JPH0424970A - Organic solar cell - Google Patents

Organic solar cell

Info

Publication number
JPH0424970A
JPH0424970A JP2124234A JP12423490A JPH0424970A JP H0424970 A JPH0424970 A JP H0424970A JP 2124234 A JP2124234 A JP 2124234A JP 12423490 A JP12423490 A JP 12423490A JP H0424970 A JPH0424970 A JP H0424970A
Authority
JP
Japan
Prior art keywords
organic
pigment
dye
work function
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2124234A
Other languages
Japanese (ja)
Inventor
Yuichi Hashimoto
雄一 橋本
Shoji Amamiya
昇司 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2124234A priority Critical patent/JPH0424970A/en
Publication of JPH0424970A publication Critical patent/JPH0424970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain high efficiency of photoelectric conversion in a wide range of wavelength, by a method wherein, in a layer containing two or more kinds of organic pigment and organic dye having different spectral characteristics and work functions, a photoconductive layer in which the work function of the organic pigment is large as compared with that of the organic dye is used. CONSTITUTION:A glass plate is used as a substratum 4, on which a semitransparent aluminum conducting layer (500Angstrom ) is formed as a facing electrode 3 by a vacuum evaporation method. By a spin coating method, 5% methanol solution of polyamide resin is spread and an under coat layer is formed. Next, 5 pts.wt. of trisazo pigment, 5 pts.wt. of diazo pigment and 7 pts.wt. of hydrazone compound are mixed as the charge transfer dye, and applied to the under coat layer, thereby obtaining an organic photoconducting layer 2. A gold electrode 1 is subjected to vapor deposition by vacuum sputtering. In this case, it is necessary that the work function of at least out of organic pigments is larger than that of at least one organic dye by 0.3eV or more, and the work function of one organic pigment is separated from the other by 0.2V or more.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機太陽電池、詳しくは有機顔料及び有機染
料の混合系を用いた機能分離型の有機太陽電池に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an organic solar cell, and more particularly to a functionally separated organic solar cell using a mixed system of an organic pigment and an organic dye.

[従来の技術] 太陽電池は典型的にはその高い変換効率から無機半導体
の単結晶にpn接合を形成させたものが用いられていた
。これらの変換効率は、例えばシリコンを用いた場合に
は12〜15%にも達する。
[Prior Art] Due to its high conversion efficiency, solar cells are typically made of a single crystal of an inorganic semiconductor with a pn junction formed therein. These conversion efficiencies reach as high as 12 to 15% when silicon is used, for example.

しかし、これら無機半導体単結晶を用いた太陽電池では
単結晶作製、ドーピングプロセス等多くのプロセスが電
池作製に必要であるため、生産コストが非常に高くなる
という問題点が有るため民生用には適さなかった。この
ような太陽電池の生産コストの低減のため蒸着やキャス
ティング等により容易に薄膜作製が可能な有機光導電体
を用いた有機太陽電池が研究されている。
However, solar cells using these inorganic semiconductor single crystals require many processes such as single crystal manufacturing and doping processes to manufacture the battery, resulting in extremely high production costs, making them unsuitable for consumer use. There wasn't. In order to reduce the production cost of such solar cells, research is being conducted on organic solar cells using organic photoconductors that can be easily formed into thin films by vapor deposition, casting, or the like.

従来から、有機太陽電池材料としてはクロロフィルなど
の天然色素、メロシアニン、フタロシアニンなどの合成
色素、顔料、ポリアセチレンなどの導電性高分子材料あ
るいはそれらの複合材料などが知られており、これらの
材料を真空蒸着やキャスト法によって薄膜化して得られ
る有機太陽電池が考案されてきた。
Traditionally, known organic solar cell materials include natural dyes such as chlorophyll, synthetic dyes such as merocyanine and phthalocyanine, pigments, conductive polymer materials such as polyacetylene, and composite materials thereof. Organic solar cells have been devised that can be obtained by forming thin films using vapor deposition or casting methods.

しかしながら、これまでの有機太陽電池では光電変換効
率が非常に低く、さらに強い光照射下においては、多数
発生したキャリアが充満して円滑な移動ができないため
、100 mW/cm”光量照射での効率はせいぜい0
,05%程度であり、実用化には程遠い状況であったに こで従来の有機太陽電池の例としてはクリスタルバイオ
レットを用いた米国特許第3844843号や他の米国
特許第3009006号、3057947号等が挙げら
れるが、これらいずれも効率の低さから実用化には至っ
ていない。
However, the photoelectric conversion efficiency of conventional organic solar cells is extremely low, and when exposed to strong light irradiation, a large number of generated carriers fill up and cannot move smoothly. is at most 0
Examples of conventional organic solar cells in Japan include US Pat. No. 3,844,843 using crystal violet, and other US Pat. However, none of these have been put into practical use due to their low efficiency.

また、これまでの有機太陽電池は、有機材料を含む層に
おいてキャリアトラップが多いため移動度が低いなど、
キャリアの輸送性が無機の結晶半導体に比べて非常に悪
く、これが前述の効率の悪さの原因の1つとなっている
が、さらにその他にも前述の有機材料を含む層における
キャリアトラップは連続使用時の特性劣化をうながし、
これか有機太陽電池の実用化をはばむ大きな要因となっ
ていた。
In addition, conventional organic solar cells have low mobility due to many carrier traps in the layer containing organic materials.
Carrier transport properties are very poor compared to inorganic crystalline semiconductors, and this is one of the causes of the poor efficiency mentioned above.In addition, carrier traps in the layer containing the above-mentioned organic material occur during continuous use. promotes the deterioration of the characteristics of
This was a major factor hindering the practical application of organic solar cells.

[発明が解決しようとしている課題] 本発明の目的は、前記従来技術の問題点を解決し、安価
で、太陽光のような強い光照射下においても光電変換効
率が高く、しかも広い波長範囲で連続使用安定性の高い
太陽電池を提供することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the problems of the prior art described above, and to provide a method that is inexpensive, has high photoelectric conversion efficiency even under strong light irradiation such as sunlight, and has a wide wavelength range. Our objective is to provide solar cells with high stability for continuous use.

[課題を解決するための手段] 本発明は、有機光導電層と、該光導電層を挟むようにし
て設けられたすくなくとも一方が透光性を有する2つの
電極とを有する有機太陽電池であって、該光導電層が1
種以上の有機染料および2種以上の有機顔料を含む結着
樹脂からなり、少なくとも1つの有機顔料の仕事関数が
少なくとも1つの有機染料の仕事関数より0.3eV以
上大きく、各有機顔料の仕事関数が互いに0.2eV以
上離れている有機太陽電池である。
[Means for Solving the Problems] The present invention provides an organic solar cell having an organic photoconductive layer and two electrodes, at least one of which is translucent, provided to sandwich the photoconductive layer, The photoconductive layer is 1
a binder resin containing at least one kind of organic dye and two or more kinds of organic pigments, wherein the work function of at least one organic pigment is 0.3 eV or more larger than the work function of at least one organic dye, and the work function of each organic pigment is are separated from each other by 0.2 eV or more.

一般に有機光導電材料においては光照射での光電変換の
際の量子効率は個々の分子配列状態に強く依存する。従
って有機光導電材料を太陽電池に用いる場合にも、ある
特定の結晶形の有機光導電材料を用いることが太陽電池
の変換効率を上げる上で非常に重要となる。
In general, in organic photoconductive materials, the quantum efficiency during photoelectric conversion upon irradiation with light strongly depends on the arrangement of individual molecules. Therefore, when using an organic photoconductive material in a solar cell, it is very important to use a certain crystalline organic photoconductive material in order to increase the conversion efficiency of the solar cell.

有機光導電材料の薄膜を得る方法としては真空蒸着、有
機材料溶液のキャスティング、ディッピングや有機材料
粒子の分散液のキャスティングディッピング等がある。
Methods for obtaining a thin film of an organic photoconductive material include vacuum deposition, casting of an organic material solution, dipping, and casting and dipping of a dispersion of organic material particles.

有機材料の真空蒸着では目的の結晶形を選択的に得るこ
とは非常に困難であり、目的の結晶形を得るためには後
処理等の複雑な工程を必要とすることが多い、また安価
で大面積の有機太陽電池を作るという視点から考えて装
置コストの高い工程の複雑な真空蒸着はキャスト法やデ
ィッピング法と比較して不利な点が多い。
In vacuum evaporation of organic materials, it is very difficult to selectively obtain the desired crystal form, and complex processes such as post-treatment are often required to obtain the desired crystal form. From the perspective of producing large-area organic solar cells, vacuum evaporation, which requires high equipment costs and involves a complicated process, has many disadvantages compared to casting and dipping methods.

また、有機材料の溶液系でのキャストやディッピングで
は前述の真空蒸着と同様に所望の結晶形の有機光導電材
料薄膜を得ることが非常に困難であり、従ってこれを太
陽電池とした場合には高い変換効率は得られていないの
が現状である。
Furthermore, in casting or dipping an organic material in a solution system, it is very difficult to obtain a thin film of an organic photoconductive material in the desired crystalline form, similar to the vacuum evaporation described above. At present, high conversion efficiency has not been achieved.

ここで、所望の結晶形の有機光導電材料を得るという目
的から、あらかじめ種々の処理により得た所望の結晶形
の有機光導電材料微粒子と結着樹脂の分散液を用いてキ
ャスト法やディッピング法によって薄膜を得る方法が注
目される。しかし、単に有機光導電材料の結晶微粒子を
結着樹脂中に分散した膜を太陽電池として用いた場合に
は、光照射によって生成した光キャリアの輸送性が非常
に悪いために良好な変換効率や良好な連続使用安定性が
得られない。
Here, for the purpose of obtaining an organic photoconductive material in a desired crystalline form, a casting method or a dipping method is used using a dispersion of organic photoconductive material particles in a desired crystalline form and a binder resin that have been previously obtained by various treatments. The method for obtaining thin films is attracting attention. However, when a film in which crystalline particles of an organic photoconductive material are simply dispersed in a binder resin is used as a solar cell, the transportability of photocarriers generated by light irradiation is very poor, resulting in poor conversion efficiency. Good stability in continuous use cannot be obtained.

そこで、この微粒子分散系の膜におけるキャリアの輸送
性改善の検討を重ねた結果、本発明のように有機光導電
材料の結晶微粒子における光吸収や光キヤリア生成を妨
げることなく光生成正孔を良好に輸送する有機染料を分
子レベルで溶解、混入することが有効な手段であること
が判明し、かつ有機顔料の仕事関数が有機染料の仕事関
数より0、3 [eV]以上大きいことを満たすことで
、高い変換効率と長時間の連続使用安定性をもつ有機太
陽電池を提供することが可能となったのである。
Therefore, as a result of repeated studies on improving the transportability of carriers in films with this fine particle dispersion system, we found that, as in the present invention, photogenerated holes can be improved without interfering with light absorption and photocarrier generation in the crystalline particles of organic photoconductive materials. It has been found that it is an effective means to dissolve and mix an organic dye to be transported at the molecular level, and the work function of the organic pigment is 0.3 [eV] or more larger than the work function of the organic dye. This made it possible to provide an organic solar cell with high conversion efficiency and stability for long-term continuous use.

本発明の太陽電池は、例えば第1図に示すように、基体
4、電極3、有機光導電層2および電極1が積層されて
なる。電極l側から光照射を行なう場合電極〕を透光性
導電層とし、基体4側から光照射を行なう場合基体4お
よび電極3に透光性を持たせる。光照射を行わない側の
電極(及び基体)は必ずしも透光性である必要はない。
The solar cell of the present invention is formed by laminating a base 4, an electrode 3, an organic photoconductive layer 2, and an electrode 1, as shown in FIG. 1, for example. When light irradiation is performed from the electrode l side, the electrode] is made a transparent conductive layer, and when light irradiation is performed from the substrate 4 side, the substrate 4 and the electrode 3 are made transparent. The electrode (and base) on the side that is not irradiated with light does not necessarily have to be transparent.

有機光導電層2として好適には、有機染料と、分光特性
の異なる2種類の有機顔料とをポリマーバインダーに混
合分散したものを用いることができる。電極としては高
分子、 Snow、 ITO等の酸化物など種々の導電
材料が使用可能である。透光性の電極としては金属の半
透明薄膜、透明導電性酸化物等の透光性を有するものを
用いる必要がある。
As the organic photoconductive layer 2, a mixture of an organic dye and two types of organic pigments having different spectral characteristics mixed and dispersed in a polymer binder can be preferably used. Various conductive materials such as polymers, snow, and oxides such as ITO can be used as the electrodes. As the light-transmitting electrode, it is necessary to use a translucent material such as a semi-transparent thin film of metal or a transparent conductive oxide.

また本発明の太陽電池は有機顔料と電極との間に形成さ
れるショットキー接合によって起電力を得るため、電極
の材料を変えることによって太陽電池の起電力を制御す
ることが可能である。
Furthermore, since the solar cell of the present invention obtains an electromotive force by the Schottky junction formed between the organic pigment and the electrode, it is possible to control the electromotive force of the solar cell by changing the material of the electrode.

また、本発明において電極1と光導電層2または電極3
と光導電N2との密着性向上のために、層1と層2の間
や層2と層3の間等に下引き石を設けることもできる。
Further, in the present invention, the electrode 1 and the photoconductive layer 2 or the electrode 3
In order to improve the adhesion between the photoconductive layer and the photoconductive N2, an undercoating stone can be provided between layers 1 and 2, between layers 2 and 3, etc.

基体4としては、アルミニウム、ステンレスなどの金属
、紙、プラスチックなど用途、使用、形状に合わせて多
種多様な材料が使用できるが、特にこれらの材料に限定
されるものではない。ただし、この有機太陽電池を基体
側から光照射する場合には基体が透光性である必要があ
り、この場合には透明なガラス、プラスチック等が有用
である。
A wide variety of materials can be used for the base 4 depending on the purpose, usage, and shape, such as metals such as aluminum and stainless steel, paper, and plastic, but the material is not particularly limited to these materials. However, when this organic solar cell is irradiated with light from the substrate side, the substrate needs to be translucent, and in this case, transparent glass, plastic, etc. are useful.

電極1及び3としては有機光導電層とのショットキー接
合の形成と光キャリアの授受を良好に行なう材料を選択
することが望まれる。
For the electrodes 1 and 3, it is desirable to select a material that can form a Schottky junction with the organic photoconductive layer and transfer photocarriers well.

本発明の太陽電池における光キャリアの輸送は、光キャ
リアのうち電子が有機顔料を、正孔が有機染料を通して
行なわれる。従って光キャリアの各電極での授受を良好
に保つ目的より、一方の電極材料は有機光導電層中の全
ての有機顔料より仕事関数が小さいもの、他方は有機光
導電層中の全ての有機染料よりも仕事関数が大きいもの
を選択する。電極として特に材料を限るものではないが
この条件を満たすことが好ましい。電極の材料としては
、例えばアルミニウム、銅、ステンレス等の金属、ポリ
アセチレン、ポリピロール等の導電性高分子、4級アン
モニウム塩を高分子中に溶解せしめた層等が挙げられる
Transport of photocarriers in the solar cell of the present invention is carried out in such a way that electrons of the photocarriers pass through an organic pigment and holes pass through an organic dye. Therefore, in order to maintain good transfer of photocarriers to and from each electrode, one electrode material has a work function smaller than all the organic pigments in the organic photoconductive layer, and the other electrode material has a work function smaller than all the organic pigments in the organic photoconductive layer. Select the one with a larger work function. Although the material for the electrode is not particularly limited, it is preferable that it satisfies this condition. Examples of the electrode material include metals such as aluminum, copper, and stainless steel, conductive polymers such as polyacetylene and polypyrrole, and layers in which quaternary ammonium salts are dissolved in polymers.

以下、本発明を更に詳しく説明する。The present invention will be explained in more detail below.

本発明の基本的な動作機構は電極と有機光導電層内の有
機顔料間で、両者の仕事関数差によりショットキー接合
が形成され、この障壁部分て前記有機顔料に照射光を吸
収させて光キヤリア対を生成させる。次に顔料内に生成
した光キヤリア対のうち正孔が有機光導電層内の有機染
料に注入され、正孔は前記染料中を、電子は前記顔料中
を各々前記ショットキー接合のポテンシャル差に従って
移動するものである。
The basic operating mechanism of the present invention is that a Schottky junction is formed between the electrode and the organic pigment in the organic photoconductive layer due to the difference in work functions between the two, and this barrier portion causes the organic pigment to absorb the irradiated light and emit light. Generate a carrier pair. Next, holes among the photocarrier pairs generated in the pigment are injected into the organic dye in the organic photoconductive layer, and the holes move through the dye and the electrons move through the pigment, respectively, according to the potential difference of the Schottky junction. It is something that moves.

本発明においては、有機光導電層内においてショットキ
ー接合を作り、照射光を吸収し光キャリアを生成する機
能と光キャリアのうちの電子を輸送する機能を有機顔料
にもたせ、光キャリアのうち正孔を輸送する機能を有機
染料にもたせることにより、各々の材料の特性を有効に
用いた機能分離型の有機太陽電池を可能とした。
In the present invention, a Schottky junction is created in the organic photoconductive layer, and the organic pigment is given the function of absorbing irradiated light and generating photocarriers, and the function of transporting electrons among the photocarriers. By giving organic dyes the ability to transport pores, we have made it possible to create functionally separated organic solar cells that effectively utilize the characteristics of each material.

有機光導電層内に短波長と長波長に吸収を有するような
、分光特性の異なる2種類以上の有機顔料を混合した場
合、照射光を各々の有機顔料が吸収して光キャリアを生
成する。生成した光キャリアのうち電子は、電極と前記
顔料間に形成されたショットキー接合のポテンシャル差
に従って移動するわけだが、異なる有機顔料間にはキャ
リアトラップが存在するため、電子の輸送性が非常に悪
い欠点があった。そこで、本発明のように各有機顔料間
に互いに0.2 [eV]以上の仕事関数差をもたせる
ことにより、前記顔料内の電子の輸送性を高めることが
可能となった。このような電子の輸送性アップは増感効
果をもたらし、顔料として上記のようなものを用いるこ
とにより短波長から長波長までの広い範囲にわたって光
キャリアの生成が可能となる。
When two or more types of organic pigments having different spectral characteristics, such as those having absorption at short wavelengths and long wavelengths, are mixed in the organic photoconductive layer, each organic pigment absorbs the irradiated light and generates photocarriers. Among the generated photocarriers, electrons move according to the potential difference of the Schottky junction formed between the electrode and the pigment, but because carrier traps exist between different organic pigments, the electron transportability is extremely poor. There were bad flaws. Therefore, by providing a work function difference of 0.2 [eV] or more between each organic pigment as in the present invention, it has become possible to improve the electron transportability within the pigment. Such an increase in electron transportability brings about a sensitizing effect, and by using the above pigments as pigments, it becomes possible to generate photocarriers over a wide range from short wavelengths to long wavelengths.

一方、前記顔料の仕事関数を有機染料の仕事関数より0
.3 [eV]以上大きくすることにより、有機光導電
層の顔料内で生成した光キヤリア対のうち正孔は効率良
く前記染料中に注入され正孔の輸送性が高められる。
On the other hand, the work function of the pigment is 0 from the work function of the organic dye.
.. By increasing the value to 3 [eV] or more, holes among the photocarrier pairs generated within the pigment of the organic photoconductive layer are efficiently injected into the dye, and the transportability of holes is enhanced.

以上のように本発明の有機太陽電池は、有機顔料間及び
前記顔料と有機染料間にエネルギー差をもたせることに
より、各々電子と正孔の輸送性を向上させ高い変換効率
と良好な連続使用を可能とした。
As described above, the organic solar cell of the present invention improves the transportability of electrons and holes by creating an energy difference between the organic pigments and between the pigment and the organic dye, thereby achieving high conversion efficiency and good continuous use. made possible.

有機光導電層2の基本的な組成は結晶微粒子状の有機電
荷発生顔料、分子レベルで溶解した有機電荷輸送染料、
バインダーとなるポリマーである。これらを溶媒に混合
、溶解し、分散液とし、この分散液よりキャスティング
やディッピングによって層を形成する。
The basic composition of the organic photoconductive layer 2 is an organic charge-generating pigment in the form of crystalline particles, an organic charge-transporting dye dissolved at the molecular level, and
A polymer that serves as a binder. These are mixed and dissolved in a solvent to form a dispersion, and a layer is formed from this dispersion by casting or dipping.

有機電荷発生顔料としてはビリリウム、チオピリリウム
系染料、フタロシアニン系顔料、アントアントロン顔料
、ジベンズピレンキノン顔料、ビラトロン顔料、トリス
アゾ顔料、ビスアゾ顔料、アゾ顔料、インジゴ顔料、キ
ナクトリン系顔料、非対称キノシアニン、キノシアニン
などを用いることができる。
Organic charge-generating pigments include biryllium, thiopyrylium dyes, phthalocyanine pigments, anthoanthrone pigments, dibenzpyrenequinone pigments, biratron pigments, trisazo pigments, bisazo pigments, azo pigments, indigo pigments, quinactrin pigments, asymmetric quinocyanine, quinocyanine, etc. can be used.

また電荷発生顔料を良好な光電特性の得られる結晶形に
選択的に変化させる手法としてはミーリング、分散液の
加熱損ばんなどを用いることができ、適度な加圧、加熱
条件によって選択的に所望の結晶形の結晶微粒子を得る
ことができる。
In addition, methods such as milling and heat loss of a dispersion can be used to selectively change the charge-generating pigment into a crystalline form that provides good photoelectric properties. It is possible to obtain crystalline fine particles having the following crystalline form.

尚、本発明において光吸収、光キヤリア生成はこの電荷
発生顔料で行なうため、電荷発生顔料は太陽光又は可視
光の吸収が良いものを使用することが好ましい従って電
荷発生顔料は450nm以上の可視又は近赤外の光に吸
収ピークがあることが望ましく、しかも電荷輸送染料に
関しては電荷発生顔料における光吸収を妨げない、すな
わち電荷発生顔料で吸収可能な光に対しては透明である
こと、すなわち、光吸収ピークが400nm以下の波長
にあることが望ましい、また電荷発生顔料と電荷輸送染
料の混合比は光生成キャリアの生成・注入・輸送を良好
に行なうためにはmol比で01〜SO,O(染料/顔
料)の範囲であることが必要であり、最適には1,0〜
20.0の範囲である。
In the present invention, since light absorption and photocarrier generation are performed using this charge-generating pigment, it is preferable to use a charge-generating pigment that has good absorption of sunlight or visible light. It is desirable that near-infrared light has an absorption peak, and the charge transport dye should not interfere with light absorption in the charge-generating pigment, that is, it should be transparent to light that can be absorbed by the charge-generating pigment. It is desirable that the light absorption peak be at a wavelength of 400 nm or less, and the mixing ratio of the charge-generating pigment and the charge-transporting dye should range from 01 to SO, O in terms of molar ratio in order to achieve good generation, injection, and transport of photogenerated carriers. (dye/pigment), optimally from 1.0 to
It is in the range of 20.0.

電荷輸送染料としては、ピレン、N−エチルカルバゾー
ル、N−イソプロピルカルバゾール、N−メチル−N−
フェニルヒドラジノ−3−メチリデン−9−エチルカル
バゾール、N、N−ジフェニルヒドラジノ−3−メチリ
デン−9−エチルカルバゾール、N、N−ジフェニルヒ
ドラジノ−3=メチリデン−10−エチルフェノチアジ
ン、N、N−ジフェニルヒドラジノ−3−メチリデン−
10−二チルフェノキサジン、p−ジエチルアミノベン
ズアルデヒド−N、N−ジフェニルヒドラゾン、p−ジ
エチルアミノベンズアルデヒド−N−α−ナフチル−N
−フェニルヒドラゾン、p−ピロリジノベンズアルデヒ
ド−N、N−ジフェニルヒドラゾン、1,3.3−トリ
メチルインドレニン−ω−アルデヒド−N、N−ジフェ
ニルヒドラゾン、p−ジエチルベンズアルデヒド−3−
メチルベンズチアゾリノン−2−ヒドラゾン等のヒドラ
ゾン類、2.5−ビス(p−ジエチルアミノフェニル)
−1,3,4−オキサジアゾール、1−フェニル−3−
(p−ジエチルアミノスチリル)−5−(p−ジエチル
アミノフェニル)ピラゾリン、1−[キノリル(2)]
−3−(p−ジエチルアミノスチリル)−5−(p−ジ
エチルアミノフェニル)ピラゾリン、】−[ピリジル(
2)]−3−(p−ジエチルアミノスチリル)−5−(
p−ジエチルアミノフェニル)ピラゾリン、1−[6−
メドキシービリジル(2)]−3−(p−ジエチルアミ
ノスチリル)−5−(p−ジエチルアミノフェニル)ピ
ラゾリン、1−[ピリジル(3)]−3−(p−ジエチ
ルアミノスチリル)−5−(p−ジエチルアミノフェニ
ル)ピラゾリン、1−[レビジル(2)]−3−(p−
ジエチルアミノスチリル)−5−(p−ジエチルアミノ
フェニル)ピラゾリン、1〜[ピリジル(2)]−3−
(p−ジエチルアミノスチリル)−4−メチル−5−(
p−ジエチルアミノフェニル)ピラゾリン、1−[ピリ
ジル(2)]−3−(α−メチル−p−ジエチルアミノ
スチリル)−5−(p−ジエチルアミノフェニル)ビラ
ゾlノン、】−フェニル−3−(p−ジエチルアミノス
チリル)−4−メチル−5−(p−ジエチルアミノフェ
ニル)ピラゾリン、1−フェニル−3(α−ベンジル−
p−ジエチルアミノスチリル)−5−(p−ジエチルア
ミノフェニル)ピラゾリン、スピロピラゾリンなどのピ
ラゾリン類、2−(p−ジエチルアミノスチリル)−6
−ジニチルアミノベンズオキサゾール、2−(p−ジエ
チルアミノフェニル)−4−(p−ジメチルアミノフェ
ニル)−5−(2−クロロフェニル)オキサゾール等の
オキサゾール系化合物、2−(p−ジエチルアミノスチ
リル)−6−ジニチルアミノベンゾチアゾール等のチア
ゾール系化合物、ビス(4−ジエチルアミノ−2−メチ
ルフェニル)−フェニルメタン等のトリアリールメタン
系化合物、1.1−ビス(4−N、N−ジエチルアミノ
2−メチルフェニル)へブタン、1.1.2.2−テト
ラキス−(4−N、N−ジメチルアミノ−2メチルフエ
ニル)エタン等のボリアリールアルカン類、N、N’ 
−テトラエチルベンジジン等のベンジジン系化合物、a
−フェニル−4−N、Nジフェニルアミノスチルベン、
5−(4−ジメチルアミノベンジリデン)−5H−ジベ
ンゾ[ad]シクロへブタン等のスチリル系化合物など
を挙げることができるが本発明の条件を満たす組合せで
あれば如何なるものでもかまわない。
Charge transport dyes include pyrene, N-ethylcarbazole, N-isopropylcarbazole, N-methyl-N-
Phenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3=methylidene-10-ethylphenothiazine, N,N -diphenylhydrazino-3-methylidene-
10-Nitylphenoxazine, p-diethylaminobenzaldehyde-N, N-diphenylhydrazone, p-diethylaminobenzaldehyde-N-α-naphthyl-N
-Phenylhydrazone, p-pyrrolidinobenzaldehyde-N,N-diphenylhydrazone, 1,3.3-trimethylindolenine-ω-aldehyde-N,N-diphenylhydrazone, p-diethylbenzaldehyde-3-
Hydrazones such as methylbenzthiazolinone-2-hydrazone, 2,5-bis(p-diethylaminophenyl)
-1,3,4-oxadiazole, 1-phenyl-3-
(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[quinolyl (2)]
-3-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, ]-[pyridyl(
2)]-3-(p-diethylaminostyryl)-5-(
p-diethylaminophenyl)pyrazoline, 1-[6-
Medoxybilidyl(2)]-3-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[pyridyl(3)]-3-(p-diethylaminostyryl)-5-(p -diethylaminophenyl)pyrazoline, 1-[levidyl(2)]-3-(p-
diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-3-
(p-diethylaminostyryl)-4-methyl-5-(
p-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-3-(α-methyl-p-diethylaminostyryl)-5-(p-diethylaminophenyl)birazolone, ]-phenyl-3-(p- diethylaminostyryl)-4-methyl-5-(p-diethylaminophenyl)pyrazoline, 1-phenyl-3(α-benzyl-
p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, spiropyrazoline and other pyrazolines, 2-(p-diethylaminostyryl)-6
-Oxazole compounds such as dinithylaminobenzoxazole, 2-(p-diethylaminophenyl)-4-(p-dimethylaminophenyl)-5-(2-chlorophenyl)oxazole, 2-(p-diethylaminostyryl)-6 -thiazole compounds such as dinithylaminobenzothiazole, triarylmethane compounds such as bis(4-diethylamino-2-methylphenyl)-phenylmethane, 1,1-bis(4-N,N-diethylamino 2-methyl polyarylalkanes such as phenyl)hebutane, 1.1.2.2-tetrakis-(4-N,N-dimethylamino-2methylphenyl)ethane, N,N'
- benzidine compounds such as tetraethylbenzidine, a
-phenyl-4-N,N diphenylaminostilbene,
Examples include styryl compounds such as 5-(4-dimethylaminobenzylidene)-5H-dibenzo[ad]cyclohebutane, but any combination that satisfies the conditions of the present invention may be used.

尚、有機顔料は光導電層中に粒子状に分散することが好
ましく、有機電荷輸送染料は層全体に均一に溶解させる
ことが好ましい。従って分散液の溶媒は前記有機染料を
溶解可能な溶媒を選択することが望ましい。
The organic pigment is preferably dispersed in the form of particles in the photoconductive layer, and the organic charge transport dye is preferably uniformly dissolved throughout the layer. Therefore, it is desirable to select a solvent for the dispersion that can dissolve the organic dye.

次に本発明で用いられる結着樹脂としては、アクリル樹
脂、スチレン系樹脂、ポリエステル、ポリカーボネート
類、ボリアリレート、ポリサルホン、ポリフェニレンオ
キシド、エポキシ樹脂、ポリウレタン樹脂、アルキド樹
脂、及び不飽和樹脂等から選ばれる樹脂が好ましい。と
りわけ好適な樹脂としては、ポリメチルメタクリレート
、ポリスチレン、スチレン−アクリロニトリル共重合体
、ポリカーボネート類又はジアリルフタレート樹脂があ
り、なかでもポリメチルメタクリレート、ポリスチレン
、スチレン−アクリロニトリル共重合体又はジアリルフ
タレート樹脂が好適である。
Next, the binder resin used in the present invention is selected from acrylic resins, styrene resins, polyesters, polycarbonates, polyarylates, polysulfones, polyphenylene oxides, epoxy resins, polyurethane resins, alkyd resins, unsaturated resins, etc. Resins are preferred. Particularly suitable resins include polymethyl methacrylate, polystyrene, styrene-acrylonitrile copolymers, polycarbonates or diallyl phthalate resins, among which polymethyl methacrylate, polystyrene, styrene-acrylonitrile copolymers or diallyl phthalate resins are preferred. be.

本発明の光導電層はこれまで説明した有機顔料、有機染
料、結着樹脂を溶剤と共にホモジナイザー、超音波、ボ
ールミル、サンドミル、アトライター、ロールミルなど
の方法でよく分散し、塗布、乾燥して形成される。
The photoconductive layer of the present invention is formed by thoroughly dispersing the organic pigment, organic dye, and binder resin as described above together with a solvent using a method such as a homogenizer, ultrasonic wave, ball mill, sand mill, attritor, roll mill, etc., coating, and drying. be done.

また本発明の光導電層では光生成キャリアの発生・注入
・輸送性向上を目的として種々の添加剤を含有させるこ
とができる。かかる添加剤としては、ジフェニル、塩化
ジフェニル、〇−ターフェニル、p−ターフェニル、ジ
ブチルフタレート、ジメチルグリコールフタレート、ジ
オクチルフタレート、トリフェニル燐酸、メチルナフタ
リン、ベンゾフェノン、塩素化パラフィン、ジラウリル
チオプロピオネート、3.5−ジニトロサリチル酸、各
種フルオロカーボン類などを挙げることができる。
Furthermore, the photoconductive layer of the present invention can contain various additives for the purpose of improving generation, injection, and transport properties of photogenerated carriers. Such additives include diphenyl, diphenyl chloride, 0-terphenyl, p-terphenyl, dibutyl phthalate, dimethyl glycol phthalate, dioctyl phthalate, triphenyl phosphoric acid, methylnaphthalene, benzophenone, chlorinated paraffin, dilaurylthiopropionate. , 3,5-dinitrosalicylic acid, and various fluorocarbons.

本発明では基体と該光導電層の間に光導電層の接着性改
良、塗工性改良、基体の保護、基体上の欠陥の被覆、基
体からの電荷注入性改良、感光層の電気的破壊に対する
保護などのために下引き層を形成することができる。下
引き層の材料としては、ポリビニルアルコール、ポリ−
N−ビニルイミダゾール、ポリエチレンオキシド、エチ
ルセルロース、メチルセルロース、エチレン−アクリル
酸コポリマー、カセイン、ポリアミド、共重合ナイロン
、ニカワ、セラチン、等が挙げられる。これらはそれぞ
れに適した溶剤に溶解されて基体上に塗布される。その
膜厚は001〜5μm程度か好ましい。
In the present invention, the adhesiveness of the photoconductive layer is improved between the substrate and the photoconductive layer, the coating property is improved, the substrate is protected, defects on the substrate are covered, charge injection property from the substrate is improved, and electrical breakdown of the photosensitive layer is achieved. An undercoat layer can be formed for protection against. Materials for the undercoat layer include polyvinyl alcohol and polyvinyl alcohol.
Examples include N-vinylimidazole, polyethylene oxide, ethyl cellulose, methyl cellulose, ethylene-acrylic acid copolymer, casein, polyamide, copolymerized nylon, glue, and seratin. These are each dissolved in a suitable solvent and applied onto the substrate. The film thickness is preferably about 0.001 to 5 μm.

[実施例] 実施例1 100mmX  100mmのガラス板を基体4とし、
この上に半透明状(51:lQnm光の透過率70%)
のアルミニウム導電層(500人)を対向電極3として
真空蒸着法にて作成した。これにポリアミド樹脂(商品
名、アミランCM 8000、東し社製)の5%メタ)
−ル溶液をスビンナーコ ティング法にて塗布し 2膜厚の下り き層を設けた。
[Example] Example 1 A glass plate of 100 mm x 100 mm was used as the substrate 4,
On top of this is a semi-transparent shape (51:1Qnm light transmittance 70%)
An aluminum conductive layer (500 people) was prepared as the counter electrode 3 by vacuum evaporation. Add to this 5% meta of polyamide resin (trade name, Amilan CM 8000, manufactured by Toshisha Co., Ltd.)
A two layer thick layer was formed by applying the solution using a subinner coating method.

次に、 次の構造式のトリスアゾ顔料(1) を5 部 (重量部、 以下同様) p1 t 次の構造式のジスアゾ顔料 を5部、 ポリビニルブチラール樹脂(商品名、エスレックBXL
、積水化学側製)8部およびシクロへキサノン60部を
1mmφガラスピーズな用いたサントミル装置で20時
間分散した。
Next, 5 parts (parts by weight, same applies hereinafter) of trisazo pigment (1) having the following structural formula p1 t 5 parts of a disazo pigment (1) having the following structural formula, polyvinyl butyral resin (trade name, S-LEC BXL)
(manufactured by Sekisui Chemical Co., Ltd.) and 60 parts of cyclohexanone were dispersed for 20 hours using a Santo Mill apparatus using 1 mm diameter glass beads.

この分散液に で示される構造式のヒドラゾン化合物(3)7部を電荷
輸送染料として混入し、これが完全に溶解するまでさら
に20時間サンドミル装置で分散させた。
To this dispersion, 7 parts of a hydrazone compound (3) having the structural formula shown was mixed as a charge transport dye, and the mixture was further dispersed in a sand mill for 20 hours until it was completely dissolved.

この分散液にメチルエチルケトン50部を加えて下引き
層上に塗布し、有機光導電層2を得た。このとき、この
有機光導電層の膜厚は05μmとした。次に前記有機光
導電層上に20mmX 20闘の金電極1を真空スパッ
タによって蒸着し、有機太陽電池を作製した。
Fifty parts of methyl ethyl ketone was added to this dispersion and coated on the undercoat layer to obtain an organic photoconductive layer 2. At this time, the film thickness of this organic photoconductive layer was set to 05 μm. Next, a 20 mm x 20 gold electrode 1 was deposited on the organic photoconductive layer by vacuum sputtering to produce an organic solar cell.

また、上記有機顔料(1)、(2)と有機染料(3)を
バインダーレスでベレット状とし、低エネルギー電子分
光装置(AC−1型、■理研計器製)を用いて仕事関数
を20°C45%RHの環境下で測定した。結果は表1
に示した。
In addition, the above organic pigments (1), (2) and organic dye (3) were made into a binderless pellet shape, and the work function was adjusted to 20° using a low energy electron spectrometer (Model AC-1, manufactured by Riken Keiki). The measurement was carried out under an environment of C45%RH. The results are in Table 1
It was shown to.

以上のようにして作製した有機太陽電池に、タングステ
ンランプを光源としてコーニング社製3384フイルタ
ーにて500nm以下の光をカットした光を、 100
mW/cm2の光量で照射した。このとき、オープンサ
ーキット電圧(Voc)は1.2■、ショートサーキッ
ト電流(I sc)はL 2mA、最大パワーはlkΩ
の負荷で得られ変換効率(E−エ)は0.70%であっ
た。
The organic solar cell produced as described above was exposed to 100 nm of light using a tungsten lamp as a light source and cutting off light of 500 nm or less using a Corning 3384 filter.
Irradiation was performed at a light intensity of mW/cm2. At this time, the open circuit voltage (Voc) is 1.2■, the short circuit current (Isc) is L 2mA, and the maximum power is lkΩ.
The conversion efficiency (E-E) was 0.70%.

次に同光量で1にΩの負荷で10時間連続照射した後の
変換効率(E +aax 、。hr)は0.65%と7
%程度の低下におさまっていた。
Next, after continuous irradiation for 10 hours with the same amount of light and a load of 1Ω, the conversion efficiency (E + aax, .hr) was 0.65% and 7
The decrease was only about %.

実施例2 トリスアゾ顔料(1)の代わりに次の構造式のジスアゾ
顔料(4)5部を用い、ブチラール樹脂の代わりにポリ
カーボネート樹脂(商品名:z−200、三菱ガス製)
を用いることを除いて実施例1と同様の試料を作製し、
同様の光照射実験を行ない以下の結果を得た6 Voc=1.6V I Sc” 1.9 mA E、、、=1.2% E ma*1Qhr=0.95% また、上記ジスアゾ顔料(4)の仕事関数も実施例1と
同様に測定を行ない、結果を表1に示した。
Example 2 5 parts of disazo pigment (4) having the following structural formula was used instead of trisazo pigment (1), and polycarbonate resin (trade name: z-200, manufactured by Mitsubishi Gas) was used instead of butyral resin.
A sample similar to Example 1 was prepared except for using
A similar light irradiation experiment was conducted and the following results were obtained. The work function of 4) was also measured in the same manner as in Example 1, and the results are shown in Table 1.

実施例3 トリスアゾ顔料(1)の代わりにて型フタロシアニン(
東洋インキ製)(5)5部を用い、ジスアゾ顔料(2)
の代わりに次の構造式で示されるジスアゾ顔料(6)5
部を用い、ヒドラゾン染料の代わりに次の構造式で示さ
れるベンジジン化合物(7) 20部を用いることを除いて実施例1と同様の試料を作
製し、 同様の光照射実験を行ない 以下の結果を得た。
Example 3 Type phthalocyanine (
(manufactured by Toyo Ink) (5) using 5 parts of disazo pigment (2)
Disazo pigment (6) 5 represented by the following structural formula instead of
A sample was prepared in the same manner as in Example 1, except that 20 parts of benzidine compound (7) represented by the following structural formula was used instead of the hydrazone dye, and the same light irradiation experiment was conducted. The following results were obtained. I got it.

Voc=1.lV I sc= 1.2 mA E、□=0.61% E□。、1゜h、=0.60% また、上記τ型フタロシアニン(5)とジスアゾ顔料(
6)及びベンジジン化合物(7)の仕事関数も実施例1
と同様に測定を行ない、結果を表1に示した。
Voc=1. lV I sc = 1.2 mA E, □ = 0.61% E□. , 1°h, = 0.60% In addition, the above τ-type phthalocyanine (5) and the disazo pigment (
6) and the work function of benzidine compound (7) in Example 1
Measurements were carried out in the same manner as above, and the results are shown in Table 1.

実施例4 実施例1の電極構成における有機光導電層として、トリ
スアゾ顔料(1)5部、ジスアゾ顔料(4)5s、て型
フタロシアニン類$15)5iとヒドラゾン染料(7)
30部を用いることを除いて、実施例1と同様の試料を
作製し、同様の光照射実験を行ない以下の結果を得た。
Example 4 As an organic photoconductive layer in the electrode configuration of Example 1, 5 parts of trisazo pigment (1), 5 parts of disazo pigment (4), 5 parts of te-type phthalocyanine ($15) 5i, and hydrazone dye (7) were used.
A sample similar to that in Example 1 was prepared except that 30 parts was used, and a similar light irradiation experiment was conducted to obtain the following results.

■。。=1.7  [V] I sc= 0.9  [mA] E、1lIl=0.92 [%] E−−−−Iohr= 0.88 [%コまた、上記ト
リスアゾ顔料(1)、ジスアゾ顔料(4)、τ型フタロ
シアニン顔料(5)及びヒドラゾン染料(7)の仕事関
数も実施例1と同様に測定を行ない、結果を表1に示し
た。
■. . = 1.7 [V] I sc = 0.9 [mA] E, 1lIl = 0.92 [%] E----Iohr = 0.88 [%] Also, the above trisazo pigment (1), disazo pigment The work functions of (4), τ-type phthalocyanine pigment (5), and hydrazone dye (7) were also measured in the same manner as in Example 1, and the results are shown in Table 1.

比較例1 ヒドラゾン染料(3)の代わりに下記構造式で示される
ヒドラゾン化合物(8)7部を用いることを t 除いて、実施例1と同様の試料を作製し、光照射実験を
行ない以下の結果を得た。
Comparative Example 1 A sample similar to Example 1 was prepared, except that 7 parts of hydrazone compound (8) represented by the following structural formula was used instead of hydrazone dye (3), and a light irradiation experiment was conducted. Got the results.

■。C=0.75[V] I  sc二 0.11  [mAコ E0.  =0.07  [%コ E、、、  =0.02 [%コ また、上記ヒドラゾン染料(8) の仕事関数も 同様の 実施例1と同様に測定を行ない、結果を表1に示した。■. C=0.75[V] I sc2 0.11 [mA E0. =0.07 [%co E,,, =0.02 [%co In addition, the above hydrazone dye (8) The work function of similar Measurements were carried out in the same manner as in Example 1, and the results are shown in Table 1.

比較例2 ジスアゾ顔料(1)の代わりに下記構造式で示されるジ
スアゾ顔料(9)5部を用い、ジスアゾ顔料(2)の代
わりに前記ジスアゾ顔料(6)I 5部を用いることを除いて実施例1と同様の試料を作製
し、同様の光照射実験を行ない以下の結果を得た。
Comparative Example 2 Except for using 5 parts of the disazo pigment (9) shown by the following structural formula in place of the disazo pigment (1) and using 5 parts of the disazo pigment (6) I in place of the disazo pigment (2). A sample similar to that in Example 1 was prepared and a similar light irradiation experiment was conducted to obtain the following results.

V oc= 0.65 [V ] I sc= 0.07 [mA] E ff111、=(1,[14[%]E□8 +oh
−=0.01  [%コまた、上記ジスアゾ顔料(9)
の仕事関数も実施例1と同様に測定を行ない、結果を表
1に示した。
V oc = 0.65 [V] I sc = 0.07 [mA] E ff111, = (1, [14 [%] E□8 +oh
-=0.01 [%] Also, the above disazo pigment (9)
The work function of was also measured in the same manner as in Example 1, and the results are shown in Table 1.

比較例3 ヒドラゾン染料(7)の代わりにヒドラゾン染料(3)
30部を用いることを除いて実施例4と同様の試料を作
製し、同様の光照射実験を行ない以下の結果を得た。
Comparative Example 3 Hydrazone dye (3) instead of hydrazone dye (7)
A sample similar to that in Example 4 was prepared except that 30 parts was used, and a similar light irradiation experiment was conducted to obtain the following results.

■o。=15 [v] I  sc= 0.03  [mAコ E□ア =o、oB%コ E−−x、+ohr=001 [%] また、上記光導電層に用いた顔料(1)、(4)(5)
及びヒドラゾン染料(3)の仕事関数も実施例1と同様
に測定を行ない、結果を表1に示した。
■o. = 15 [v] I sc = 0.03 [mA = o, oB% = E-x, +ohr = 001 [%] In addition, pigments (1) and (4) used in the photoconductive layer )(5)
The work function of hydrazone dye (3) was also measured in the same manner as in Example 1, and the results are shown in Table 1.

[発明の効果] 以上説明したように、分光特性が異なり、かつ仕事関数
差が0.2 [eV]以上であるような2種類以上の有
機顔料と有機染料を含有した層において、有機顔料の仕
事関数が有機染料の仕事関数に比へて0.3 [eV]
以上大きい光導電層を有する太陽電池を用いることによ
り、広い波長範囲にわたり高い光電変換効率が得られた
。しかも実施例と比較例との比較かられかるように、 
100mW/cm2という非常に強い光強度での連続使
用時においても変換効率低下のほとんど見られない太陽
電池か可能となった。
[Effects of the Invention] As explained above, in a layer containing two or more types of organic pigments and organic dyes that have different spectral characteristics and a work function difference of 0.2 [eV] or more, the organic pigment The work function is 0.3 [eV] compared to the work function of organic dyes.
By using a solar cell having a large photoconductive layer, high photoelectric conversion efficiency was obtained over a wide wavelength range. Moreover, as can be seen from the comparison between the working example and the comparative example,
It has become possible to create a solar cell with almost no decrease in conversion efficiency even when used continuously at extremely strong light intensity of 100 mW/cm2.

【図面の簡単な説明】 第1図は本発明の有機太陽電池の1例の構成を示す模式
図である。 1:透光性電極 2:有機光導電層 3・対向電極 4二基体 M1図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing the structure of an example of the organic solar cell of the present invention. 1: Transparent electrode 2: Organic photoconductive layer 3/Counter electrode 4 2 Substrate M1 diagram

Claims (1)

【特許請求の範囲】 1、有機光導電層と、該光導電層を挟むようにして設け
られた少なくとも一方が透光性を有する2つの電極とを
有する有機太陽電池であって、該光導電層が1種以上の
有機染料および2種以上の有機顔料を含む結着樹脂から
なり、少なくとも1つの有機顔料の仕事関数が少なくと
も1つの有機染料の仕事関数より0.3eV以上大きく
、各有機顔料の仕事関数が互いに0.2eV以上離れて
いる有機太陽電池。 2、前記有機顔料の総量に対する前記有機染料の総量の
混合mol比率が0.1〜50.0の範囲であることを
特徴とする請求項1に記載の有機太陽電池。
[Claims] 1. An organic solar cell comprising an organic photoconductive layer and two electrodes, at least one of which is translucent, provided to sandwich the photoconductive layer, the photoconductive layer comprising: consisting of a binder resin containing one or more organic dyes and two or more organic pigments, in which the work function of at least one organic pigment is 0.3 eV or more greater than the work function of at least one organic dye, and the work function of each organic pigment is Organic solar cells whose functions are separated from each other by 0.2 eV or more. 2. The organic solar cell according to claim 1, wherein a mixing molar ratio of the total amount of the organic dye to the total amount of the organic pigment is in the range of 0.1 to 50.0.
JP2124234A 1990-05-16 1990-05-16 Organic solar cell Pending JPH0424970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2124234A JPH0424970A (en) 1990-05-16 1990-05-16 Organic solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2124234A JPH0424970A (en) 1990-05-16 1990-05-16 Organic solar cell

Publications (1)

Publication Number Publication Date
JPH0424970A true JPH0424970A (en) 1992-01-28

Family

ID=14880296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2124234A Pending JPH0424970A (en) 1990-05-16 1990-05-16 Organic solar cell

Country Status (1)

Country Link
JP (1) JPH0424970A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518913A (en) * 1997-03-20 2001-10-16 アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー Spiro compounds and uses thereof
WO2005069402A1 (en) 2004-01-14 2005-07-28 Osram Opto Semiconductors Gmbh Deposition of conducting polymers
DE102008034256A1 (en) 2008-07-18 2010-01-21 Technische Universität Dresden Photoactive component with organic layers
DE102008036310A1 (en) 2008-07-29 2010-02-11 Technische Universität Dresden Organic photoactive component, in particular organic solar cell or organic photodetector
WO2010060421A1 (en) 2008-11-30 2010-06-03 Brandenburgische Technische Universität Solar cell having local electrostatic fields in the photoactive region
WO2010133205A1 (en) 2009-05-18 2010-11-25 Technische Universität Dresden Organic solar cell or photodetector having improved absorption
WO2010139310A2 (en) 2009-06-05 2010-12-09 Technische Universität Dresden Inverted or transparent organic solar cell or photodetector having improved absorption
DE102009036110A1 (en) 2009-06-05 2010-12-09 Heliatek Gmbh Light absorbing organic device
DE202006021034U1 (en) 2005-03-04 2011-12-28 Heliatek Gmbh Organic photoactive component
EP2400575A1 (en) 2010-06-24 2011-12-28 heliatek GmbH Optoelectronic construction element with organic layers
CN103531711A (en) * 2013-10-27 2014-01-22 中国乐凯集团有限公司 Double-knot organic solar cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518913A (en) * 1997-03-20 2001-10-16 アヴェンティス・リサーチ・ウント・テクノロジーズ・ゲーエムベーハー・ウント・コー・カーゲー Spiro compounds and uses thereof
WO2005069402A1 (en) 2004-01-14 2005-07-28 Osram Opto Semiconductors Gmbh Deposition of conducting polymers
DE202006021034U1 (en) 2005-03-04 2011-12-28 Heliatek Gmbh Organic photoactive component
US8426727B2 (en) 2005-03-04 2013-04-23 Heliatek Gmbh Organic photoactive device
DE102008034256A1 (en) 2008-07-18 2010-01-21 Technische Universität Dresden Photoactive component with organic layers
DE102008036310A1 (en) 2008-07-29 2010-02-11 Technische Universität Dresden Organic photoactive component, in particular organic solar cell or organic photodetector
WO2010060421A1 (en) 2008-11-30 2010-06-03 Brandenburgische Technische Universität Solar cell having local electrostatic fields in the photoactive region
DE102008060179A1 (en) 2008-11-30 2010-07-29 Brandenburgische Technische Universität Cottbus Solar cell with electrostatic local fields in the photoactive area
WO2010133205A1 (en) 2009-05-18 2010-11-25 Technische Universität Dresden Organic solar cell or photodetector having improved absorption
DE102009022408A1 (en) 2009-05-18 2010-12-09 Technische Universität Dresden Organic solar cell or photodetector with improved absorption
DE102009036110A1 (en) 2009-06-05 2010-12-09 Heliatek Gmbh Light absorbing organic device
DE102009024956A1 (en) 2009-06-05 2010-12-09 Technische Universität Dresden Inverted or transparent organic solar cell or photodetector with improved absorption
WO2010139310A2 (en) 2009-06-05 2010-12-09 Technische Universität Dresden Inverted or transparent organic solar cell or photodetector having improved absorption
EP2400575A1 (en) 2010-06-24 2011-12-28 heliatek GmbH Optoelectronic construction element with organic layers
CN103531711A (en) * 2013-10-27 2014-01-22 中国乐凯集团有限公司 Double-knot organic solar cell

Similar Documents

Publication Publication Date Title
Zhang et al. Multifunctional crosslinking‐enabled strain‐regulating crystallization for stable, efficient α‐FAPbI3‐based perovskite solar cells
US4281053A (en) Multilayer organic photovoltaic elements
US4164431A (en) Multilayer organic photovoltaic elements
EP0000829B1 (en) Photovoltaic elements
JPS6060052B2 (en) electrophotographic photoreceptor
US4175982A (en) Photovoltaic cell
US4125414A (en) Organic photovoltaic elements
JPS6243553B2 (en)
Stolka et al. Polymers with photoconductive properties
JPH0424970A (en) Organic solar cell
JPH07142751A (en) Organic solar cell
JPH01215070A (en) Organic solar battery
JP2002222970A (en) Photoelectric converter and its manufacturing method
JP3288472B2 (en) Photoelectric conversion element and method for manufacturing the same
JPH01154571A (en) Photoelectric converter
JPH01208873A (en) Photoelectric converter
US8765338B2 (en) Quantum dot photoconductor for an electrophotographic printer
JPS61245583A (en) Photoelectric conversion element
JPH034901B2 (en)
JPS63300572A (en) Photoelectric converter
JPH01165177A (en) Photoelectric converter
JPH0198266A (en) Photoelectric converter element
JPS6059588B2 (en) electrophotographic photoreceptor
JPS61252671A (en) Photoelectric conversion element
JPH02153576A (en) Photoelectric conversion element