JPS62102163A - Speed measuring instrument for mobile vehicle - Google Patents

Speed measuring instrument for mobile vehicle

Info

Publication number
JPS62102163A
JPS62102163A JP24142985A JP24142985A JPS62102163A JP S62102163 A JPS62102163 A JP S62102163A JP 24142985 A JP24142985 A JP 24142985A JP 24142985 A JP24142985 A JP 24142985A JP S62102163 A JPS62102163 A JP S62102163A
Authority
JP
Japan
Prior art keywords
light
light emitting
speed
moving vehicle
mobile vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24142985A
Other languages
Japanese (ja)
Inventor
Masahiro Ishihara
石原 正弘
Junji Shiokawa
淳司 塩川
Hiroo Nakamura
啓夫 中村
Kazuo Kaneko
一男 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24142985A priority Critical patent/JPS62102163A/en
Publication of JPS62102163A publication Critical patent/JPS62102163A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure precisely and accurately the low traveling speed of a mobile vehicle to be measured and to measure also the moving direction of the mobile vehicle by mounting a light emitting body supplying device, a light emission detecting means and a speed measuring instrument on the mobile vehicle and detecting light emission of the light emitting body. CONSTITUTION:The light emitting body supplying device 14 is mounted on the vehicle body 2 set up on casters 30 of the mobile vehicle 1 and the prescribed light emitting substance 26 supplied from a hood 15 is dispersed or dropped to a traveling surface 16. In addition, the 1st and 2nd light emission detecting means 17a, 17b constituting a light emission detecting mechanism, a battery 29 and a control circuit 28 including a speed measuring circuit are mounted on the vehicle body 2. The light emitting body 26 is irradiated by light radiated from an exciting light source 25 on an exciting light optical path 24 in the hood 20 of the light emission detecting mechanism and light emitted from the light emitting body 26 is detected by a photoelectric transducer 21 in the light receiving path 23 of the hood 20 and photoelectrically converted and the electric signal is supplied to a control circuit 28. Thus, the low traveling speed of the mobile vehicle can be precisely and highly accurately measured and the moving direction of the mobile vehicle 1 can be also measured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、走行する車体の先頭部において散布または滴
下された発光体の発光を、単体の後。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention is directed to emitting light from a light emitting body sprinkled or dropped at the front end of a moving vehicle body.

部に設けられたw′I&の検知手段によって検知し。Detected by w'I& detection means provided in the section.

検知時間の時間的な遅れから移動する物体(以下移動車
という)の移動速度を測定する装置に関する。
The present invention relates to a device that measures the moving speed of a moving object (hereinafter referred to as a moving vehicle) based on the time delay of detection time.

〔発明の背景〕[Background of the invention]

一般に移動する物体の走行速度を測定する場合、その物
体に車輪がある場合には、車輪の回転速度を求めること
によっておこなわれるが、より精度の高い速度計測手段
として、光を用いた方式がある。すなわち、例えば特開
昭56−112655号の赤外線検出器を用いた方法や
特開昭56−22962号公報に示される速度測定装置
がある。
Generally, when measuring the running speed of a moving object, if the object has wheels, this is done by determining the rotational speed of the wheels, but there is a method using light as a more accurate speed measurement method. . That is, for example, there is a method using an infrared detector disclosed in Japanese Patent Laid-Open No. 56-112655, and a speed measuring device disclosed in Japanese Patent Laid-Open No. 56-22962.

また他の速度測定方法として、空間フィルタを用いた方
法がある。この方法は、走行面に自然にできている光学
的むらを空間フィルタで観測し、得られた不規則信号に
空間的な信号処理を行い、前記不規則信号の成分中の最
大パワーを有する、いわゆる中心周波数を求めて、速度
を計測するものである。
Another method for measuring speed is a method using a spatial filter. This method uses a spatial filter to observe the optical unevenness that naturally occurs on the running surface, performs spatial signal processing on the obtained irregular signal, and selects a component that has the maximum power among the components of the irregular signal. The speed is measured by finding the so-called center frequency.

しかしこれらの従来方法においては、例えば。However, in these conventional methods, e.g.

光学的な測定手段による場合、外部光による外乱や熱的
な影響、さらに光学系路を移動車以外の物体が通過した
とき誤差を生じ易く、また空間フィルタを利用する場合
においては、とくに低速度を計測する場合に測定誤差が
大きくなる欠点があった。
When using optical measurement means, errors are likely to occur due to disturbances caused by external light, thermal effects, and when objects other than moving vehicles pass through the optical system path.Also, when using spatial filters, errors are likely to occur, especially at low speeds. The disadvantage is that the measurement error becomes large when measuring.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点を除失すべく
なされたものであり、移動車が移動するときの、走行面
に形成される発光体の発光信号をマーカーとし、このマ
ーカーを確認することによって、移動車の移動速度を検
出する、移動車の速度測定装置を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and the present invention uses a light emitting signal from a light emitting body formed on the running surface when a moving vehicle moves as a marker, and confirms this marker. An object of the present invention is to provide a speed measuring device for a moving vehicle that detects the moving speed of the moving vehicle.

〔発明の概要〕[Summary of the invention]

本発明の速度測定装置は、移動車の先頭部分において発
光体を走行面上に散布または滴下して部分的に発光体の
存在する部分を形成するとともに、この発光体に対して
励起光を照射して可視光を発光せしめ、この発光体の発
光を検知する検知機構によって発光を検知し、つぎに移
動車が移動し、第2の検知手段が上記発光を検知するま
での所要時間から移動車の移動速度を測定するための手
段に関する。
The speed measuring device of the present invention scatters or drops a luminous material on the running surface at the front part of a moving vehicle to partially form a part where the luminous material is present, and irradiates the luminous material with excitation light. to emit visible light, the light emission is detected by a detection mechanism that detects the light emission of this light emitting body, the moving vehicle moves next, and the moving vehicle is detected from the time required until the second detection means detects the light emission. The present invention relates to a means for measuring the speed of movement of a vehicle.

ここで本発明において、発光体を利用するの。Here, in the present invention, a light emitting body is used.

は以下の理由によるためである。This is due to the following reasons.

すなわち、走行面の状態、飼えば亀裂面を一つのマーク
とし、これを光学的に検出することによって速度を測定
しようとした場合、亀裂面が検出できなければ測定でき
ない。また走行面が渭らかな時や、均質のシート面にお
いてはマ?−り検出が不可能であり、同様に測定ができ
ない。
That is, if one attempts to measure the speed by optically detecting the state of the running surface, i.e., the crack surface, as one mark, the measurement cannot be made unless the crack surface is detected. Also, when the running surface is smooth or the seat surface is homogeneous, is there a problem? -It is impossible to detect and similarly not measure.

これに対し、より積極的な手段、例えば発光しない粉末
をマーカーとして利用する場合、粉体の表面よりの反射
光あるいは色相を検出することとなる。しかしこの場合
、移動車下部は照度が不足するから粉体を照明する必要
があり、また反射率の低い物質では反射光の照度が小さ
く、しかも走行面の反射光との分離が困難である。
On the other hand, when a more aggressive method is used, for example, when a powder that does not emit light is used as a marker, the reflected light or hue from the surface of the powder is detected. However, in this case, it is necessary to illuminate the powder because the illuminance at the bottom of the moving vehicle is insufficient, and the illuminance of the reflected light is low if the material has a low reflectance, and furthermore, it is difficult to separate it from the reflected light from the traveling surface.

一方発光体を利用する本発明の場合においては、発光体
のみが励起光を受けて発光し、その。
On the other hand, in the case of the present invention which utilizes a light emitter, only the light emitter receives excitation light and emits light.

発光強度は、走行面からの反射光強度(可視光全域の波
長IIIM)より格段に強く、しか゛も、発光体自身が
個有の発光スペクトルを持つから、これらのスペクトル
のなかの特定波長の光を選択的に取出すことにより、発
光の検知、すなわちマークの読み取りが、極めて容易で
ある点を活用するものである。
The luminous intensity is much stronger than the reflected light intensity from the running surface (wavelength IIIM in the entire visible light range), but since the luminous body itself has its own unique luminous spectrum, This method takes advantage of the fact that by selectively extracting light, it is extremely easy to detect light emission, that is, read marks.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の移動車の速度測定装置を、一実施例によっ
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The speed measuring device for a moving vehicle according to the present invention will be explained below using one embodiment.

第1図は、本発明の速度測定装置を示し、それを搭載し
た移動車の平面図、第2図は、第1図の側面図である。
FIG. 1 shows the speed measuring device of the present invention, and is a plan view of a moving vehicle equipped with the speed measuring device, and FIG. 2 is a side view of FIG. 1.

図において、1は、本実施例の速度測定装置を搭載した
移動車である。2は、車体で、直線。
In the figure, 1 is a moving vehicle equipped with the speed measuring device of this embodiment. 2 is the car body, which is straight.

C+  C2は、移動車1の中心を通り、進行方向に向
きが一致している中心線である。直II S + −8
2は、前記中心IAC+  C2と直交する後記の。
C+ C2 is a center line that passes through the center of the mobile vehicle 1 and is oriented in the direction of travel. Straight II S + -8
2, which will be described later, is orthogonal to the center IAC+C2.

車輪3.4の軸線である。3,4は、中心C+−02か
ら等距離な位置で、軸線S+−8z上の車輪軸5と6に
それぞれ固設された車輪である。
This is the axis of the wheel 3.4. Reference numerals 3 and 4 denote wheels fixed to wheel axles 5 and 6 on the axis S+-8z, respectively, at positions equidistant from the center C+-02.

そして車輪3と4の直径は、相等しくしである。The diameters of wheels 3 and 4 are equal.

7と8は、車輪軸5,6を支える軸受であり、9は、前
記の車輪軸5,6に固設されたかさ歯車である。10と
11は、車輪3と4をそれぞれ駆動するための直流モー
タである。12は、直流モータ10と11に付設した減
速機であり、13は、減速機12の出力軸に固設したか
さ歯車で、前記のかさ歯車9と噛み合う。
7 and 8 are bearings that support the wheel axles 5 and 6, and 9 is a bevel gear fixed to the wheel axles 5 and 6. 10 and 11 are DC motors for driving wheels 3 and 4, respectively. 12 is a reducer attached to the DC motors 10 and 11, and 13 is a bevel gear fixed to the output shaft of the reducer 12, which meshes with the bevel gear 9.

14は、燐光体、けい光体、けい光染料などの無機また
は有機質の発光体の貯槽と滴下、散布のための機構(定
量滴下装置、圧送ボンダなど、いずれも図示せず)を含
む発光体供給装置である。ここで使用される発光体は、
可視光で発光するものや、253.7 nm波長の紫外
線で励起されるもの、360rLrILの近紫外線によ
るものなどのいずれでもよいが、もっとも好ましい発。
Reference numeral 14 denotes a luminous body that includes a storage tank for an inorganic or organic luminous substance such as a phosphor, a phosphor, a fluorescent dye, and a mechanism for dripping and dispersing (a metered dropping device, a pressure-feeding bonder, etc., none of which are shown). It is a supply device. The light emitter used here is
The most preferred method is one that emits light with visible light, one that is excited by ultraviolet light with a wavelength of 253.7 nm, or one that uses near ultraviolet light such as 360rLrIL.

光体は、360nm近紫外線の励起によって発光。The light body emits light by excitation with near 360 nm ultraviolet rays.

する有機質の発光体、例えばスチルベン系のけい光染料
などが、極めて微量で、しかも鮮明に発光するので利用
しやすい。
Organic luminescent materials such as stilbene-based fluorescent dyes are easy to use because they emit clear light in very small amounts.

15は、円筒状のフードであって、走行面16に対して
空間を介し対向して配置されており、中央部に発光体の
吐出口また滴下孔(図示せずが設けられている。フード
は発光体が風で飛散するのを防止するためのものである
Reference numeral 15 denotes a cylindrical hood, which is arranged to face the running surface 16 with a space in between, and is provided with a discharge port or a drip hole (not shown) for the light emitting body in the center. This is to prevent the light emitter from being scattered by the wind.

17α、17bは、それぞれ第1.第2の発光検知手段
のための機構部分であり、その細部を第6図に示す。図
において発光検知機1117は、車体2に取付けられて
おり、支持部18 、19で支持される。20はフード
で、内部にはフォトダイオード、CdSなどの光電変換
素子21、フィルタ22を備えた受光用の光路23αと
、励起光源25(例えばブラックライト)を格納した励
起光光路24がある。この励起光源25は、波長が36
0rLrrLの近紫外線を発生し、この近紫外線は発光
体26を刺戟し、360rLrrL紫外線より長波長の
可視光線を生ずる。したがって、この可視光をフィルタ
を通すことによって選択的に受光し、発光を検知するこ
とができる(矢印は光路を示す)。27は検知信号を増
幅する増幅器である。
17α and 17b are the first . This is a mechanical part for the second light emission detection means, and its details are shown in FIG. In the figure, a light emission detector 1117 is attached to the vehicle body 2 and supported by support parts 18 and 19. Reference numeral 20 denotes a hood, inside of which there is an optical path 23α for receiving light that includes a photoelectric conversion element 21 such as a photodiode or CdS, and a filter 22, and an excitation light optical path 24 that stores an excitation light source 25 (for example, a black light). This excitation light source 25 has a wavelength of 36
Near ultraviolet rays of 0rLrrL are generated, and the near ultraviolet rays stimulate the light emitter 26 to produce visible light having a longer wavelength than the 360rLrrL ultraviolet rays. Therefore, by passing this visible light through a filter, it is possible to selectively receive it and detect light emission (arrows indicate optical paths). 27 is an amplifier that amplifies the detection signal.

この構成よりなる受光検知機構は、第1図お。The light receiving and detecting mechanism having this configuration is shown in FIG.

よび第2図に示すように、中心MCI  C2上に配列
され、発光体供給装置14から走行面16上に散布また
は滴下された発光体の発光を、移動車の移動にともなっ
て逐次観測する。(発光体に残光性が強く、残像が長く
消えない場合には、17bの励起用光源を省略してもよ
い)。なお第1図、第2図において28は、速度測定回
路を含む制御装置で、第1及び第2の発光検知手段によ
る発光検知信号を入力し、時間的なずれを計測するとと
もにこれを外部に表示するための入出力信号処理回路、
(クロック信号発振器カウンタ、デコーダなどを含む)
表示部、移動車の速度制#機構などにより構成される。
As shown in FIG. 2, the light emitted from the light emitters arranged on the central MCI C2 and scattered or dropped onto the running surface 16 from the light emitter supply device 14 is sequentially observed as the vehicle moves. (If the light emitter has a strong afterglow property and the afterimage does not disappear for a long time, the excitation light source 17b may be omitted). In FIGS. 1 and 2, 28 is a control device including a speed measuring circuit, which inputs the light emission detection signals from the first and second light emission detection means, measures the time lag, and transmits the signals to the outside. Input/output signal processing circuit for display,
(Including clock signal oscillator counter, decoder, etc.)
It consists of a display unit, a speed control mechanism of a moving vehicle, etc.

29は、電源である蓄電池であり、3Qは、車体2に取
付けたキャスタである。
29 is a storage battery that is a power source, and 3Q is a caster attached to the vehicle body 2.

この第1図の構造における移動車の移動速度は、第4図
の略図で示すように、発光体の発光強度が、第1の検知
位置においてPI、第2の検知位置においてPlとし、
PlからPlに到る移動距離J−2(第1図における1
7αから171Jまでの距離J−1に相当する。すなわ
ち発光検知機構相互の間隔である。)、Plにおける時
間α、Plにおける時間すとし、12だけ移動するに要
した時間す一α=χとすれば、その平均速度■は、 V=− によって算出できる。
As shown in the schematic diagram of FIG. 4, the moving speed of the moving vehicle in the structure of FIG.
Travel distance J-2 from Pl to Pl (1 in Figure 1)
This corresponds to the distance J-1 from 7α to 171J. That is, the distance between the light emission detection mechanisms. ), time α at Pl, time at Pl is the time required to move by 12, α=χ, then the average speed ■ can be calculated by V=-.

発光検知信号を検知して速度を測定するための測定回路
としては、第5図に示す方法がある。
As a measuring circuit for detecting the light emission detection signal and measuring the speed, there is a method shown in FIG. 5.

すなわち発光体31を励起光源32によって励起せしめ
て可視光を取出し、この可視光の存在を第1の発光検知
機構33、第2の検知機構34によって検知して検知信
号gl 、 ’2を得る。つぎにこの検知信号を、増幅
N65を介してフリップフロップ回路36に供給する。
That is, the light emitting body 31 is excited by the excitation light source 32 to extract visible light, and the presence of this visible light is detected by the first light emission detection mechanism 33 and the second detection mechanism 34 to obtain the detection signal gl, '2. Next, this detection signal is supplied to the flip-flop circuit 36 via the amplifier N65.

37はカウンタ38はクロック信号発′IM器で、まず
フリップフロップ回路36より送られた、信号g1の増
幅した出力信号をハイレベル信号とし、その間のクロッ
ク信号をカウンタ37でカウントする。つぎに信号e2
の、増11?1iffl力信号が送られてきたら、フリ
ップフロップ回路をリセットして、出力信号をローレベ
ル信号とし、カウンタ37のカウントを終了させる。こ
のカウンタ37のカウント信号を、デコーダ39に供給
し、このカウント信号と、第1の受光検知手段及び第2
の受光検知手段の間隔(第1図、第4図における11ま
たはJ−2)との関係より、移動車の走行速度を算出し
、これを表示部40に表示し、これにより移動体の走行
速度を知ることができる。
A counter 37 is a clock signal generator and an IM device. First, the amplified output signal of the signal g1 sent from the flip-flop circuit 36 is set to a high level signal, and the counter 37 counts the clock signals during that time. Next, signal e2
When the 11?1 iffl signal is sent, the flip-flop circuit is reset, the output signal becomes a low level signal, and the counter 37 finishes counting. The count signal of this counter 37 is supplied to the decoder 39, and this count signal and the first light reception detection means and the second
The traveling speed of the moving vehicle is calculated based on the relationship with the interval of the light receiving detection means (11 or J-2 in FIGS. 1 and 4), and this is displayed on the display unit 40, whereby the traveling speed of the moving object is You can know the speed.

以上説明1.たように、本発明の速度測定装置は、移動
車1に、速度測定の基準となるマーカ−とじて発光体を
走行面に置いて、これを発光。
Above explanation 1. As described above, the speed measuring device of the present invention places a light emitting body on the running surface of the moving vehicle 1 as a marker serving as a reference for speed measurement, and emits light from the light emitting body.

させ、この発光を、移動車の2点間で観測し、この間の
時間的な遅れを利用して、移動車の走行速度を測定する
ものであるから、移動車の車輪のスリップや変形、床面
の凹凸による測定精度の低下がなく、とくに低速走行時
の速度を測定するのに適している。
This light emission is observed between two points on the moving vehicle, and the time delay between these points is used to measure the traveling speed of the moving vehicle. There is no reduction in measurement accuracy due to surface irregularities, making it particularly suitable for measuring speed during low-speed driving.

本発明において使用される発光体は、すでにのべたよう
にスチルベン系のほか、クマリン系のけい光染料などが
よい。これらの染料は、一般に水溶性であるが、低級ア
ルコールと混合して、蒸発速度を高めて使用する。溶液
は透明であり、乾燥後もほとんど痕跡を残さないから、
走行面を汚染しない。なおこの染料の発光色は波長43
0〜440 nmにピークを有する紫系統の色である。
The luminescent material used in the present invention is preferably a stilbene-based fluorescent dye or a coumarin-based fluorescent dye as described above. These dyes are generally water soluble, but are used in combination with lower alcohols to increase the rate of evaporation. The solution is transparent and leaves almost no trace after drying.
Do not contaminate the running surface. The emission color of this dye is wavelength 43
It is a purple color with a peak at 0 to 440 nm.

実施例における発光体供給装置は、走行面と離れており
、走行面に散布、滴下する方式であるが、他の手段とし
て、供給装置の一部にマーク捺印機構を設け、走行面に
発光性のマークを捺印して、これを読み取る方法でもよ
い。
The luminescent material supplying device in the embodiment is separate from the running surface and is of a type that sprays or drops on the running surface, but as another means, a mark imprinting mechanism is provided in a part of the supplying device and luminous material is applied to the running surface. Alternatively, a mark may be stamped and read.

つぎに発光検知機構であるが、実施例においては、2個
の発光検知機構を備えた場合を説明した。これは、速度
を計測するためには、最低2個を必要とするからであり
、この場合の検知信号も2個であるが、さらに発光検知
機構を増設し、あるいは、光電変換素子としてラインセ
ンサを利用すればさらに検知精度と検知の確実性が向上
する。
Next, regarding the light emission detection mechanism, in the embodiment, a case has been described in which two light emission detection mechanisms are provided. This is because at least two sensors are required to measure speed, and in this case the detection signals are also two, but a light emission detection mechanism may be added, or a line sensor may be used as a photoelectric conversion element. Using this will further improve detection accuracy and reliability.

なお実施例に示していないが、発光体を間欠的に、一定
時間毎に滴下し、その発光を検知し、さらにその軌跡を
求め、移動車の車輪、中心軸との位置関係を規定ずれば
、移動車の移動方向を測定することも可能で、この場合
には、軌跡をテレビカメラによりディスプレーよに投射
して、走行を制御したり、演算、制御回路を搭載して、
移動車を自動走行させることができる。
Although not shown in the examples, if a luminescent material is dropped intermittently at regular intervals, the luminescence is detected, its trajectory is determined, and the positional relationship with the wheels and central axis of the vehicle is determined. It is also possible to measure the direction of movement of a moving vehicle.In this case, the trajectory can be projected onto a display using a television camera to control the vehicle's travel, or it can be equipped with arithmetic and control circuits.
Vehicles can be driven automatically.

実施例では、移動車が中心#il C+ 7 C2上を
、C1からC2に向って走行する場合を想定しているが
、走行途中に停止して、逆方向に走行するようになった
場合には、走行速度の測定が不可能となる場合も考えら
れるが、これらの場合を考慮し、発光体供給装置を、移
動車の前部のほか、後部にも搭載すれば、さらに使用用
途が拡大する。
In the example, it is assumed that a moving vehicle travels from C1 to C2 on the center #il C+ 7 C2, but if it stops mid-travel and starts traveling in the opposite direction. There may be cases where it is impossible to measure the traveling speed, but if you consider these cases and install the luminous material supply device not only at the front of the vehicle but also at the rear, the range of uses will be further expanded. do.

なお発光体の発光検知信号は、発光の有無を判別するほ
か、発光のピーク値、発光部の面積の積分値などのいず
れでもよい。
In addition to determining the presence or absence of light emission, the light emission detection signal of the light emitter may be a peak value of light emission, an integral value of the area of the light emitting part, or the like.

゛ 〔発明の効果〕 以上説明したように、移動車に、発光体供給装置、発光
検知手段、速度計1iill装置を搭載してなる本発明
によれば、発光体の発光を検知することによって、測定
対象とする移動車の、とくに低速走行速度を、確実に、
精度よく測定でき、さらに移動車の移動方向も測定する
ことができる。また、本発明の装置においては、高価な
速度言1や方位角の測定装釘を必要としないから、経済
性に優れている。
゛ [Effects of the Invention] As explained above, according to the present invention, in which a mobile vehicle is equipped with a luminous body supply device, a luminous body detection means, and a speedometer 1iill device, by detecting the luminous emission of the luminous body, Reliably detects the particularly low speed of the moving vehicle being measured.
Measurements can be made with high precision, and the direction of movement of the vehicle can also be measured. Furthermore, the device of the present invention does not require an expensive velocity gauge 1 or an azimuth angle measuring device, so it is highly economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の移動車の速度測定装置を
示し、それを搭載した移動車の平面図、第2図は、第1
図の側面図、第3図は、第1図における発光検知機構の
一部切欠断面図、第4図は本発明による速度計測方法を
説明するための概略図、第5図は本発明による移動車の
速度の測定回路図である。 1:移動車、     14:発光体供給装置、・17
:発光検知機構、 21:光電変換素子、25:励起用
光源、  26:発光体、28:制御回路。 代理人升埋士 少  川  勝 −男 第 1 図 第 2 図 第3図 第 4 z 竹間
FIG. 1 shows a speed measuring device for a moving vehicle according to an embodiment of the present invention, and FIG. 2 is a plan view of a moving vehicle equipped with the device.
3 is a partially cutaway sectional view of the light emission detection mechanism in FIG. 1, FIG. 4 is a schematic diagram for explaining the speed measurement method according to the present invention, and FIG. 5 is a movement according to the present invention. FIG. 3 is a circuit diagram for measuring the speed of a car. 1: Mobile vehicle, 14: Luminous body supply device, 17
: Light emission detection mechanism, 21: Photoelectric conversion element, 25: Excitation light source, 26: Light emitter, 28: Control circuit. Proxy Masu Burialist Masaru Shokawa - Male Figure 1 Figure 2 Figure 3 Figure 4 z Takema

Claims (1)

【特許請求の範囲】[Claims] 1、走行する車体から走行面上に小量の発光体を散布ま
たは滴下する手段と、前記発光体を励起するための光源
手段と、前記発光体の発光を検知する検知手段と、前記
検知手段で得られた検知信号を処理して速度信号に変換
する信号処理手段を備えた移動車において、移動車の走
行時に、先頭部分より走行面上に散布または滴下された
発光体の発光を、第1の発光検知手段により検知し、つ
ぎに移動車の後尾に設けられ、移動車が移動した後の走
行面上の前記発光体の発光を、1個または複数個の第2
の発光検知手段により検知し、前記した両検知手段の検
知した発光検知信号の相互間における時間的な遅れと、
移動車の移動距離より移動速度を測定する機構を備えた
ことを特徴とする移動車の速度測定装置。
1. means for scattering or dropping a small amount of luminescent material from a running vehicle body onto a running surface; a light source means for exciting the luminous material; a detection means for detecting light emission from the luminous material; and the detection means. In a moving vehicle equipped with a signal processing means for processing the detection signal obtained by converting the detected signal into a speed signal, the light emitted from the luminous material scattered or dropped from the front part onto the running surface while the moving vehicle is running is The light emitted from the light emitting body provided at the rear of the moving vehicle and on the running surface after the moving vehicle has been moved is detected by one or more second light emitting means.
a time delay between the luminescence detection signals detected by the two detection means;
A speed measuring device for a moving vehicle, comprising a mechanism for measuring the moving speed of the moving vehicle based on the distance traveled by the moving vehicle.
JP24142985A 1985-10-30 1985-10-30 Speed measuring instrument for mobile vehicle Pending JPS62102163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24142985A JPS62102163A (en) 1985-10-30 1985-10-30 Speed measuring instrument for mobile vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24142985A JPS62102163A (en) 1985-10-30 1985-10-30 Speed measuring instrument for mobile vehicle

Publications (1)

Publication Number Publication Date
JPS62102163A true JPS62102163A (en) 1987-05-12

Family

ID=17074167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24142985A Pending JPS62102163A (en) 1985-10-30 1985-10-30 Speed measuring instrument for mobile vehicle

Country Status (1)

Country Link
JP (1) JPS62102163A (en)

Similar Documents

Publication Publication Date Title
EP0731905B1 (en) Vehicle alignment system
JP2912957B2 (en) Method and apparatus for measuring enzyme activity
EP0283289A3 (en) Excitation and detection apparatus for remote sensor connected by optical fiber
US20130005047A1 (en) Luminescence lifetime based analyte sensing instruments and calibration technique
EP0438550B1 (en) Optical read system
US5523845A (en) A fiber optic device for measuring liquids which are drawn into an end of the device to a predetermined distance from the end of the optical fibers
CN101583873A (en) Method for measuring immunochromato test piece
CN101578519A (en) Apparatus for measuring immunochromato test piece
WO2004053467A3 (en) Optical sensor for determining the concentrations of dyes and/or particles in liquid or gaseous media and method for operating the same
JP2003139707A (en) Method for measuring concentration of nitrogen dioxide in atmosphere by single wave length laser induced fluorescence method and device for measuring concentration of nitrogen dioxide by using it
WO2006036522A1 (en) Luminescense sensor apparatus and method
JPS62102163A (en) Speed measuring instrument for mobile vehicle
US5886782A (en) Vehicle rear end alignment device
CA1313773C (en) Precipitation gauge
US6607300B1 (en) Methods and devices for sensing temperature and oxygen pressure with a single optical probe
JP2002357532A (en) Floating particle-like substance measuring apparatus
JP2004177247A (en) Method of measuring carbon dioxide
CN113933268B (en) Optical detection device and optical detection method
Deng et al. High-precision analysis of Sr/Ca and Mg/Ca ratios in corals by laser ablation inductively coupled plasma optical emission spectrometry
US20060241351A1 (en) Integrated optical device for luminescence sensing
EP0711992B1 (en) Method of determination of a fluorescent substance, and a method of assay of an enzyme activity
EP0347298B1 (en) Method and device for the measurement of visibility through a medium of varying opacity
JPS62278436A (en) Fluorescence light measuring method and apparatus
US20100148091A1 (en) Method and system for rapid phase luminescense spectroscopy analysis
WO2013061681A1 (en) Component measurement device and component measurement method