施例 6 実施例1と同様にして得られた塩素化反応生成
物を実施例2と同様に蒸留して溶媒を回収し、該
回収溶媒を塩素化反応に再使用した。すなわち、
該回収溶媒475部に粗製銅フタロシアニン75部
(純度92%)を加えて撹拌し溶解せしめた後、実
施例1と同様に常温から徐々に100℃に昇温しな
がら塩素を供給した。反応圧は3.0Kg/cm2Gを保
つように反応器出口弁の開度を調節した。反応液
は、茶黒色から次第に赤味を帯び次いで深紅色に
なるまで4時間にわたつて、163部の塩素を供給
した。 得られた塩素化反応生成物は、実施例2と同様
に減圧蒸留を行い、187部のカマ残が得られた。
カマ残中の溶媒成分含有率は粗製高塩素化銅フタ
ロシアニンに対し42%であつた。 次いで該カマ残は、実施例2と同様にして顔料
化及び後処理操作を行つた結果、実施例2とほぼ
同等の顔料が得られた(後記第1表参照)。 実施例 7 実施例1と同様にして得られた塩素化反応生成
物を、実施例2と同様に蒸留して溶媒回収を行つ
た後に得られたカマ残6部(粗製高塩素化銅フタ
ロシアニン4.14部含有)、無水芒硝42部及び鋼球
180部をポツトに入れ、30〜60℃で30時間ミリン
グした。取り出した物の後処理は実施例2と同様
に実施した。得られた顔料は、比較例2で得られ
たものに比べて鮮明性、着色力とも優れていた
(後記第1表参照)。 比較例 2 比較例1と同様にて得られた粗製高塩素化銅フ
タロシアニン4.14部、無水芒硝42部及び鋼球180
部をポツトに入れ、実施例7と同様に顔料化し、
後処理操作を実施した。得られた顔料は、実施例
7で得られたものに比べて、鮮明性、着色力とも
やや低いものであつた(第1表参照)。 実施例 8 実施例1と同様にして得られた塩素化反応生成
物を、実施例2と同様に蒸留して溶媒回収を行つ
た後に得られたカマ残200部、無水芒硝2000部、
鋼球(径2cm)3000部及びポリエチレングリコー
ル1400部をポツトに入れ、30〜60℃で30時間ミリ
ングした。取り出した物の後処理は実施例2と同
様に実施した。得られた顔料は、実施例7で得ら
れたものとほぼ同等であつた(後記第1表参
照)。 実施例 9 実施例1と同様にして得られた塩素化反応生成
物630部を、常圧下、130℃に加熱して低沸留分を
蒸留回収し、カマ残440部が得られた。該カマ残
を室温で濾過し、湿ケーキ266部が得られた。こ
の湿ケーキ中の溶媒成分含有率は粗製高塩素化銅
フタロシアニンに対し160%であつた。 次いで該湿ケーキは、実施例4と同様にして顔
料化及び後処理操作を実施した。得られた顔料は
実施例4で得られたものとほぼ同等であつた(後
記第1表参照)。 実施例 10 実施例1において、粗製銅フタロシアニンを
125部とし、塩素の供給時間及び供給量をそれぞ
れ8時間及び600部とした以外は、実施例1と同
様に塩素化反応を行い、塩素化反応生成物(スラ
リー)718部が得られた。 得られた塩素化反応生成物を室温で濾過し、湿
ケーキ486部が得られた。この湿ケーキ中の溶媒
成分含有率は粗製高塩素化銅フタロシアニンに対
して161%であつた。 次いで該湿ケーキは、実施例4と同様にして顔
料化及び後処理操作を実施した。得られた顔料は
実施例4で得られたものとほぼ同等であつた。 なお、本実施例で得られた濾液をそのまま用い
て粗製銅フタロシアニンを塩素化して得た塩素化
反応生成物から析出した結晶を同様に濾過して得
た高塩素化銅フタロシアニンを含む湿ケーキは、
実施例4と同様にして顔料化及び後処理操作を実
施した。得られた顔料は実施例4で得られたもの
とほぼ同等であつた(下記第1表参照)。 実施例 11 クロルスルホン酸380部、硫黄26部(対クロル
スルホン酸6.8%)及びヨウ素3.7部を反応器に入
れ、3Kg/cm2G常温から40℃で塩素を通じる。未
反応塩素がでてきたら塩素の供給を止める。かく
して粗製塩化ピロスルフリルが得られる。該粗製
塩化ピロスルフリルに粗製銅フタロシアニン75部
及び硫黄15部(対粗製塩化ピロスルフリル3.7
%)を加え、実施例1と同様に反応して、塩素化
反応生成物600部が得られた。粗製高塩素化銅フ
タロシアニンの収率は98%(対理論)、フタロシ
アニン分子の塩素置換数は14.6ケであつた。 上記で得た塩素化反応生成物を実施例2と同様
に蒸留して溶媒回収を行い、190部のカマ残が得
られた。カマ残中の溶媒成分含有率は粗製高塩素
化銅フタロシアニンに対し45%であつた。次いで
該カマ残の顔料化及び後処理操作は、実施例2と
同様に行なつた。得られた顔料は実施例2で得ら
れたものとほぼ同等であつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing highly chlorinated copper phthalocyanine pigments. Copper phthalocyanine is a blue pigment, but when the benzene ring of the copper phthalocyanine molecule is replaced with chlorine, the hue gradually changes from blue to green. Theoretically, up to 16 chlorine atoms can be substituted into a copper phthalocyanine molecule, but 12 or more substitutions produce a greenish color, and 13 or more is usually considered the practical number of chlorine atoms substituted in a green pigment molecule. In particular, if 14 or more chlorine atoms are substituted, it becomes a bright green pigment with a yellowish tinge. Furthermore, this is a green pigment with extremely excellent light resistance and solvent resistance. Conventionally, the method widely used to produce highly chlorinated copper phthalocyanine, which is an excellent green pigment, is to dissolve copper phthalocyanine in a mixture of anhydrous aluminum chloride and common salt, and then chlorine it at a high temperature of around 200°C. In this method, the chlorinated reaction product is separated by chlorinating the reaction product in a large amount of ice water. However, this method is industrially disadvantageous because it uses a large amount of anhydrous aluminum chloride and the reaction product is thrown into water, making it impossible to recover the anhydrous aluminum chloride and common salt. Since the chlorination reaction is carried out at high temperatures for a long period of time, various by-products are likely to be produced, which inevitably leads to a decline in yield. There is also a method of heating chlorinated phthalic anhydride, chlorinated phthalimide, or their derivatives as raw materials in an organic solvent in the presence of a copper compound, urea, and a catalyst at a temperature of 200 to 300°C, but side reactions occur. It has the disadvantage that it is difficult to obtain a green pigment with a clear hue because it contains impurities even after being purified after the reaction. On the other hand, a method for producing highly chlorinated copper phthalocyanine by dissolving copper phthalocyanine in chlorosulfonic acid and passing chlorine gas in the presence of a catalyst is also known (US Pat. No. 2,662,085, 1958); As a result of further trials by the inventors,
The yield was considerably lower than that of the aluminum chloride-salt method, about 50% (vs. theory). Moreover, the color tone of the produced pigment was indistinct and bluish, and a clear yellowish-green color could not be obtained. Therefore, the present inventors have already proposed a method for producing highly chlorinated copper phthalocyanine having a clear yellowish-green color in a high yield and industrially advantageously, by eliminating the above-mentioned conventional drawbacks, and has already been published in Japanese Patent Application No. 52-148081. In the specification, "acid chloride of a sulfuric acid chloride, using chlorsulfonic acid or pyrosulfuryl chloride as a solvent, adding sulfur and/or sulfur chloride as a catalyst, with or without the addition of other chlorination catalysts" In the production method of highly chlorinated copper phthalocyanine in which copper phthalocyanine is chlorinated using chlorine, 7% to 200% by weight of sulfur for chlorosulfonic acid and 1% by weight of sulfur for pyrosulfuryl chloride. % to 200% by weight, including each sulfur and/or sulfur chloride, 1 to 20Kg/cm 2 G
A method for producing highly chlorinated copper phthalocyanine, which is characterized by chlorination under pressure (gauge), and
The distillate obtained by chlorinating copper phthalocyanine and distilling the resulting chlorinated reaction product by the above two methods using chlorsulfonic acid or pyrosulfuryl chloride as the acid chloride solvent of the sulfur oxygen acid. You can use it as it is, add copper phthalocyanine to it and chlorinate it again, and then repeat the operation of distilling the obtained chlorination reaction product and adding copper phthalocyanine to it to chlorinate it. A method for producing highly chlorinated copper phthalocyanine, which is characterized by good properties. ” was clarified and explained in detail. In the above production method, the obtained chlorinated reaction product can be distilled to separate the solvent, as well as when the obtained chlorinated reaction product is poured into a large amount of ice water and then filtered, and even when the solvent is recovered. The wet cake containing highly chlorinated copper phthalocyanine obtained by filtering the residue containing highly chlorinated copper phthalocyanine or the crystals precipitated from the obtained chlorination reaction product is washed with water or dilute sulfuric acid, etc. The crude highly chlorinated copper phthalocyanine was obtained in high yield by carrying out the conventional post-treatment method of washing and filtration, alkali washing and filtration, water washing, and drying. A yellowish-green pigment with excellent clarity is obtained by performing a salt grinding method, etc.).
However, as a result of further intensive research, the present inventors have discovered that the chlorinated reaction product obtained by chlorination using the above production method is distilled to separate the solvent, and then a polymer containing highly chlorinated copper phthalocyanine is produced. A wet cake containing highly chlorinated copper phthalocyanine obtained by filtering the crystals precipitated from the residue or the obtained chlorination reaction product is simplified as described above without any post-treatment such as acid/alkali washing, and chlorine Surprisingly, when pigments are formed by directly grinding them under mechanical force such as salt grinding while still containing the reaction solvent, it is surprising that after the above-mentioned post-treatment, the pigments are formed. The inventors have discovered that a yellowish-green pigment can be obtained which is very clear and has extremely excellent coloring power compared to the conventional method, and has arrived at the present invention. That is, the present invention solves the drawbacks of the conventionally known methods described above, and at the same time provides a method for producing a highly chlorinated copper phthalocyanine pigment that has a yellowish-green color that is more vivid and has better coloring power, which is particularly advantageous from an industrial standpoint. The gist of this is that chlorosulfonic acid or pyrosulfuryl chloride is used as the acid chloride solvent for sulfur oxygen acids, sulfur and/or sulfur chloride is added as a catalyst, and other chlorine In producing a highly chlorinated copper phthalocyanine pigment by chlorinating copper phthalocyanine with chlorine, with or without addition of a catalyst, 7% by weight or more and 200% by weight or less as sulfur with respect to chlorosulfonic acid, For pyrosulfuryl chloride, add sulfur and/or sulfur chloride in amounts corresponding to 1% by weight or more and 200% by weight or less as sulfur,
Chlorinated under pressure of 1 to 20 kg/cm 2 G (gauge),
Highly chlorinated copper phthalocyanine obtained by filtering the residue containing highly chlorinated copper phthalocyanine after distilling the obtained chlorinated reaction product and separating the solvent or by filtering the crystals precipitated from the obtained chlorinated reaction product A method for producing a highly chlorinated copper phthalocyanine pigment, which is characterized by grinding a wet cake containing a chlorinated reaction solvent while still containing the chlorinated reaction solvent, and a method for producing a highly chlorinated copper phthalocyanine pigment, which is chlorinated in the same manner as above, and the resulting chlorinated reaction product. Copper phthalocyanine is added to the distillate obtained by distilling the product, using the distillate as it is, adding copper phthalocyanine to it and chlorinating it again, and then distilling the obtained chlorinated reaction product. The chlorinated reaction product obtained each time is distilled to separate the solvent, and the residue containing highly chlorinated copper phthalocyanine is obtained. An operation in which the filtrate obtained by filtering the crystals is used as it is, copper phthalocyanine is added thereto to chlorinate it again, and the resulting chlorinated reaction product is filtered, the filtrate obtained is used and copper phthalocyanine is added thereto for chlorination. The chlorination reaction product obtained each time is filtered and the solvent is separated, and the wet cake containing the highly chlorinated copper phthalocyanine is then ground while the chlorination reaction solvent remains contained. The invention consists in a method for producing a chlorinated copper phthalocyanine pigment. In the method of the present invention, crosssulfonic acid or pyrosulfuryl chloride is generally used as the acid chloride solvent for the sulfur oxygen acid, and sulfuryl chloride,
When thionyl chloride is used, it is preferably used in combination with thionyl chloride. These mixtures can be obtained by recovering the solvent from the chlorination reaction mixture by distillation or the like, and the mixture can be reused as a solvent. The amount of the above-mentioned solvent to be used should basically be within a range that dissolves or suspends the copper phthalocyanine raw material and makes sufficient contact with the chlorine gas, but the reaction solution is usually stirred with a stirrer commonly used in industry. The amount is preferably about 3 times to about 50 times the weight of the raw material copper phthalocyanine, and industrially preferably 4 to 8 times the weight of the raw material copper phthalocyanine. The chlorination reaction in the method of the present invention is first carried out by adding sulfur or chloride of sulfur (hereinafter referred to as catalyst A) as a catalyst. This reaction can be carried out with or without the addition of another chlorination catalyst (hereinafter referred to as B catalyst), but it is usually preferable to use a B catalyst such as iodine in combination with the B catalyst. By adding 0.01 to 10% by weight, a clear yellowish-green pigment can be obtained in high yield. Catalyst B used in combination with catalyst A includes iodine, iodine chlorides such as iodine monochloride, and iodine trichloride, and metal chlorides such as anhydrous aluminum chloride, anhydrous ferric chloride, antimony trichloride, and cupric chloride. etc. The above catalyst A may be sulfur or sulfur chloride alone, but of course may be used in combination. The amount added is preferably 7% by weight or more in terms of sulfur for the chlorsulfonic acid solvent, and 1% by weight or more in terms of sulfur for the pyrosulfuryl chloride solvent. . On the other hand, if the content of catalyst A is too large in both of the above solvents, the relative proportion of the solvent will decrease, and even if the proportion of copper phthalocyanine to the solvent is appropriate, the amount of copper to the total amount of catalyst A and solvent will decrease. Since the proportion of phthalocyanine is undesirably reduced, the proportion of sulfur in the solvent should be 900% by weight or less,
Industrially, it can be said that 8 to 100% by weight is good, but 200%
If it exceeds % by weight, it becomes somewhat difficult to chlorinate. Considering that the practical number of chlorine substitutions for green pigments is 13 or more in one molecule of highly chlorinated copper phthalocyanine, the content of catalyst A is A preferable upper limit is 200% by weight or less of sulfur based on the above solvent. In addition, in the chlorination reaction of the method of the present invention, when chlorosulfonic acid is used as a solvent, chlorosulfonic acid mainly reacts with catalyst A and chlorine as shown in the following formula to form a mixture containing pyrosulfuryl chloride as the main component. It is presumed that the copper phthalocyanine is produced and then the chlorination reaction of the copper phthalocyanine proceeds. 8SO 2 (OH)Cl+2S+6Cl 2 →4S 2 O 5 Cl 2 +2SO 2 Cl 2 +8HCl 8SO 2 (OH)Cl+S 2 Cl 2 +5Cl 2 →4S 2 O 5 Cl 2 +2SO 2 Cl 2 +8HCl I 2 +Cl 2 →2IClorICl 3 S 2 Cl 2 +Cl 2 →2SCl 2 That is, as mentioned above, for the chlorosulfonic acid solvent, it is necessary to use catalyst A containing at least 7% by weight, preferably at least 8% by weight of sulfur, but by a known method. When separately prepared pyrosulfuryl chloride (a crude product is sufficient) is used as a solvent, it is sufficient to use catalyst A containing 1% by weight or more of sulfur with respect to the solvent; when using the above-mentioned chlorosulfonic acid solvent The reason why the amount can be reduced by about 6% by weight is presumed to be that catalyst A, which is required to produce pyrosulfuryl chloride according to the above reaction formula, is unnecessary. In the chlorination reaction of the method of the present invention, the reaction pressure is 1 to 20 Kg/cm 2 G (gauge), preferably 2 to 8 Kg, which has a remarkable effect in obtaining a bright yellowish-green pigment with a high yield. /cm 2 G, more preferably 3~
7Kg/cm 2 G is good. At 1 to 2 Kg/cm 2 G, the yield of crude highly chlorinated copper phthalocyanine is 96% or more (relative to theory) and a clear pigment can be obtained, but it has a slightly strong bluish tinge. 2
Kg/cm 2 G, especially above 3 Kg/cm 2 G, it is possible to obtain a clear yellowish green crude highly chlorinated copper phthalocyanine in high yield. Although chlorine can be added in liquid or gaseous form, it is generally added in gaseous form. In other words, 20Kg/cm 2 G or more is industrially disadvantageous;
Generally 10Kg/cm 2 G or less, usually 8Kg/cm 2 G or less where chlorine does not liquefy at room temperature, especially 7Kg/cm 2 G or less.
cm 2 G or less is preferable. In addition, the reaction temperature is low at the beginning, for example from room temperature to 100-120℃ as the reaction progresses.
Increase the temperature to. At the highest reaction temperature, it is advantageous to increase the reaction pressure as much as possible. At temperatures above 120°C, the color of the pigment obtained is yellowish-green and sufficiently vivid, but the yield is significantly reduced. To carry out the chlorination reaction in the process of the invention, chlorosulfonic acid or pyrosulfuryl chloride is typically used as the acid chloride solvent for the sulfur oxyacid;
A catalyst, optionally a B catalyst such as iodine, and a predetermined amount of copper phthalocyanine are added and brought into contact with chlorine under a predetermined chlorine pressure, generally gradually starting from room temperature.
Raise the temperature to 100-115℃. Usually, the chlorination reaction is completed after further maintaining the temperature for about 1 to 4 hours. In the method of the present invention, most or a part of the solvent can be recovered from the chlorination reaction product obtained as described above by distillation, usually atmospheric pressure or reduced pressure distillation. Doing so has a greater effect than is generally expected.
That is, the solvent recovered by distillation contains acid chlorides of sulfur oxygen acids such as pyrosulfuryl chloride and sulfuryl chloride, as well as catalyst A and catalyst B such as iodine compounds. A
It is used as it is without adding a catalyst or B catalyst, and a predetermined amount of raw material copper phthalocyanine is added thereto, and it is chlorinated again using chlorine under the pressure and temperature conditions of the method of the present invention, and the obtained chlorination reaction product is further obtained. It is also possible to repeat the operation of adding copper phthalocyanine to the distillate obtained by distilling and chlorinating it, and by this method, similarly excellent highly chlorinated copper phthalocyanine can be obtained in high yield. I can do it. It goes without saying that the recovered solvent can be replenished with an amount of solvent and catalyst corresponding to the losses during reaction and solvent recovery, and then reused as the solvent and catalyst for the chlorination reaction in the method of the present invention. Distillation of the chlorinated reaction product is usually first carried out under normal pressure to remove low boiling point solvent components, and then carried out under reduced pressure. For example, after the process is carried out at 80 to 130°C under normal pressure, the temperature is finally raised to 150°C under reduced pressure at about 30 to 40 Torr, and the process ends when almost no distillate is observed. Moreover, it can also be carried out only under normal pressure. The residue obtained after distillation contains chlorinated reaction solvent components in addition to highly chlorinated copper phthalocyanine, and it is unclear in what form these chlorinated reaction solvent components and highly chlorinated copper phthalocyanine are combined. Although it is not clear, it is thought that this chlorination reaction solvent component brings about the excellent effects described below in the pigmentation step. The content of the solvent component is
It varies depending on the conditions during distillation (degree of vacuum, temperature, etc.), and if it is too high, it will not have much effect on the color tone of the pigment, but the recovery rate of the solvent will decrease and the amount of solvent lost will increase as a result, so it is not suitable for industrial use. On the other hand, if too much is used, the excellent effect will be reduced, which is undesirable. In other words, as the above-mentioned Kama remaining,
The content of the chlorination reaction solvent may be in the range of 20 to 350% by weight based on the crude highly chlorinated copper phthalocyanine, and industrially preferably 30 to 250% by weight. In addition, instead of the above-mentioned residue, a part of the solvent is distilled off and concentrated at the stage of distillation recovery of the chlorination reaction solvent, and then the crystals (highly chlorinated copper phthalocyanine) are precipitated by cooling. A wet cake obtained by filtration can be used. Alternatively, in the chlorination reaction, the amount of copper phthalocyanine used as a raw material is increased to carry out the chlorination reaction at a high concentration, and then after the reaction is completed, crystals are precipitated while being cooled to room temperature, and this is filtered. It is also possible to use the wet cake obtained. It is preferable that these wet cakes contain the same amount of chlorinated reaction solvent as in the case of the above-mentioned kama residue, and it is believed that this solvent component will bring about the same excellent effect as in the case of the above-mentioned kama residue in the pigment formation process. It will be done. The filtrate obtained by filtering the wet cake in the above filtration process (if part of the solvent is distilled off and concentrated, the distillate is combined with the filtrate) contains sulfur oxygen such as pyrosulfuryl chloride and sulfuryl chloride. In addition to the acid chloride, the catalyst A and the catalyst B such as iodine are also included, so the recovered solvent can be used repeatedly as it is without adding a new catalyst A or catalyst B. That is, a predetermined amount of raw material copper phthalocyanine is added to the above filtrate, chlorinated again using chlorine under the pressure and temperature conditions of the method of the present invention, and the resulting chlorinated reaction product is filtered. It is also possible to use the wet cake in the method of the present invention after repeating the operation of adding copper phthalocyanine and chlorinating it, and separating the chlorinated reaction product obtained each time by filtration to separate the solvent. The process also provides excellent highly chlorinated copper phthalocyanines in high yields. Furthermore, it goes without saying that the recovered solvent can be refilled with an amount of solvent and catalyst corresponding to the losses during reaction and solvent recovery, and then reused as the solvent and catalyst for the chlorination reaction in the method of the present invention. Nor. In the method of the present invention, the slag residue or wet cake containing the highly chlorinated copper phthalocyanine obtained as described above is processed without any post-treatment, while containing the chlorination reaction solvent, for example, in a kneader, It is ground into pigment using equipment such as a ball mill, sand mill, or Banbury mixer. At this time, although a grinding aid is not necessarily required, sodium sulfate (anhydrous sodium sulfate), acidic sodium sulfate, common salt, etc. are usually used as the aid. When using a solvent during grinding, use one that is liquid at the temperature during grinding. Specific examples include alcohol-based solvents such as glycerin, polyethylene glycol, and diethylene glycol, cellosolve (ethylene glycol ether)-based solvents, and ketone-based solvents. Generally known solvents and aromatic solvents can be used, but inorganic acids such as sulfuric acid can also be used. However, if the content of the chlorination reaction solvent component relative to the crude highly chlorinated copper phthalocyanine in the kama residue or wet cake is large (for example, 100% by weight or more), the above-mentioned solvent for grinding may not necessarily be used. There's no need. Grinding may be carried out at room temperature, or if heated, it should be carried out at 100°C or less, usually preferably in the range of room temperature to 60°C. After the grinding, a known purification post-processing operation is performed. In other words, water-soluble solvents are removed together with the grinding aid salts when they are removed by washing with water or dilute mineral acids, and water-insoluble solvents are removed by distillation or steam distillation. After that, wash with water or dilute mineral acid. Then, it is washed with dilute alkali, water, and dried. If necessary, coating treatment with a surfactant or the like may be performed prior to drying. As described above, the highly chlorinated copper phthalocyanine pigment obtained by the method of the present invention is very soft and has extremely good dispersibility in a color vehicle, and also has excellent clarity and coloring power. It is a yellowish-green pigment with excellent color. As described in detail above, the method of the present invention involves a post-treatment step of the kama residue or wet cake after solvent recovery from the highly chlorinated reaction product of copper phthalocyanine, which is easily obtained in high yield, i.e., water or dilute sulfuric acid. It is extremely advantageous in industrial operations in that it is possible to omit the steps of pickling and filtration, alkali washing and filtration, water washing, drying, etc. It can produce a yellowish-green pigment of highly chlorinated copper phthalocyanine that has better clarity and coloring power than when it is made into a pigment using the above pigmentation method, which is a special effect that has industrial value. be. Next, the present invention will be specifically explained using examples.
In the Examples and Comparative Examples, % means % by weight, and parts represent parts by weight, respectively. Example 1 Chlorination of copper phthalocyanine: 380 parts of chlorosulfonic acid, 59 parts of sulfur (16% to chlorosulfonic acid) and 3.7 parts of iodine are first placed in a reactor, to which 75 parts of crude copper phthalocyanine (purity
92%) was added and stirred to dissolve. Next, chlorine gas was supplied to the solution while gradually increasing the temperature from room temperature to 100°C. At this time, the pressure in the reactor is 3Kg/in about 20 minutes.
cm 2 G, and thereafter the opening degree of the control valve at the outlet of the reactor was adjusted to match the amount of chlorine supplied so as to maintain this pressure. 360 for 5 hours until the color of the solution changes from greenish-black to gradually reddish and deep red.
of chlorine was supplied. As a result, 630 parts of chlorinated reaction product (solution) were obtained, the yield of highly chlorinated copper phthalocyanine was 98%.
(pair theory), the number of chlorine substitutions in the phthalocyanine molecule is
It was 14.5. Example 2 630 parts of the chlorinated reaction product obtained in the same manner as in Example 1 was first heated to 110°C under normal pressure to recover the low-boiling fraction by distillation, and then finally heated to 40 Torr under reduced pressure.
The temperature was raised to 150°C and the solvent was distilled off, yielding 191 parts of residue. The solvent component content in the kama residue was 45% based on the crude highly chlorinated copper phthalocyanine. Pigmentation was then carried out as follows. That is, 100 parts of the residue (69 parts of crude highly chlorinated copper phthalocyanine)
120 parts of polyethylene glycol and 500 parts of anhydrous sodium sulfate were placed in a kneader, ground at 30 to 60°C for 8 hours, and then placed in 4300 parts of a 2% sulfuric acid aqueous solution.
After stirring at 90°C for 1 hour, the mixture was filtered and washed with water. Next, this filter cake was treated in the same manner in a 2% caustic soda aqueous solution and then dried. The obtained pigment was superior to that obtained in Comparative Example 1 both in sharpness and coloring power. Note that the sharpness (NBS) is determined by the National Bureau of
It can also be expressed as an objective numerical value called the dye absolute value measured by the Hunter's Lab method using Standard.
In addition, the coloring power (%) is the coloring power of the pigment in the comparative example.
It is a relative value when taken as 100%. For example, if the coloring power is 120%, the amount of pigment used is 1/1.2 x 100 = 87%
It can be done. Therefore, the measured values of coloring power and sharpness obtained by measuring the pigments of Example 2, Examples 3 to 11 below, and Comparative Examples 1 to 2 using the same method are summarized in Table 1 below. to compare and display. Comparative Example 1 630 parts of the chlorinated reaction product obtained by the reaction in the same manner as in Example 1 was distilled in the same manner as in Example 2 to recover the solvent. 300 parts of a 2% sulfuric acid aqueous solution was added to 191 parts of the resulting cake residue, and the mixture was stirred at 90°C for 1 hour, filtered and washed with water.Then, the filter cake was poured into 3000 parts of a 2% caustic soda aqueous solution and heated at 90°C. After stirring for 1 hour, the mixture was filtered, washed with water, and dried to obtain 132 parts of crude highly chlorinated copper phthalocyanine. Then, the crude highly chlorinated copper phthalocyanine 69
120 parts of polyethylene glycol and anhydrous sodium sulfate
500 parts were charged into a kneader, and the pigment formation and post-treatment operations were performed in exactly the same manner as in Example 2. The obtained pigment was compared to that obtained in Example 2,
Both the clarity and coloring power were somewhat low (see Table 1 below). Example 3 The solvent was recovered from 630 parts of the chlorinated reaction product obtained in the same manner as in Example 1 under reduced pressure at 330 Torr and 150° C. to obtain 238 parts of residue. The solvent component content in the kama residue was 80% of the crude highly chlorinated copper phthalocyanine. Then, the pigmentation and post-treatment operations of the caster residue are as follows:
The same procedure as in Example 2 was carried out. The obtained pigment was almost the same as that obtained in Example 2 (see Part 1 below).
(see table). Example 4 630 parts of the chlorinated reaction product obtained in the same manner as in Example 1 was first heated to 130° C. under normal pressure, and the low-boiling fraction was distilled and recovered, yielding 440 parts of the residue. The content of solvent components in the kama residue was 233% based on the crude highly chlorinated copper phthalocyanine. Next, 350 parts of the residue and 616 parts of acidic sodium sulfate
The sample was placed in a kneader and ground at 30 to 60°C for 7 hours, followed by post-treatment in the same manner as in Example 2. The obtained pigment was almost the same as that obtained in Example 2 (see Table 1 below). Example 5 716 parts of the chlorination reaction product obtained in the same manner as in Example 1 was heated under normal pressure in the same manner as in Example 4 to recover the low boiling fraction, and 500 parts of the residue was obtained. . The content of solvent components in the kama residue was 233% based on the crude highly chlorinated copper phthalocyanine. Next, the remaining 470 parts of the kettle was added to anhydrous sodium sulfate in a kneader.
500 parts and 385 parts of sulfuric acid, 30-60
After milling at ℃ for 7 hours, the same post-treatment operation as in Example 2 was carried out. The obtained pigment was almost equivalent to that obtained in Example 2 (see Table 1 below). Example 6 The chlorination reaction product obtained in the same manner as in Example 1 was distilled in the same manner as in Example 2 to recover the solvent, and the recovered solvent was reused in the chlorination reaction. That is,
After adding 75 parts of crude copper phthalocyanine (purity 92%) to 475 parts of the recovered solvent and stirring to dissolve it, chlorine was supplied while gradually raising the temperature from room temperature to 100°C as in Example 1. The opening degree of the reactor outlet valve was adjusted so that the reaction pressure was maintained at 3.0 Kg/cm 2 G. 163 parts of chlorine was supplied to the reaction solution over a period of 4 hours until it turned from brownish-black to gradually reddish and then deep red. The obtained chlorinated reaction product was subjected to vacuum distillation in the same manner as in Example 2, and 187 parts of scum residue was obtained.
The content of solvent components in the kama residue was 42% based on the crude highly chlorinated copper phthalocyanine. Next, the casta residue was converted into a pigment and subjected to post-treatment in the same manner as in Example 2, and as a result, a pigment almost equivalent to that in Example 2 was obtained (see Table 1 below). Example 7 The chlorinated reaction product obtained in the same manner as in Example 1 was distilled in the same manner as in Example 2 to recover the solvent. ), 42 parts of anhydrous mirabilite and steel balls
180 parts were placed in a pot and milled at 30-60°C for 30 hours. Post-treatment of the taken out product was carried out in the same manner as in Example 2. The obtained pigment was superior in sharpness and coloring power to that obtained in Comparative Example 2 (see Table 1 below). Comparative Example 2 4.14 parts of crude highly chlorinated copper phthalocyanine obtained in the same manner as Comparative Example 1, 42 parts of anhydrous sodium sulfate, and 180 parts of steel balls.
was put into a pot and converted into a pigment in the same manner as in Example 7,
Post-processing operations were performed. The obtained pigment had slightly lower clarity and coloring power than that obtained in Example 7 (see Table 1). Example 8 The chlorinated reaction product obtained in the same manner as in Example 1 was distilled in the same manner as in Example 2 to recover the solvent, and 200 parts of Kama residue, 2000 parts of anhydrous sodium sulfate,
3000 parts of steel balls (diameter 2 cm) and 1400 parts of polyethylene glycol were placed in a pot and milled at 30 to 60°C for 30 hours. Post-treatment of the taken out product was carried out in the same manner as in Example 2. The obtained pigment was almost the same as that obtained in Example 7 (see Table 1 below). Example 9 630 parts of the chlorinated reaction product obtained in the same manner as in Example 1 was heated to 130° C. under normal pressure, and the low-boiling fraction was distilled and recovered to obtain 440 parts of the residue. The residue was filtered at room temperature to obtain 266 parts of a wet cake. The solvent component content in this wet cake was 160% based on the crude highly chlorinated copper phthalocyanine. The wet cake was then subjected to pigmentation and post-treatment operations as in Example 4. The obtained pigment was almost the same as that obtained in Example 4 (see Table 1 below). Example 10 In Example 1, crude copper phthalocyanine was
The chlorination reaction was carried out in the same manner as in Example 1, except that the supply time and amount of chlorine were 8 hours and 600 parts, respectively, to obtain 718 parts of a chlorination reaction product (slurry). The obtained chlorination reaction product was filtered at room temperature to obtain 486 parts of wet cake. The solvent component content in this wet cake was 161% based on the crude highly chlorinated copper phthalocyanine. The wet cake was then subjected to pigmentation and post-treatment operations as in Example 4. The pigment obtained was almost the same as that obtained in Example 4. The wet cake containing highly chlorinated copper phthalocyanine was obtained by filtrating the crystals precipitated from the chlorination reaction product obtained by chlorinating crude copper phthalocyanine using the filtrate obtained in this example as it is. ,
Pigmentation and post-treatment operations were carried out in the same manner as in Example 4. The pigment obtained was almost the same as that obtained in Example 4 (see Table 1 below). Example 11 380 parts of chlorosulfonic acid, 26 parts of sulfur (6.8% based on chlorosulfonic acid) and 3.7 parts of iodine were placed in a reactor, and chlorine was passed through at 3 kg/cm 2 G at room temperature to 40°C. If unreacted chlorine comes out, stop the chlorine supply. Crude pyrosulfuryl chloride is thus obtained. To the crude pyrosulfuryl chloride, 75 parts of crude copper phthalocyanine and 15 parts of sulfur (to 3.7 parts of crude pyrosulfuryl chloride)
%) and reacted in the same manner as in Example 1 to obtain 600 parts of a chlorinated reaction product. The yield of crude highly chlorinated copper phthalocyanine was 98% (versus theory), and the number of chlorine substitutions in the phthalocyanine molecule was 14.6. The chlorinated reaction product obtained above was distilled to recover the solvent in the same manner as in Example 2, and 190 parts of scum residue was obtained. The solvent component content in the kama residue was 45% of the crude highly chlorinated copper phthalocyanine. Then, the pigmentation and post-treatment operations of the caster residue were carried out in the same manner as in Example 2. The pigment obtained was almost the same as that obtained in Example 2. 【table】

Claims (1)

【特許請求の範囲】 1 硫黄の酸素酸の酸塩化物溶媒としてクロルス
ルホン酸又は塩化ピロスルフリルを用い、触媒と
して硫黄及び/又は硫黄の塩化物を加え、その他
の塩素化触媒を添加又は添加せずに、塩素を用い
て銅フタロシアニンを塩素化して高塩素化銅フタ
ロシアニン顔料を製造するに当り、クロルスルホ
ン酸に対しては硫黄として7重量%以上200重量
%以下、塩化ピロスルフリルに対しては硫黄とし
て1重量%以上200重量%以下、それぞれに相当
する量の硫黄及び/又は硫黄の塩化物を加え、1
〜20Kg/cm2G(ゲージ)の加圧下で塩素化し、得
られた塩素化反応生成物を蒸留して溶媒を分離し
た後の高塩素化銅フタロシアニンを含むカマ残又
は得られた塩素化反応生成物から析出した結晶を
濾別して得た高塩素化銅フタロシアニンを含む湿
ケーキを、塩素化反応溶媒が含まれたままで磨砕
することを特徴とする高塩素化銅フタロシアニン
顔料の製造法。 2 高塩素化銅フタロシアニンを含むカマ残又は
湿ケーキを、塩素化反応溶媒が高塩素化銅フタロ
シアニンに対して20〜350重量%含まれたままで
磨砕する特許請求の範囲第1項記載の方法。 3 高塩素化銅フタロシアニンを含むカマ残又は
湿ケーキを、塩素化反応溶媒が高塩素化銅フタロ
シアニンに対して30〜250重量%含まれたままで
磨砕する特許請求の範囲第1項記載の方法。 4 硫黄の酸素酸の酸塩化物溶媒としてクロルス
ルホン酸又は塩化ピロスルフリルを使用し塩素を
用いて銅フタロシアニンを塩素化し高塩素化銅フ
タロシアニン顔料を製造するに当り、クロルスル
ホン酸に対しては硫黄として7重量%以上200重
量%以下、塩化ピロスルフリルに対しては硫黄と
して1重量%以上200重量%以下、それぞれに相
当する量の硫黄及び/又は硫黄の塩化物を触媒と
して加え、その他の塩素化触媒を添加又は添加せ
ずに、1〜20Kg/cm2G(ゲージ)の加圧下で塩素
化し、得られた塩素化反応生成物を蒸留して回収
した留出物をそのまま用いこれに銅フタロシアニ
ンを添加して再び塩素化し更に得られた塩素化反
応生成物を蒸留して回収した留出物を用いこれに
銅フタロシアニンを添加して塩素化する操作を繰
り返しその都度得られた塩素化反応生成物を蒸留
して溶媒を分離した後の高塩素化銅フタロシアニ
ンを含むカマ残、又は得られた塩素化反応生成物
から析出した結晶を濾別して得た濾液をそのまま
用いこれに銅フタロシアニンを添加して再び塩素
化し更に得られた塩素化反応生成物を濾別して得
た濾液を用いこれに銅フタロシアニンを添加して
塩素化する操作を繰返しその都度得られた塩素化
反応生成物を濾別して溶媒を分離した後の高塩素
化銅フタロシアニンを含む湿ケーキを、塩素化反
応溶媒が含まれたままで磨砕することを特徴とす
る高塩素化銅フタロシアニン顔料の製造法。 5 高塩素化銅フタロシアニンを含むカマ残又は
湿ケーキを、塩素化反応溶媒が高塩素化銅フタロ
シアニンに対して20〜350重量%含まれたままで
磨砕する特許請求の範囲第4項記載の方法。 6 高塩素化銅フタロシアニンを含むカマ残又は
湿ケーキを、塩素化反応溶媒が高塩素化銅フタロ
シアニンに対して30〜250重量%含まれたままで
磨砕する特許請求の範囲第4項記載の方法。
[Claims] 1. Chlorsulfonic acid or pyrosulfuryl chloride is used as a sulfur oxygen acid chloride solvent, sulfur and/or sulfur chloride is added as a catalyst, and other chlorination catalysts are added or not added. When producing a highly chlorinated copper phthalocyanine pigment by chlorinating copper phthalocyanine with chlorine, 7% to 200% by weight of sulfur for chlorosulfonic acid and 200% by weight or less for pyrosulfuryl chloride. Add an amount of sulfur and/or sulfur chloride equivalent to 1% by weight or more and 200% by weight or less as sulfur, and
The residue containing highly chlorinated copper phthalocyanine after chlorination under a pressure of ~20Kg/cm 2 G (gauge) and distilling the obtained chlorination reaction product to separate the solvent or the obtained chlorination reaction A method for producing a highly chlorinated copper phthalocyanine pigment, which comprises grinding a wet cake containing the highly chlorinated copper phthalocyanine obtained by filtering out crystals precipitated from the product, while still containing the chlorination reaction solvent. 2. The method according to claim 1, wherein the kama residue or wet cake containing highly chlorinated copper phthalocyanine is ground while the chlorination reaction solvent remains contained in an amount of 20 to 350% by weight based on the highly chlorinated copper phthalocyanine. . 3. The method according to claim 1, wherein the kama residue or wet cake containing highly chlorinated copper phthalocyanine is ground while the chlorination reaction solvent is still contained in an amount of 30 to 250% by weight based on the highly chlorinated copper phthalocyanine. . 4 Acid chloride of sulfur oxygen acid When producing a highly chlorinated copper phthalocyanine pigment by chlorinating copper phthalocyanine with chlorine using chlorosulfonic acid or pyrosulfuryl chloride as a solvent, sulfur is used for chlorosulfonic acid. 7% to 200% by weight as sulfur for pyrosulfuryl chloride, 1% to 200% by weight as sulfur for pyrosulfuryl chloride, with the corresponding amount of sulfur and/or sulfur chloride added as a catalyst, and other chlorine. Chlorination is carried out under a pressure of 1 to 20 Kg/cm 2 G (gauge) with or without addition of a chlorination catalyst, and the distillate recovered by distilling the obtained chlorination reaction product is used as it is and copper is added to it. The chlorination reaction obtained each time is repeated by adding phthalocyanine, chlorinating it again, distilling the obtained chlorination reaction product, using the recovered distillate, adding copper phthalocyanine to it, and chlorinating it. The residue containing highly chlorinated copper phthalocyanine after distilling the product and separating the solvent, or the filtrate obtained by filtering the crystals precipitated from the obtained chlorinated reaction product, is used as it is and copper phthalocyanine is added thereto. The resulting chlorinated reaction product is filtered, the resulting filtrate is used, copper phthalocyanine is added thereto, and chlorination is repeated. The chlorinated reaction product obtained each time is filtered out and the solvent A method for producing a highly chlorinated copper phthalocyanine pigment, which comprises grinding a wet cake containing the highly chlorinated copper phthalocyanine after separating the pigment, while still containing the chlorination reaction solvent. 5. The method according to claim 4, wherein the kama residue or wet cake containing highly chlorinated copper phthalocyanine is ground while the chlorination reaction solvent remains contained in an amount of 20 to 350% by weight based on the highly chlorinated copper phthalocyanine. . 6. The method according to claim 4, wherein the kama residue or wet cake containing highly chlorinated copper phthalocyanine is ground while the chlorination reaction solvent is still contained in an amount of 30 to 250% by weight based on the highly chlorinated copper phthalocyanine. .
JP4751679A 1979-04-17 1979-04-17 Preparation of highly chlorinated copper phthalocyanine pigment Granted JPS55139457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4751679A JPS55139457A (en) 1979-04-17 1979-04-17 Preparation of highly chlorinated copper phthalocyanine pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4751679A JPS55139457A (en) 1979-04-17 1979-04-17 Preparation of highly chlorinated copper phthalocyanine pigment

Publications (2)

Publication Number Publication Date
JPS55139457A JPS55139457A (en) 1980-10-31
JPS6210266B2 true JPS6210266B2 (en) 1987-03-05

Family

ID=12777267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4751679A Granted JPS55139457A (en) 1979-04-17 1979-04-17 Preparation of highly chlorinated copper phthalocyanine pigment

Country Status (1)

Country Link
JP (1) JPS55139457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220770U (en) * 1988-07-26 1990-02-13

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662085A (en) * 1950-06-29 1953-12-08 Ansbacher Siegle Corp Process for preparation of chlorinated copper phthalocyanine
GB949714A (en) * 1960-03-31 1964-02-19 Bayer Ag Process for the production of highly-halogenated copper phthalocyanines
GB1068590A (en) * 1963-02-12 1967-05-10 Hercules Inc Improvements in or relating to halogenation of phthalocyanines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662085A (en) * 1950-06-29 1953-12-08 Ansbacher Siegle Corp Process for preparation of chlorinated copper phthalocyanine
GB949714A (en) * 1960-03-31 1964-02-19 Bayer Ag Process for the production of highly-halogenated copper phthalocyanines
GB1068590A (en) * 1963-02-12 1967-05-10 Hercules Inc Improvements in or relating to halogenation of phthalocyanines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220770U (en) * 1988-07-26 1990-02-13

Also Published As

Publication number Publication date
JPS55139457A (en) 1980-10-31

Similar Documents

Publication Publication Date Title
US2662085A (en) Process for preparation of chlorinated copper phthalocyanine
JPS5818332A (en) Treatment of aromatic monocarboxylic acid reactant mixture
CN104672157B (en) A kind of preparation method of aryltriazolinones
US2214469A (en) Process for manufacturing halogenated phthalocyanines
JPS6210266B2 (en)
JP2930774B2 (en) Method for producing quinophthalone
US4218376A (en) Process for producing highly chlorinated copper phthalocyanine
JPH0645760B2 (en) Method for producing dark-colored polyhalogenated copper phthalocyanine
US4067881A (en) Manufacture of polychloro-copper phthalocyanines
US2793214A (en) Chlorinated copper phthalocyanine
JPS6212821B2 (en)
KR860001908B1 (en) Diantraquinone-n,n'-dihydrazine and chloride thereof
JP2730991B2 (en) Method for producing 1-amino-2-chloro-4-hydroxy-anthraquinone
JPS637547B2 (en)
Groggins Studies in the Friedel-Crafts Reaction Diphenyl Series. 1 I—Preparation of 4′-Phenyl-2-Benzoyl Benzoic Acid and Its Derivatives2
JPH0464549B2 (en)
JPS6056157B2 (en) Production method of high purity halogen naphthalic anhydride
US4684753A (en) Process for preparing 1,3,6,8-tetrabromopyrene
US2036487A (en) Halogenated indigos
US1504164A (en) Manufacture of dyestuff intermediates
JPS61183254A (en) Manufacture of 1-amino-2-bromo-4-hydroxyanthraquinone
US1712646A (en) Derivatives of the benzanthrone series and process of making same
US1965855A (en) Manufacture of benzanthronylselenium compounds
JPH08319254A (en) Production of substituted or nonsubstituted phthalic acid salt
JPS6119629B2 (en)