JPS62102175A - Superconductive circuit - Google Patents

Superconductive circuit

Info

Publication number
JPS62102175A
JPS62102175A JP60241469A JP24146985A JPS62102175A JP S62102175 A JPS62102175 A JP S62102175A JP 60241469 A JP60241469 A JP 60241469A JP 24146985 A JP24146985 A JP 24146985A JP S62102175 A JPS62102175 A JP S62102175A
Authority
JP
Japan
Prior art keywords
current
circuit
magnetic flux
superconducting circuit
dcfp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60241469A
Other languages
Japanese (ja)
Other versions
JPH0644033B2 (en
Inventor
Yutaka Harada
豊 原田
Hideaki Nakane
中根 英章
Ushio Kawabe
川辺 潮
Hidekazu Goto
英一 後藤
Nobuo Miyamoto
信雄 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Hitachi Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Hitachi Ltd
Priority to JP60241469A priority Critical patent/JPH0644033B2/en
Priority to CA000510927A priority patent/CA1268815A/en
Priority to DE3650062T priority patent/DE3650062T2/en
Priority to EP86107693A priority patent/EP0205120B1/en
Publication of JPS62102175A publication Critical patent/JPS62102175A/en
Priority to US07/291,338 priority patent/US4866373A/en
Publication of JPH0644033B2 publication Critical patent/JPH0644033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Logic Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To improve measuring accuracy by removing influence to be exerted upon the 1st DC magnetic flux parametron (DCFP) circuit by the operating current of a magnetic flux coupling element in a circuit consisting of the 2nd superconductive circuit including the magnetic flux coupling element connected to the 1st DCFP circuit and a signal line. CONSTITUTION:A transformer 10i and a control line 6 for a current detecting circuit 10 are connected to an output line 108 of a DCFP circuit having Josephson junctions 101, 102 and exciting windings 103, 104 as loads. A current IS is supplied from a pulse current source 200 to a magnetic flux coupling quantum interference element in a circuit 10 and monitored by a voltmeter 201 and a reference current Ir is supplied from a scanning current source 300. When an offset current Ig, is supplied in the reverse direction against the currents Ig, Ir through the wiring 110 of the transformer 109, magnetic flux based upon the currents Ig, Ir is prevented from being superposed to the control line 6 and the current IS to be measured can be found out from the reference current Ir on the basis of the thereshold characteristics of the circuit 10 by fizing the current Ig. Since the signal IS of the DCFP circuit can be extracted by removing the influence of the detecting circuit, the measuring accuracy can be improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はジョセフソンデバイスを用いた磁束計は当技術
分野では公知であり、SQ!JIL)磁束計に代表され
る。従来のS Q IJ I D磁束計は外界からの熱
雑音や信号の増幅に使う前置増幅器の雑音によりS Q
 U 11’)が本来持つ感度を十分に活用できなかっ
た。この5QUID磁束計の欠点を補い、更に高感度の
磁束計を実現するために、直流磁束パラメトロン(D 
CF lux P aramet、ron ;以下1’
) CFPと呼ぶ)回路を使う方法が提案されている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention provides a magnetometer using a Josephson device, which is well known in the art, and is based on the SQ! JIL) magnetometer. Conventional S Q IJ I D magnetometers suffer from S Q due to thermal noise from the outside world and noise from the preamplifier used to amplify the signal.
The inherent sensitivity of U 11') could not be fully utilized. In order to compensate for the shortcomings of this 5QUID magnetometer and realize a magnetometer with even higher sensitivity, we developed a DC flux parametron (D
CF lux parameter, ron; hereinafter 1'
) A method using a circuit called CFP has been proposed.

このDCFP回路を使う磁束計は特願昭60−1225
26に詳細に記載されている。
A magnetic flux meter using this DCFP circuit was patented in 1986-1225.
26 is described in detail.

DCFP回路は磁束に鋭敏で、高い回路利得を持ち、磁
束計の比較回路として優れた特性を持っている。しかし
D CF)’回路の動作エネルギーは1、0−2’ J
極めて小さいため、DCFP回路の電流を検出する際に
検出回路に流す電流がトランス結合を介して該D CF
 P回路に影響し、D CFP回路の保守する信号極性
を反転させる誤動作を起し、情報を破壊するおそれがあ
ることが分かった。
The DCFP circuit is sensitive to magnetic flux, has high circuit gain, and has excellent characteristics as a comparison circuit for a magnetometer. However, the operating energy of the D CF)' circuit is 1,0-2' J
Because it is extremely small, the current flowing through the detection circuit when detecting the current of the DCFP circuit is connected to the DCFP circuit through the transformer coupling.
It was found that this could affect the P circuit, causing a malfunction that would reverse the polarity of the signal maintained by the DCFP circuit, potentially destroying information.

〔発明の目的〕[Purpose of the invention]

本発明の目的はDCFP回等の回路の出力電流を該1)
 CFP回路等の回路の情報を破壊すること無く検出す
るのに適した超電導回路を提供することにある。   
− 〔発明の概要〕 この目的を達成するために本発明では電流検出回路の影
響を相殺する為の回路を新たに付加するか、二つの電流
検出回路を差動に動作させて、該D CFP回路等の回
路への影響を無くす方法を採用する。
The purpose of the present invention is to reduce the output current of circuits such as DCFP circuits.
The object of the present invention is to provide a superconducting circuit suitable for detecting information in a circuit such as a CFP circuit without destroying it.
- [Summary of the Invention] In order to achieve this object, the present invention adds a new circuit to cancel the influence of the current detection circuit, or operates two current detection circuits differentially, and Adopt a method that eliminates the effect on other circuits.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using Examples.

第2図(a)は本発明で使う電流検出回路に使う磁束結
合層量子干渉素子を示す。この素子は2個のジョセフソ
ン接合1,2インダクタ3,4で超電導ループを構成し
ている。該超電導ループにはバイアス線5によりバイア
ス電流が供給される。
FIG. 2(a) shows a magnetic flux coupling layer quantum interference device used in the current detection circuit used in the present invention. This element comprises two Josephson junctions 1, 2 and inductors 3, 4 forming a superconducting loop. A bias current is supplied to the superconducting loop by a bias line 5.

また該超電導ループの近傍には二つの制御線6゜7が設
己され、該制御線6,7に流れる電流により発生する磁
束は該超電導ループに鎖交し、該制御線の電流は磁束結
合層量子干渉素子の最大超電導電流を制御する。以降こ
の磁束結合層量子干渉素子を第2図(b)のシンボル1
0で表わす。第3図は電流検出回路の動作原理を示す図
である。
Further, two control lines 6 and 7 are installed near the superconducting loop, and the magnetic flux generated by the current flowing through the control lines 6 and 7 interlinks with the superconducting loop, and the current in the control line is magnetic flux coupled. Control the maximum superconducting current of a layered quantum interference device. Hereinafter, this magnetic flux coupling layer quantum interference device will be referred to as symbol 1 in Fig. 2(b).
Represented by 0. FIG. 3 is a diagram showing the operating principle of the current detection circuit.

電流検出回路の磁束結合層量子干渉素子10では、第1
°の制御線6には被測定電流Isを、第2の制御線7に
は参照電流Irを流す。第2図には磁束結合層量子干渉
素子の閾値特性を示している。この図で磁束結合層量子
干渉素子のバイアス電流を1gに固定すれば、該磁束結
合層量子干渉素子を超電導状態から電圧状態にスイッチ
させるために必要な制御電流Ifは一意的に決る。この
電流Ifが第1.第2の制御線に流れる電流Is。
In the magnetic flux coupling layer quantum interference device 10 of the current detection circuit, the first
The current to be measured Is is passed through the control line 6 of 0.degree., and the reference current Ir is passed through the second control line 7. FIG. 2 shows the threshold characteristics of the magnetic flux coupling layer quantum interference device. In this figure, if the bias current of the magnetic flux coupling layer quantum interference device is fixed at 1 g, the control current If required to switch the magnetic flux coupling layer quantum interference device from the superconducting state to the voltage state is uniquely determined. This current If is the first current If. Current Is flowing through the second control line.

Irの和であることは明らかである。従ってIrをスキ
ャンし、該磁束結合量子干渉回路がスイッチするの1r
をサンプリングすればそれから■sの値を知ることがで
きる。このことから電流検出回路では参照電流Irから
被測電流Isの値を知るこが出来る。従来技術では、こ
の電流検出回路のバイアス電流1ピ、参照電流Irによ
り発生した磁束が制御線6に重畳され、これがDCF)
1回路に影響を与えた。
It is clear that it is the sum of Ir. Therefore, when Ir is scanned, the flux-coupled quantum interference circuit switches to 1r.
If we sample , then we can know the value of s. From this, the current detection circuit can determine the value of the measured current Is from the reference current Ir. In the conventional technology, the magnetic flux generated by the bias current 1 pin and the reference current Ir of this current detection circuit is superimposed on the control line 6, and this is the DCF).
1 circuit was affected.

第1図は本発明の第1の実施例である。この実施例では
ジョセフソン接合101,102、励振インダクタ10
3,104、励振線105、入力端子106、出力線1
08からなるDCFP回路の負荷インダクタとしてトラ
ンス109、電流検出回路10の制御線6が接続されて
いる。電流検出回路の磁束結合量子干渉回路10はパル
ス電流源200より電流1gが供給され、その両端の電
圧は電圧計201でモニタされる。参照電流Irはスキ
ャン電流源300′より供給される。この回路構成でキ
ャンセル電流Ig′をトランス109に配線110を介
してバイアス電流Igと参照電流1rに対して逆方向に
流せば、バイアス電流Ig参照電流1rにより制御線6
に重畳される磁束キャンセル電流Ig/で打ち消すこと
ができる。
FIG. 1 shows a first embodiment of the invention. In this embodiment, Josephson junctions 101 and 102, an excitation inductor 10
3, 104, excitation line 105, input terminal 106, output line 1
A transformer 109 as a load inductor of a DCFP circuit consisting of 08 and a control line 6 of a current detection circuit 10 are connected. The flux-coupled quantum interference circuit 10 of the current detection circuit is supplied with 1 g of current from a pulse current source 200, and the voltage across it is monitored by a voltmeter 201. Reference current Ir is supplied from scan current source 300'. With this circuit configuration, if the canceling current Ig' is caused to flow through the transformer 109 through the wiring 110 in the opposite direction to the bias current Ig and the reference current 1r, the bias current Ig and the reference current 1r cause the control line 6
It can be canceled by a magnetic flux canceling current Ig/ superimposed on the magnetic flux canceling current Ig/.

キャンセル電流Ig′は電流Ig、Irとトランス10
9の結合係数によりQ適な電流値を選択することができ
る。
The canceling current Ig' is the current Ig, Ir and the transformer 10.
A current value suitable for Q can be selected by the coupling coefficient of 9.

第4図は本発明による第2の実施例である。この実施例
では第1図の第1の実施例のトランス109に流れる電
流をバイアス電流1gと同じになるように、トランス1
09と電流検出回路のバイアス線5を直列接続した形と
なっている。またトランス109で発生する磁束と電流
検出回路10が発生する磁束が互いに打ち消し合う様に
電流の向きが反対になるよう接続されている。この構成
ではトランス109の結合係数を電流検出回路の結合係
数と同じにすることにより磁束を打ち消しあうことがで
きる。またこの実施例ではバイアス電流による磁束を打
ちけす事ができる回路構成であるが、障害となる磁束は
ほとんどこのバイアス電流から発生するため、この回路
構成で十分実用に供することができる。更に参照電流に
よる磁束を打ち消すためには第5図に示す様に、参照電
流による磁束をトランス109′により打ち消す構成と
すればよい事は明らかである。
FIG. 4 shows a second embodiment of the present invention. In this embodiment, the current flowing through the transformer 109 in the first embodiment shown in FIG.
09 and the bias line 5 of the current detection circuit are connected in series. Further, the magnetic flux generated by the transformer 109 and the magnetic flux generated by the current detection circuit 10 are connected so that the directions of the currents are opposite so that they cancel each other out. In this configuration, the magnetic fluxes can be canceled by making the coupling coefficient of the transformer 109 the same as that of the current detection circuit. Furthermore, although this embodiment has a circuit configuration that can overcome the magnetic flux caused by the bias current, since most of the magnetic flux that causes interference is generated from this bias current, this circuit configuration can be sufficiently put to practical use. Furthermore, in order to cancel out the magnetic flux due to the reference current, it is obvious that the magnetic flux due to the reference current may be canceled by a transformer 109' as shown in FIG.

第6図は本発明による第3の実施例である。この実施例
では二つの電流検出回路10a、10bをD CF’ 
P回路の負荷とし、該2個の電流検出回路のバイアス電
流Ig、参照電流1rの向きを互いに逆方向に流す様な
差動接続した構成になっている。この構成で該2個の電
流検出回路により発生した磁束は互いに打ち消し合うた
め、電流検出回路のI) CF P回路に与えるリアク
ションは皆無である。この場合2個の電流検出回路のう
ち一方だけが有効に電流検出として使われ、他方は使わ
れていない。第7図は第6図に示す実施例の変形で、2
個の電流検出回路に同じバイアス電流流すように、2個
のバイアス線5a、5bを直列に接続した構成となって
いる。この実施例では2個の電流検出回路は発生する磁
束が互いに逆方向になる様に、バイアス電流の方向を逆
向きにしである。
FIG. 6 shows a third embodiment of the present invention. In this embodiment, two current detection circuits 10a and 10b are connected to D CF'
The P circuit is used as a load, and the bias current Ig and reference current 1r of the two current detection circuits are differentially connected so that they flow in directions opposite to each other. With this configuration, the magnetic fluxes generated by the two current detection circuits cancel each other out, so there is no reaction given to the I) CF P circuit of the current detection circuit. In this case, only one of the two current detection circuits is effectively used for current detection, and the other is not used. FIG. 7 is a modification of the embodiment shown in FIG.
Two bias lines 5a and 5b are connected in series so that the same bias current flows through the two current detection circuits. In this embodiment, the two current detection circuits have bias currents directed in opposite directions so that the magnetic fluxes generated are in opposite directions.

以上の説明は電流検出回路に2接合磁束結合形量子干?
$索子を使った例で説明したが、発明の原理から2接合
以上の磁束結合形素子を使って本発明を実施できるり1
は明らかである。
Is the above explanation a two-junction magnetic flux coupled quantum transistor in the current detection circuit?
Although the explanation has been given using an example using a $ cable, based on the principle of the invention, the present invention can be implemented using a magnetic flux coupling type element with two or more junctions.
is clear.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、極めて微弱なエネルギーで動作するD
CF’Pl!l!回路の信号を検出回路の影響を除外し
た形で取りだすことができる。このため微小な信号を安
定した形で検出するIJGができ、D CF P回路の
測定精度、さらには測定速度を大幅に向上させるルがで
き、ひいては高感度、高精度の磁束計を提供するのに役
立つ。
According to the present invention, the D
CF'Pl! l! The circuit signal can be extracted without the influence of the detection circuit. This makes it possible to create an IJG that detects minute signals in a stable manner, and to greatly improve the measurement accuracy and measurement speed of the DCF P circuit, thereby providing a highly sensitive and highly accurate magnetometer. useful for.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による第1の実施例、第2図は本発明の
電流検出口に使う磁束結合形素子とそのシンボル、第3
図は電流検出回路の動作原理図、第4図は本発明の第2
の実施例、第5図は第4回の実施例の変形例、第6@は
本発明の第3の実施例、第7図は第6図の実施例の変形
例である。 1.2・°゛ジヨセフソン接合3,4・・・インダクタ
、5・・・バイアス線、6,7・・・制御線、10・・
・磁束結合層量子干渉素子のシンボル、 101.102・・・ジョセフソン接合。 103.104・・・励振インダクタ、105・・・励
振線、106・・・入力端子、108・・・出力線、1
09・・・トランス、11O・・・配線、200・・・
パルス電流源、201・・・電圧計、300・・・スキ
ャン電流源。 代理人 ア□ヤ41,11カ烏、] ’f、 /国 茗2図 葛3圀 躬4図 ノt〜≦
Fig. 1 shows the first embodiment of the present invention, Fig. 2 shows the magnetic flux coupling type element used in the current detection port of the present invention and its symbol, and Fig. 3
The figure is a diagram of the operating principle of the current detection circuit, and Figure 4 is the second embodiment of the present invention.
FIG. 5 is a modification of the fourth embodiment, No. 6 is a third embodiment of the present invention, and FIG. 7 is a modification of the embodiment of FIG. 1.2・° Josephson junction 3, 4... Inductor, 5... Bias line, 6, 7... Control line, 10...
・Symbol of magnetic flux coupling layer quantum interference device, 101.102...Josephson junction. 103.104...Excitation inductor, 105...Excitation line, 106...Input terminal, 108...Output line, 1
09...Transformer, 11O...Wiring, 200...
Pulse current source, 201... Voltmeter, 300... Scan current source. Agent A□Ya 41, 11 Kakarasu,] 'f, / Kunimi 2, Kuzu 3, Kuni, 4, No. t~≦

Claims (1)

【特許請求の範囲】 1、電流信号を信号線に出力する第1の超電導回路と、
該信号線に接続され、該信号電流に応答する磁束結合形
素子を含む第2の超伝導回路からなる超電導回路におい
て、該磁束結合素子に流す動作電流により該信号線に重
畳して発生される磁束を打ち消す磁束を該信号線に重畳
させる手段を有する超電導回路。 2、特許請求項目第1項の超電導回路において、該磁束
重畳手段は、該磁束結合形素子に流す該動作電流に対応
する値の電流を流すための、該信号線に磁気結合された
トランス結合素子からなることを特徴とする超電導回路
。 3、特許請求項目第1項の超伝導回路において、該磁束
重畳手段は、該信号線に接続され、該磁束結合形素子と
同一構造を有し、該動作電流と逆の方向の動作電流が流
される他の磁束結合形素子からなることを特徴とする超
電導回路。 4、特許請求の範囲第1項から第3項のいずれかの超電
導回路において、該第1の超電導回路は、直流磁束パラ
メトロン回路であることを特徴とする超電導回路。 5、特許請求の範囲第1項から第4項のいずれかの超電
導回路において、該第2の超電導回路は該信号電流の大
きさに依存して該動作電流の大きさを制御する手段を有
する超電導回路。
[Claims] 1. A first superconducting circuit that outputs a current signal to a signal line;
In a superconducting circuit consisting of a second superconducting circuit including a magnetic flux coupling type element connected to the signal line and responsive to the signal current, a superconducting circuit is generated superimposed on the signal line by an operating current flowing through the magnetic flux coupling element. A superconducting circuit having means for superimposing magnetic flux that cancels magnetic flux on the signal line. 2. In the superconducting circuit according to claim 1, the magnetic flux superimposing means is a transformer coupling magnetically coupled to the signal line for flowing a current having a value corresponding to the operating current flowing through the magnetic flux coupling type element. A superconducting circuit characterized by consisting of elements. 3. In the superconducting circuit according to claim 1, the magnetic flux superimposing means is connected to the signal line, has the same structure as the magnetic flux coupling element, and has an operating current in the opposite direction to the operating current. A superconducting circuit characterized in that it consists of other flux-coupled elements. 4. A superconducting circuit according to any one of claims 1 to 3, wherein the first superconducting circuit is a DC magnetic flux parametron circuit. 5. In the superconducting circuit according to any one of claims 1 to 4, the second superconducting circuit has means for controlling the magnitude of the operating current depending on the magnitude of the signal current. superconducting circuit.
JP60241469A 1985-06-07 1985-10-30 Superconducting circuit Expired - Lifetime JPH0644033B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60241469A JPH0644033B2 (en) 1985-10-30 1985-10-30 Superconducting circuit
CA000510927A CA1268815A (en) 1985-06-07 1986-06-05 Superconducting current detecting circuit employing dc flux parametron circuit
DE3650062T DE3650062T2 (en) 1985-06-07 1986-06-05 Superconducting current sensor circuit.
EP86107693A EP0205120B1 (en) 1985-06-07 1986-06-05 Superconducting current detecting circuit employing DC flux parametron circuit
US07/291,338 US4866373A (en) 1985-06-07 1988-12-28 Superconducting current detecting circuit employing DC flux parametron circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60241469A JPH0644033B2 (en) 1985-10-30 1985-10-30 Superconducting circuit

Publications (2)

Publication Number Publication Date
JPS62102175A true JPS62102175A (en) 1987-05-12
JPH0644033B2 JPH0644033B2 (en) 1994-06-08

Family

ID=17074774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60241469A Expired - Lifetime JPH0644033B2 (en) 1985-06-07 1985-10-30 Superconducting circuit

Country Status (1)

Country Link
JP (1) JPH0644033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435285A (en) * 1987-07-30 1989-02-06 Japan Res Dev Corp Method for detecting signal of quantum flux parametron

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6563239B2 (en) * 2015-04-10 2019-08-21 国立大学法人横浜国立大学 Adiabatic quantum flux parametron circuit and superconducting logic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435285A (en) * 1987-07-30 1989-02-06 Japan Res Dev Corp Method for detecting signal of quantum flux parametron

Also Published As

Publication number Publication date
JPH0644033B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
JP2002243766A (en) Electric current sensor
JPH0395475A (en) Method of suppressing current distribution noise in superconduction quantum interference device
US4866373A (en) Superconducting current detecting circuit employing DC flux parametron circuit
JPS62102175A (en) Superconductive circuit
JPH03264874A (en) Sensitized fluxmeter
JP2005188947A (en) Magnetic detector
JP2978637B2 (en) Quench detection device for superconducting winding
JPH05232202A (en) Software gradiometer
JP2000091653A (en) Superconducting quantum interference element
Robbes et al. Performances and place of magnetometers based on amorphous wires compared to conventional magnetometers
JP3013542B2 (en) DC-SQUID
JP2943293B2 (en) DC-SQUID magnetometer
JP3156396B2 (en) Differential SQUID magnetometer and biomagnetic field measurement device using the same
JP2902007B2 (en) Magnetic flux detector
JPS6332384A (en) Magnetic field detector
JPS62102176A (en) Magnetic flux meter and superconductive accumulative operation circuit appropriate for the meter
JP3206198B2 (en) DC-SQUID magnetometer
JPH06324130A (en) Squid sensor device
JPS63149572A (en) Supercondictive current detection circuit
JPH05240933A (en) Magnetic flux transformer for squid fluxmeter
JPH044555B2 (en)
JPS61284679A (en) Superconductive quantum interference device
JP2609598B2 (en) Signal detection method
JPH0654347B2 (en) Magnetometer
JPH0743441A (en) Superconducting magnetic sensor