JPS62102569A - Organic solar battery - Google Patents

Organic solar battery

Info

Publication number
JPS62102569A
JPS62102569A JP60243572A JP24357285A JPS62102569A JP S62102569 A JPS62102569 A JP S62102569A JP 60243572 A JP60243572 A JP 60243572A JP 24357285 A JP24357285 A JP 24357285A JP S62102569 A JPS62102569 A JP S62102569A
Authority
JP
Japan
Prior art keywords
phthalocyanine
powder
layer
coating
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60243572A
Other languages
Japanese (ja)
Inventor
Hideo Yasutomi
英雄 保富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP60243572A priority Critical patent/JPS62102569A/en
Publication of JPS62102569A publication Critical patent/JPS62102569A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PURPOSE:To inexpensively and simply form a battery by surface-modifying or coating a hydrocarbon plasma polymerization film with phthalocyanine material powder of a photoelectric conversion layer. CONSTITUTION:Styrene is used as monomer gas, and a coating layer of approx. 50Angstrom thick is formed by plasma polymerization with alpha-type copper phthalocyanine powder. Then, a charge transport agent and a binder resin are mixed with it, and liquefied. A gold layer 2 is coated in a thin film state with the solution. Then, the mixture of magnetic powder and phthalocyanine material powder 14 is contained at the topside on an electrode 13 in a vacuum tank. A surface-modified layer or a coating layer by the plasma polymerization is formed on the surface of the powder 14 by a glow discharge for the prescribed time. Thus, the photoelectric conversion layer is formed by coating. Since phthalocyanine material is coated with a polymerization film, an ageing change can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、フタロシアニン系材料を用いた有機太陽電池
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an organic solar cell using a phthalocyanine material.

(従来の技術) 有機顔料、たとえば、フタロシアニン系材料は、光起電
力を有し、太陽電池用の材料として研究されている。第
6図は、ニッケルフタロシアニンを用いた太陽電池の例
を示す。金電極層3■の上にニッケルフタロシアニンの
真空蒸着膜32を形成し、さらにポリエチレン超薄膜3
3(約100人厚)を積層し、そしてアルミニウム電極
層34を形成する。この太陽電池の変換効率は約1%で
ある。
(Prior Art) Organic pigments, such as phthalocyanine materials, have photovoltaic power and are being studied as materials for solar cells. FIG. 6 shows an example of a solar cell using nickel phthalocyanine. A vacuum-deposited film 32 of nickel phthalocyanine is formed on the gold electrode layer 3■, and an ultra-thin polyethylene film 3
3 (approximately 100 layers thick) to form an aluminum electrode layer 34. The conversion efficiency of this solar cell is about 1%.

(発明の解決すべき問題点) フタロシアニン系太陽電池は、従来は真空蒸着法を用い
て製造されているが、コスト低下のためには、さらに簡
単に製造できることが望ましい。
(Problems to be Solved by the Invention) Phthalocyanine solar cells have conventionally been manufactured using a vacuum evaporation method, but in order to reduce costs, it is desirable to be able to manufacture them even more easily.

また、フタロシアニン系太陽′岨池の電気的特性は、経
時変化が大きく、特に初期には激しく変化する。
In addition, the electrical properties of phthalocyanine solar cells change significantly over time, especially in the early stages.

本発明の目的は、簡単に作成でき、安価なフタロシアニ
ン系太陽電池を提供することである。
An object of the present invention is to provide a phthalocyanine solar cell that is easy to produce and inexpensive.

(問題点を解決するための手段) 本発明に係る有機太陽電池は、フタロシアニン系材料の
粉末、電荷輸送剤およびバインダー樹脂を混合してなる
光電変換層と、その両側にそれぞれ積層される電極層と
半透明電極層とからなり、上記のフタロシアニン系材料
粉末が炭化物で表面修飾または被覆されていることを特
徴とする。
(Means for Solving the Problems) The organic solar cell according to the present invention includes a photoelectric conversion layer made of a mixture of phthalocyanine material powder, a charge transport agent, and a binder resin, and electrode layers laminated on both sides of the photoelectric conversion layer. and a translucent electrode layer, and is characterized in that the above phthalocyanine material powder is surface-modified or coated with carbide.

(作 用) 光電変換特性を有するフタロシアニン系材料粉末を、電
荷輸送剤およびバインダ樹脂と混合して光電変換層を形
成する。したがって、光電変換層は塗布により形成でき
る。また、フタロシアニン系材料が炭化水素のプラズマ
重合膜で表面修飾または被覆されているため、経時変化
を防止でき、耐環境性(特に吸着ガスバリヤ性)も向上
する。
(Function) A phthalocyanine material powder having photoelectric conversion properties is mixed with a charge transport agent and a binder resin to form a photoelectric conversion layer. Therefore, the photoelectric conversion layer can be formed by coating. Furthermore, since the surface of the phthalocyanine material is modified or coated with a plasma-polymerized hydrocarbon film, deterioration over time can be prevented and environmental resistance (particularly adsorbed gas barrier properties) can be improved.

(実施例) 以下、添付の図面を参照して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図〜第3図に、本発明に係る太陽電池の断面を図式
的に示す。第1図において、アルミニウム基板lに、金
層2を蒸着する。次に後に説明するコーティング材料で
被覆したフタロシアニン材料(たとえば、特開昭56−
166355号に示されるα型銅フタロシアニン)の粉
末3aをバインダ樹脂3b中に分散した塗液を塗布し、
焼成して、光電変換層3を形成する。(コーティング材
料による表面修飾あるいは被覆の厚さは、20〜200
人、望ましくは20〜80人である。キャリアの再結合
を防止するため、膜厚は、lμ尻尻下下望ましくは0.
1〜0.5μ肩とする。)その上に、アルミニウムの半
透過電極層4を蒸着する。
1 to 3 schematically show cross sections of solar cells according to the present invention. In FIG. 1, a gold layer 2 is deposited on an aluminum substrate l. Next, a phthalocyanine material coated with a coating material to be described later (for example,
Applying a coating liquid in which powder 3a of α-type copper phthalocyanine shown in No. 166355 is dispersed in binder resin 3b,
The photoelectric conversion layer 3 is formed by firing. (The thickness of the surface modification or coating with the coating material is 20 to 200 mm.
number of people, preferably 20 to 80 people. In order to prevent carrier recombination, the film thickness is preferably 0.1 μm below the buttock.
The shoulder should be 1 to 0.5μ. ) A semi-transparent electrode layer 4 of aluminum is deposited thereon.

そして、両電極層1.4に取り出し線5.5を接続する
。光電変換層3と金層2とは、オーミック接合を形成し
、光電変換層3と半透過層4とは、ショットキバリアを
形成する。半透過層4側から光を照射すると、光起電力
が取り出し線5.5から取り出せる。
Then, a lead wire 5.5 is connected to both electrode layers 1.4. The photoelectric conversion layer 3 and the gold layer 2 form an ohmic junction, and the photoelectric conversion layer 3 and the semi-transparent layer 4 form a Schottky barrier. When light is irradiated from the semi-transparent layer 4 side, photovoltaic force can be extracted from the extraction line 5.5.

第2図に示す太陽電池においては、光電変換層3と半透
過電極層4との間に、コーティング材料力ζらなる超薄
膜化した透明障壁層6をプラズマ重合法により形成する
In the solar cell shown in FIG. 2, an ultra-thin transparent barrier layer 6 made of coating material ζ is formed between the photoelectric conversion layer 3 and the semi-transparent electrode layer 4 by plasma polymerization.

第3図に示す太陽電池においては、超薄化した透明障壁
11f7を金層2と光電変換層3との間にプラズマ重合
法により形成する。なお、第2図と第3図に示した太陽
電池においては、電流の向きが逆になることもある。ま
た第2図、第3図において、透明障壁層6.7を設ける
のは光電変換層まで光が効率よく届くようにすること、
光電変換層との界面でショットキー障壁を変化させ、キ
ャリアの注入効率を良くし、結果的に変換効率を向上さ
せるためである。
In the solar cell shown in FIG. 3, an ultra-thin transparent barrier 11f7 is formed between the gold layer 2 and the photoelectric conversion layer 3 by plasma polymerization. Note that in the solar cells shown in FIGS. 2 and 3, the direction of the current may be reversed. In addition, in FIGS. 2 and 3, the transparent barrier layer 6.7 is provided to allow light to efficiently reach the photoelectric conversion layer.
This is to change the Schottky barrier at the interface with the photoelectric conversion layer, improve carrier injection efficiency, and improve conversion efficiency as a result.

次に、第1図に示した太陽電池における光電変換層3の
形成についてさらに説明する。フタロシアニン材料とし
て上述の特開昭56−166355号に示されるα型銅
フタロシアニン粉末を用いる。スヂレンをモノマーガス
として用い、プラズマ重合により、上記の粉末に約50
入庫の被覆層を形成する。次に、こうして作製したコー
チイツト粉末(固形分重量比で20重量部)に、電荷輸
送剤としてのN−エチルカルバゾール−3−アルデヒド
メチルフェニルヒドラゾン(MPH)40重量部と、バ
インダ樹脂としてのポリエヂレン樹脂40重量部とを混
合し、キシレン等の溶剤に60℃で溶かし、塗液化する
Next, the formation of the photoelectric conversion layer 3 in the solar cell shown in FIG. 1 will be further explained. As the phthalocyanine material, α-type copper phthalocyanine powder disclosed in the above-mentioned Japanese Patent Application Laid-open No. 166355/1988 is used. Approximately 50%
Forms a coating layer for storage. Next, 40 parts by weight of N-ethylcarbazole-3-aldehydemethylphenylhydrazone (MPH) as a charge transport agent and polyethylene resin as a binder resin were added to the thus prepared Kochite powder (20 parts by weight in terms of solid content). 40 parts by weight and dissolved in a solvent such as xylene at 60°C to form a coating liquid.

このようにして得られた塗液を、スプレー法やディッピ
ング法(大面積、不定形物に塗布する場合)かスピンナ
ー二段速度切り換え法(平板の場合)により、金層2の
上に1μ肩以下に薄膜を塗布する。ここでは、ドラムに
金蒸着したアルミシートを巻き付はスプレーする方法で
シートサンプルを作製したが、スプレー法の場合は、例
えばアルミ薄膜あるいはマイラーにAf2を蒸着したシ
ートをドラムに巻きつけ、ドラムを高速回転させながら
スプレーし、薄膜塗布したり、あるいは、板状基板をス
ピンナーでチャッキングし、高速回転させながら上から
スプレーし、薄膜を得ることもできる。次に、薄膜を焼
成し、光電変換層3を形成した。
The coating solution obtained in this way is applied onto the gold layer 2 by a spraying method, a dipping method (when applying to a large area or irregularly shaped object), or a spinner two-speed switching method (when applying to a flat plate). Apply a thin film below. Here, sheet samples were prepared by wrapping and spraying a gold-deposited aluminum sheet around a drum. However, in the case of the spray method, for example, a thin aluminum film or Mylar sheet with Af2 vapor-deposited is wound around a drum, and the drum is A thin film can be obtained by spraying while rotating at high speed, or by chucking a plate-shaped substrate with a spinner and spraying from above while rotating at high speed. Next, the thin film was fired to form a photoelectric conversion layer 3.

こうして、大面積太陽電池が塗布手段を用いて簡単に安
価に製造できる。光電変換層の膜厚を測定したところ約
5000人であった。このサンプル上にAQを半透過膜
として蒸着し上部電極兼光導入窓とした。ここに、AM
!光を照射したところ1%前後の変換効率が得られた。
In this way, large-area solar cells can be manufactured easily and inexpensively using coating means. When the thickness of the photoelectric conversion layer was measured, it was approximately 5,000 people. AQ was deposited as a semi-transparent film on this sample to serve as an upper electrode and a light introduction window. Here, A.M.
! When irradiated with light, a conversion efficiency of around 1% was obtained.

次に、プラズマ重合法による被覆について説明する。第
4図に図式的に示すプラズマ重合装置においては、図示
しない真空槽内に高周波電源11に接続される第1電極
12と、接地される非磁性金属の第2電極13とを設け
る。第2電極13は、皿状になっていて、上側に磁性粉
体とフタロシアニン材料粉末14を混合したものを収容
する。第2電極13のすぐ下側に回転可能な磁石板15
が設けられる。プラズマ重合に際しては、モノマーガス
を導入し、磁石板15を回転しつつ、高周波電源11に
よる高周波電場を両電極12.13間に加え、グロー放
電を生じさせる。磁石板15の回転により、混合粉体は
移動する。所定時間グロー放電を行うことにより、フタ
ロシアニン粉末14の表面にプラズマ重合による表面修
飾層または被覆層が一様に形成される。
Next, coating by plasma polymerization method will be explained. In the plasma polymerization apparatus schematically shown in FIG. 4, a first electrode 12 connected to a high frequency power source 11 and a second electrode 13 made of a non-magnetic metal and grounded are provided in a vacuum chamber (not shown). The second electrode 13 has a dish shape, and accommodates a mixture of magnetic powder and phthalocyanine material powder 14 on the upper side. A rotatable magnet plate 15 immediately below the second electrode 13
is provided. During plasma polymerization, monomer gas is introduced, and while the magnet plate 15 is rotated, a high frequency electric field from the high frequency power source 11 is applied between the electrodes 12 and 13 to generate a glow discharge. The mixed powder moves as the magnet plate 15 rotates. By performing glow discharge for a predetermined period of time, a surface modification layer or a coating layer is uniformly formed on the surface of the phthalocyanine powder 14 by plasma polymerization.

第5図に示す別のプラズマ重合装置においては、図示し
ない真空槽内に高周波電源21に接続される第1電極2
2と、接地される第2電極23とを設ける。両電極22
.23の間に、フタロシアニン材料粉末を収容する複数
の凹状部を設けた容器25を配置する。
In another plasma polymerization apparatus shown in FIG. 5, a first electrode 2 connected to a high frequency power source 21 is placed in a vacuum chamber (not shown).
2 and a second electrode 23 that is grounded. Both electrodes 22
.. A container 25 provided with a plurality of concave portions for accommodating phthalocyanine material powder is placed between the containers 23 and 23 .

この容器25は、複数のロッドの先端に載せられている
。ロッドの一部は、固定具により固定されているが、他
の部分は、永久磁石26と電磁石27とからなる振動子
により振動可能である。図示しない周波数可変の交流電
源により電磁石27を駆動すると、容器25は振動する
。周波数を変えて粉体24の振動のマツチングをとると
、粉体24は対流を起こす(矢印は対流方向を示す。)
This container 25 is placed on the tips of a plurality of rods. A part of the rod is fixed by a fixture, but the other part can be vibrated by a vibrator consisting of a permanent magnet 26 and an electromagnet 27. When the electromagnet 27 is driven by a frequency variable AC power source (not shown), the container 25 vibrates. When the frequency is changed to match the vibrations of the powder 24, the powder 24 causes convection (arrows indicate the direction of convection).
.

この状態でモノマーガスのグロー放電によりプラズマ重
合膜を粉体24の表面に形成する。
In this state, a plasma polymerized film is formed on the surface of the powder 24 by glow discharge of the monomer gas.

フタロシアニン系材料を用いた太陽電池において問題と
なる電気的経時変化、特に初期の効率変化は、プラズマ
重合膜、特にモノマーガス[イ]〜[二](第1表参照
)を用いた炭化物膜により軽減できた。なお、プラズマ
重合コーティング材料は、テトラフルオロエチレンを8
0人程度被覆したものが、経時変化、耐湿性、くり返し
テストの結果が良好であった。
Electrical aging changes, especially initial efficiency changes, which are a problem in solar cells using phthalocyanine materials, can be solved by plasma polymerized films, especially carbide films using monomer gases [a] to [ii] (see Table 1). I was able to reduce it. The plasma polymerized coating material contains 8% tetrafluoroethylene.
Those coated by about 0 people had good results in terms of aging, moisture resistance, and repeated tests.

なお、光電変換層3に用いるフタロシアニン材料として
は、α型水素フタロシアニン、あるいはメタルフタロシ
アニンあるいはそれらの誘導体(結晶構造は、α型、β
型、γ型、σ型、ε型、τ型。
The phthalocyanine material used for the photoelectric conversion layer 3 is α-type hydrogen phthalocyanine, metal phthalocyanine, or a derivative thereof (crystal structure is α-type, β-type
type, γ type, σ type, ε type, τ type.

χ型あるいはそれらの中間体すなわちアモルファスであ
る)が使用できる。メタルフタロシアニンの中心金属原
子は、具体的には、銅、銀、ナトリウム、リヂウム、ベ
リリウム、マグネシウム、カルンウム、ガリウム、亜鉛
、カドミウム、バリウム、水銀、アルミニウム、インジ
ウム、ランタン、ネオジム、サマリウム、ユーロピウム
、ガドリニウム、ジスプロシウム、ホルミウム、イッテ
ルビウム、ルテチウム、チタン、錫、ハフニウム、鉛、
トリウム、バナジウム、アンチモン、クロム、モリブデ
ン、ウラン、マンガン、鉄、コバルト、ロジウム、パラ
ジウム、オスミウムおよび白金等である。また、フタロ
シアニンの中心核として、金属原子ではなく、3価以上
の原子価を有するハロゲン化金属であってもよい。さら
に、銅−4−アミノフタロシアニン、鉄ポリハロフタロ
シアニン、コバルトへキサフェニルフタロシアニンやテ
トラアゾフタロシアニン、テトラメチルフタロシアニン
、ジアルキルアミノフタロシアニン等の無金属フタロシ
アニンの誘導体などが使用できる。これらは単独または
混合して使用できる。
χ type or their intermediates, that is, amorphous) can be used. Specifically, the central metal atom of metal phthalocyanine is copper, silver, sodium, lithium, beryllium, magnesium, carunium, gallium, zinc, cadmium, barium, mercury, aluminum, indium, lanthanum, neodymium, samarium, europium, and gadolinium. , dysprosium, holmium, ytterbium, lutetium, titanium, tin, hafnium, lead,
These include thorium, vanadium, antimony, chromium, molybdenum, uranium, manganese, iron, cobalt, rhodium, palladium, osmium and platinum. Furthermore, the central nucleus of the phthalocyanine may be a metal halide having a valence of 3 or more, instead of a metal atom. Further, metal-free phthalocyanine derivatives such as copper-4-aminophthalocyanine, iron polyhalophthalocyanine, cobalt hexaphenylphthalocyanine, tetraazophthalocyanine, tetramethylphthalocyanine, and dialkylaminophthalocyanine can be used. These can be used alone or in combination.

フタロシアニン分子中のベンゼン核の水素原子がニトロ
基、シアノ基、ハロゲン原子、スルホン基およびカルボ
シル基からなる群から選ばれた少なくとも一種の電子吸
引性基で置換されたフタロシアニン誘導体と、フタロシ
アニンおよび前記フタロシアニン化合物から選ばれる非
置換フタロシアニン化合物の少なくとも一種とを、それ
らと塩を形成しうる無機酸と混合し、水または塩基性物
質によって析出させることによって得られるフタロシア
ニン系光導電性材料組成物を使用することもできる。こ
の場合、電子吸引性基置換フタロシアニン誘導体は、−
分子中の置換基の数が1〜16個の任意のものを使用で
き、またはその電子吸引性基置換フタロシアニン誘導体
と他の非置換フタロシアニン化合物との組成割合は、前
者の置換基の数がその組成物中の単位フタロンアニン1
分子当たり0.001〜2個、好ましくは、0.002
〜1個になるようにするのが好ましい。前記フタロシア
ニン系光導電性材料組成物を製造する際使用されるフタ
ロシアニン化合物と塩を形成しうる無機酸としては、硫
酸、オルトリン酸、クロロスルホン酸、塩酸、ヨウ化水
素酸、フッ化水素酸、臭化水素酸等が挙げられる。
A phthalocyanine derivative in which the hydrogen atom of the benzene nucleus in the phthalocyanine molecule is substituted with at least one electron-withdrawing group selected from the group consisting of a nitro group, a cyano group, a halogen atom, a sulfone group, and a carbosyl group, and a phthalocyanine and the phthalocyanine. A phthalocyanine-based photoconductive material composition obtained by mixing at least one unsubstituted phthalocyanine compound selected from the compounds with an inorganic acid capable of forming a salt with them and precipitating the mixture with water or a basic substance is used. You can also do that. In this case, the electron-withdrawing group-substituted phthalocyanine derivative is -
Any number of substituents in the molecule from 1 to 16 can be used, or the composition ratio of the electron-withdrawing group-substituted phthalocyanine derivative and other unsubstituted phthalocyanine compounds is such that the number of substituents in the former is the same. Unit phthalonanine in the composition 1
0.001 to 2 per molecule, preferably 0.002
It is preferable to set the number to 1. Inorganic acids that can form salts with the phthalocyanine compound used in producing the phthalocyanine-based photoconductive material composition include sulfuric acid, orthophosphoric acid, chlorosulfonic acid, hydrochloric acid, hydroiodic acid, hydrofluoric acid, Examples include hydrobromic acid.

以上に説明したフタロシアニン材料の粉末の表面をプラ
ズマ重合法により被覆するためのモノマーガスとしては
、[イコ:メタン系、エチレン系。
The monomer gas for coating the surface of the powder of the phthalocyanine material described above by plasma polymerization includes [ico: methane type, ethylene type.

アセチレン系炭化水素、芳容族系炭化水素、[ロ]:ハ
ロゲン含有炭化水素、[ハコ:窒素含有炭化水素、[二
]:酸素含有炭化水素、[ホ]:ボロン含有ガス(B2
H2等)を混合した[イ]、[へ]ニリン含有ガス(P
H3)を混合した[イ]、 [トコ:ケイ素含有ガス(
S+H4,S+H3C12等)を混合した[イ]、[チ
]:ゲルマニウム含有ガス(GeH,)を混合した[イ
]、[す]:金属含有ガス(アルコラード類、有機金属
、キレート環等)を混合した[イ]、あるいは上記のモ
ノマーガス群中少なくとも2種以上を混合したものを用
いる。修飾膜厚は、20〜200人、望ましくは20〜
80人である。これらをコートすることによる効果は、
第1表の様になる。すなわち、コーテイング膜は、フタ
ロシアニン材料の耐溶剤性、耐熱性、耐ガス透過性、分
散性が向上し、電気抵抗が増加する。また、光透過性も
良く、反射を防止する。さらに、コーテイング膜によっ
ては、撥水性を向上させ、あるいは、界面障壁を小さく
する(連続使用による効率を低下させない。)。
Acetylenic hydrocarbon, aromatic hydrocarbon, [B]: Halogen-containing hydrocarbon, [Box: Nitrogen-containing hydrocarbon, [2]: Oxygen-containing hydrocarbon, [E]: Boron-containing gas (B2
[A], [F] Niline-containing gas (P) mixed with H2, etc.)
H3) mixed [A], [To: silicon-containing gas (
[A], [S] mixed with germanium-containing gas (GeH, etc.): [A], [S] mixed with germanium-containing gas (GeH,): mixed with metal-containing gas (alcolades, organic metals, chelate rings, etc.) [A] or a mixture of at least two of the above monomer gases is used. The modified film thickness is 20 to 200, preferably 20 to 200.
There are 80 people. The effect of coating these is
It will look like Table 1. That is, in the coating film, the solvent resistance, heat resistance, gas permeability, and dispersibility of the phthalocyanine material are improved, and the electrical resistance is increased. It also has good light transmittance and prevents reflection. Furthermore, depending on the coating film, water repellency may be improved or the interfacial barrier may be reduced (without reducing efficiency with continuous use).

フタロシアニン系材料を用いた太陽電池において問題と
なる電気的経時変化、特に初期の効率変化は、プラズマ
重合膜、特にモノマーガス[イ]〜[二](第1表参照
)を用いた炭化物膜により軽減できた。特にエチレン系
炭化水素は反射防止膜としても利用できる。
Electrical aging changes, especially initial efficiency changes, which are a problem in solar cells using phthalocyanine materials, can be solved by plasma polymerized films, especially carbide films using monomer gases [a] to [ii] (see Table 1). I was able to reduce it. In particular, ethylene hydrocarbons can also be used as antireflection films.

電荷輸送剤としては、第2表に示すものが有効であった
。特に、MPH,DEHおよび2−ベンジルオキシ−4
−ジエヂルアミノベンズアルデヒドージフェニルヒドラ
ゾンが最も良かった。
As charge transport agents, those shown in Table 2 were effective. In particular, MPH, DEH and 2-benzyloxy-4
-Diedylaminobenzaldehyde diphenylhydrazone was the best.

以下余白 光電変換層3に用いるバインダー樹脂としては、ポリア
ミド樹脂が最も効率が良いが、他の例としては、飽和ポ
リエステル樹脂、ポリアミド樹脂、アクリル樹脂、エチ
レン−酢酸ビニル良重合体、イオン架橋オレフィン共重
合体(アイオノマー)、スチレン−ブタジェンブロック
共重合体、ポリカーボネート、塩化ビニル−酢酸ビニル
共重合体、セルロースエステル、ポリイミド等の熱可塑
性結着剤;エポキシ樹脂、ウレタン樹脂、シリコーン樹
脂、フェノール樹脂、メラミン樹脂、キシレン樹脂、ア
ルキッド樹脂、熱硬化性アクリル樹脂等の熱硬化性結着
剤;光硬化性樹脂;ポリ−N−ビニルカルバゾール、ポ
リビニルピレン、ポリビニルアントラセン等の光導電性
樹脂穴ある。
As the binder resin used for the blank photoelectric conversion layer 3 below, polyamide resin is the most efficient, but other examples include saturated polyester resin, polyamide resin, acrylic resin, ethylene-vinyl acetate polymer, and ionically crosslinked olefin copolymer. Thermoplastic binders such as polymers (ionomers), styrene-butadiene block copolymers, polycarbonates, vinyl chloride-vinyl acetate copolymers, cellulose esters, polyimides; epoxy resins, urethane resins, silicone resins, phenolic resins, melamine Resin, thermosetting binder such as xylene resin, alkyd resin, thermosetting acrylic resin; photocuring resin; photoconductive resin such as poly-N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, etc. Hole.

なお、光電変換粉体は、フタロシアニン系材料のかわり
に、a−Si: H,a−Ge: Hあるいは両者の混
合した粉末、あるいは、B、PのドープでP、N型制御
されたものに、それぞれ第1表中のモノマーガス[へ]
、[ホ]を用いてコートした粉体も利用可能である。更
に、他分野への応用とじて電子写真感光体としてら利用
可能であることか十分予測される。
In addition, instead of the phthalocyanine-based material, the photoelectric conversion powder may be a-Si: H, a-Ge: H, or a mixture of both powders, or one controlled by P and N types by doping with B and P. , respectively monomer gas [to] in Table 1
, [e] can also be used. Furthermore, it is fully predicted that it can be used as an electrophotographic photoreceptor in other fields.

(発明の効果) 大面積太陽電池が塗布手段を用いて簡単に安価に作製で
きる。暗抵抗が高いので、集積型モジュール化し易い。
(Effects of the Invention) A large-area solar cell can be easily produced at low cost using a coating method. Since it has a high dark resistance, it is easy to make it into an integrated module.

曲げやすいマイラーシート、アルミシート等に塗布可能
なので、利用形態に自由度が出る。
It can be applied to easily bendable Mylar sheets, aluminum sheets, etc., giving you more flexibility in how you use it.

バンドギャップがSi単結晶に比べかなり大きいので、
光吸収(特に可視光の長波長側と熱線領域に大きな吸収
ビーク仔)の効率が良い。
Since the bandgap is considerably larger than that of Si single crystal,
It has good light absorption efficiency (particularly large absorption peaks in the long wavelength side of visible light and in the heat ray region).

コーチイツトパウダー分散系なので、入射光の乱反射に
より効率良く、バルク中に吸収される。
Since it is a dispersion system of coachite powder, it is efficiently absorbed into the bulk by diffuse reflection of incident light.

金属−半導体接触によるショットキー障壁による接合部
の強電界領域を利用するが、さらに金属−絶縁超薄膜一
半導体の構成で障壁を設け、トンネル的電荷注入を利用
して更に効率化も図れる。
Although the strong electric field region at the junction is utilized due to the Schottky barrier formed by metal-semiconductor contact, further efficiency can be achieved by providing a barrier with a metal-insulating ultra-thin film-semiconductor structure and utilizing tunneling charge injection.

フタロシアニン材料は、電気的経時変化が大きく初期の
効率変化が激しいが、プラズマ重合膜をコートすること
で軽減できる。
Phthalocyanine materials have large electrical changes over time and initial efficiency changes, but this can be reduced by coating with a plasma polymerized film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は、それぞれ、太陽電池の図式的な断面
図である。 第4図と第5図は、それぞれコーティング装置の図式的
な断面図である。 第6図は、従来の太陽電池の図式的な断面図である。 2・・・金層、        3・・・光電変換層、
3a・・・コーチイツト粉末、 3b・・・バインダ樹
脂、4・・・半透過層。 特許出願人   ミノルタカメラ株式会社代  理  
人 弁理士 青白 葆 ほか2名第2図 第3図      第6図
1 to 3 are schematic cross-sectional views of solar cells, respectively. 4 and 5 are schematic cross-sectional views of the coating apparatus, respectively. FIG. 6 is a schematic cross-sectional view of a conventional solar cell. 2... Gold layer, 3... Photoelectric conversion layer,
3a...Kochite powder, 3b...Binder resin, 4...Semi-transparent layer. Patent applicant Minolta Camera Co., Ltd. Representative
People Patent Attorneys Aobai Ao and 2 others Figure 2 Figure 3 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)フタロシアニン系材料の粉末、電荷輸送剤および
バインダー樹脂を混合してなる光電変換層と、その両側
にそれぞれ積層される電極層と半透明電極層とからなり
、上記のフタロシアニン系材料粉末が炭化水素のプラズ
マ重合膜で表面修飾または被覆されていることを特徴と
する有機太陽電池。
(1) It consists of a photoelectric conversion layer made by mixing phthalocyanine material powder, a charge transport agent, and a binder resin, and an electrode layer and a semitransparent electrode layer laminated on both sides of the photoelectric conversion layer, and the above phthalocyanine material powder is An organic solar cell characterized in that its surface is modified or coated with a hydrocarbon plasma polymerized film.
JP60243572A 1985-10-29 1985-10-29 Organic solar battery Pending JPS62102569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60243572A JPS62102569A (en) 1985-10-29 1985-10-29 Organic solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60243572A JPS62102569A (en) 1985-10-29 1985-10-29 Organic solar battery

Publications (1)

Publication Number Publication Date
JPS62102569A true JPS62102569A (en) 1987-05-13

Family

ID=17105824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60243572A Pending JPS62102569A (en) 1985-10-29 1985-10-29 Organic solar battery

Country Status (1)

Country Link
JP (1) JPS62102569A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028478A1 (en) * 2007-08-28 2009-03-05 Nissan Chemical Industries, Ltd. Phthalocyanine compound
JP2012015251A (en) * 2010-06-30 2012-01-19 National Institute Of Advanced Industrial & Technology Photoelectric conversion element and solar cell
JP2016127093A (en) * 2014-12-26 2016-07-11 三菱化学株式会社 Photoelectric conversion element, solar cell, and solar cell module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028478A1 (en) * 2007-08-28 2009-03-05 Nissan Chemical Industries, Ltd. Phthalocyanine compound
US8304536B2 (en) 2007-08-28 2012-11-06 Nissan Chemical Industries, Ltd. Phthalocyanine compound
JP5402635B2 (en) * 2007-08-28 2014-01-29 日産化学工業株式会社 Phthalocyanine compounds
JP2012015251A (en) * 2010-06-30 2012-01-19 National Institute Of Advanced Industrial & Technology Photoelectric conversion element and solar cell
JP2016127093A (en) * 2014-12-26 2016-07-11 三菱化学株式会社 Photoelectric conversion element, solar cell, and solar cell module

Similar Documents

Publication Publication Date Title
US3973959A (en) Electrophotographic recording material and process for its manufacture
JPH11339868A (en) Charge transporting material, photoelectric conversion element and light regenerative photo-electro-chemical battery
JPS62102569A (en) Organic solar battery
JPH0424970A (en) Organic solar cell
US4119840A (en) Fast acting gain photocurrent device
CA1049123A (en) Optical sensitization and development of liquid crystalline devices
Haga et al. Photovoltaic characteristics of phthalocyanine-polysilane composite films
JPS5811902B2 (en) Aryl diamine 4,10-benzothioxanthene 3,1'- dicarbonanhydridotocarano
JP2004319120A (en) Manufacturing method of semiconductor electrode, and photoelectric conversion element using it
JPS62296152A (en) Electrophotographic sensitive body
JPH01215070A (en) Organic solar battery
JPS5810228B2 (en) laminate
JPS6310909B2 (en)
JP3363994B2 (en) Thin film manufacturing method
JPS60250678A (en) Photovoltaic element
JPH03285367A (en) Solar cell
JPS59197831A (en) Photoelectric converting element
JPS6126062A (en) Electrophotographic sensitive body
JP2005072164A (en) Photoelectric transducer
JPS613473A (en) Photovolatic element
JPS6373260A (en) Photosensitive body
JPS63218963A (en) Photosensitive body
JPH03110872A (en) Optoelectric transducer
JPS62100756A (en) Electrophotographic sensitive body
JPH0466504B2 (en)