JPS62102085A - Control of number of operating set of pump for cooling condenser - Google Patents

Control of number of operating set of pump for cooling condenser

Info

Publication number
JPS62102085A
JPS62102085A JP24062285A JP24062285A JPS62102085A JP S62102085 A JPS62102085 A JP S62102085A JP 24062285 A JP24062285 A JP 24062285A JP 24062285 A JP24062285 A JP 24062285A JP S62102085 A JPS62102085 A JP S62102085A
Authority
JP
Japan
Prior art keywords
condenser
cooling water
pumps
operating
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24062285A
Other languages
Japanese (ja)
Other versions
JPH0631688B2 (en
Inventor
Yoshio Kusayama
草山 義男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24062285A priority Critical patent/JPH0631688B2/en
Publication of JPS62102085A publication Critical patent/JPS62102085A/en
Publication of JPH0631688B2 publication Critical patent/JPH0631688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To control cooling water temperature and the number of sets of operating pumps, which is capable of operating economically even when the amount of cooling water is changed, by a method wherein a heat consumption rate in accordance with the change of the vacuum degree of a condenser is compared with the change of the heat consumption rate of the power consumption of the pumps in accordance with the change of the number of operating sets of the pumps for cooling the condenser. CONSTITUTION:The vacuum degree 204 of a condenser 203, the cooling water temperature 205 of the inlet of the condenser, the cooling water temperature 206 of the outlet of the condenser, the amount of cooling water 207 of the condenser and the starting and stopping conditions of cooling pumps 201, 202 are read as data necessary for operating the optimum number of operating sets and controlling the number of operating sets of pumps. The amount of cooling water for a condenser in case the number of operating sets of cooling pumps is operated based on the amount of cooling water, which is measured at a present time. The power consumption of the pumps in case the number of operating sets of the cooling pumps is operated. The vacuum degree of the condenser in case the number of operating sets of the cooling pumps is operated from cooling water temperatures of the outlet and inlet ports of the condenser, which are measured at a present time, the amount of cooling water and the amount of cooling water after changing the number of operating sets. The change of the amount of heat consumption of turbine is obtained from the operated degree of vacuum of the condenser to operate the changing amount of an output. The change of power consumption is compared with the change of output to decide the effect of change of the number of operating sets.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、復水器冷却用ポンプの運転台数制御方法に係
9.特に復水器入口冷却水温度や冷却水量が季節9時間
等により変化し、復水器真空度が変化するような発電プ
ラントの復水器冷却用ポンプ運転台数の制御方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for controlling the number of operating condenser cooling pumps. In particular, the present invention relates to a method of controlling the number of operating pumps for cooling a condenser in a power generation plant where the condenser inlet cooling water temperature and the amount of cooling water change depending on the season and the degree of vacuum of the condenser.

〔発明の背景〕[Background of the invention]

火力、水力を含めた全発電プラント中における原子力発
電プラント比率の増加、日間負荷変化幅の拡大から、ペ
ース負荷火力として計画された既設大型火力発電プラン
トも、最近では調整負荷火力として出力変化2部分負荷
運転の機会が非常に多くなってきた。
Due to the increasing proportion of nuclear power plants among all power plants, including thermal and hydropower, and the widening range of daily load changes, existing large-scale thermal power plants that were planned as pace-load thermal power plants have recently changed output by two parts as adjusted-load thermal power plants. Opportunities for load operation have increased significantly.

このような状況下で、既設の火力発電プラントの復水器
冷却用ポンプは一般に主として定格負荷の50〜60%
容量機の固定翼斜流ポンプが2〜3台設置されているこ
とから、部分負荷運転時は運転台数を節減して、ポンプ
の消費動力を低減し熱効率の向上を計ろうとする気運が
高まってきた。
Under these circumstances, condenser cooling pumps in existing thermal power plants generally operate at 50 to 60% of their rated load.
Since two to three capacity fixed-blade mixed-flow pumps are installed, there is a growing trend to reduce the number of pumps in operation during partial load operation, reduce pump power consumption, and improve thermal efficiency. Ta.

従来、復水器冷却用ポンプはプラントがベース負荷火力
として計画されていることから、該ポンプ運転台数を制
御することは通常運転時は勿論。
Conventionally, condenser cooling pumps are planned as base load thermal power plants, so it is of course necessary to control the number of pumps in operation during normal operation.

起動停止時においても操作を複雑ならしめる上に、従来
の技術思想においてはポンプ運転台数の変更を必要とす
る機会は少ないと考えられていた為。
This is because the operation is complicated even when starting and stopping, and in conventional technical thinking, it was thought that there were few opportunities to change the number of pumps in operation.

既設の大規模火力発電プラントにおいては、プラント起
動準備過程から復水器冷却用ポンプの全台数を運転する
ように設計、製作されている。
Existing large-scale thermal power plants are designed and manufactured in such a way that all condenser cooling pumps are operated from the start-up preparation process.

効率向上に積極的に取り組む一部のプラントでは、負荷
(発電機出力)に基づき、運転員の手動操作により運転
台数変更操作を計画しているという例も伝えられている
。この方法は、負荷(発電機出力)のみに基づいて運転
台数の変更操作をしようとするものであることから非常
に簡便な方法であるが、復水器入口冷却水温度や冷却水
量が、季節1時間等により変化する場合には、あらかじ
め決められた運転台数変更ポイント(負荷)K基づく単
純な運用は、必ずしも最良の熱経済効果が得られず熱効
率上損失を生む場合があり、改善が望まれる。
It has been reported that some plants actively working to improve efficiency are planning to change the number of units in operation based on the load (generator output) through manual operations by operators. This method is a very simple method because it attempts to change the number of operating units based only on the load (generator output), but the condenser inlet cooling water temperature and cooling water amount may change depending on the season. When changes occur over an hour, etc., simple operation based on a predetermined change point (load) K for the number of operating units may not necessarily provide the best thermal economic effect and may result in losses in terms of thermal efficiency, so improvement is desirable. It will be done.

負荷による運転台数変更操作は、運転員の手動操作とい
うことで公表例がない。一方、広〈実施されているとこ
ろの常時全台運転については、火力原子力発電、198
2年、VOL、33.A3の1秋田火力第4号機の温排
水温度制御システムの計画設計とその実際”と題する文
献に訃いて論じられている。
There are no published examples of how to change the number of operating machines depending on the load, as this is a manual operation by an operator. On the other hand, regarding the constant operation of all units currently being implemented,
2nd year, VOL, 33. A3 No. 1 The paper entitled ``Planning and actual design of heated wastewater temperature control system for Akita Thermal Power Plant No. 4'' discusses this issue.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為されたものであって、そ
の目的は、季節1時間等により復水器入口冷却水温度、
あるいは冷却水量が変化した場合にも、熱効率上損失を
生じることなく経済運用し得る復水器冷却用ポンプ運転
台数の制御方法を提供することKある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to adjust the temperature of the condenser inlet cooling water depending on the season, etc.
Alternatively, it is an object of the present invention to provide a method for controlling the number of operating pumps for cooling a condenser, which can be operated economically without causing a loss in thermal efficiency even when the amount of cooling water changes.

〔発明の概要〕[Summary of the invention]

本発明は、現時点の復水器真空度を計測すると共に、復
水器用、入ロ冷却水温度あるいは冷却水量を計測するこ
とで運転台数変更後の真空度を推定し、真空度変化によ
る熱消費率の変化と冷却用ポンプの消費動力の変化によ
る熱消費率の変化とを比較し、その得失から運転台数変
更制御することを特徴とする。また、本発明において推
奨される実施の態様においては、運転台数減操作時1台
数減損作後の復水量比、入ロ冷却水温度が規定値以下に
なることを計算によって確認する。上記の冷却水温度の
規定値は、温排水制限に基づいて定められるものであっ
て、通常6.5c〜8Cである。
The present invention measures the current degree of vacuum in the condenser, and also measures the temperature or amount of cooling water for the condenser and inlet to estimate the degree of vacuum after changing the number of operating units, and calculates the heat consumption due to the change in the degree of vacuum. The feature is that the change in the heat consumption rate due to the change in the power consumption of the cooling pump is compared with the change in the heat consumption rate due to the change in the power consumption of the cooling pump, and the number of units in operation is controlled based on the advantages and disadvantages. In addition, in the preferred embodiment of the present invention, when the number of operating units is reduced, it is confirmed by calculation that the condensate amount ratio and the inlet cooling water temperature after the operation where one unit is reduced are below the specified values. The specified value of the cooling water temperature mentioned above is determined based on the hot water discharge limit, and is usually 6.5C to 8C.

〔発明の実施例〕[Embodiments of the invention]

次に1本発明の1実施例について、添付図面を順次に参
照しつつ説明する。
Next, one embodiment of the present invention will be described with reference to the accompanying drawings.

第1図のフローチャートは、本発明の方法を適用して現
時点の復水器真空度をデータとして取り込むと共【復水
器用、入ロ冷却水温度、冷却水量をデータとして取り込
み、運転台数変更後の真空度を推定して真空度変化によ
る熱消費率の変化と冷却用ポンプの消費動力の変化によ
る熱消費率の変化とを比較し、その得失からポンプの運
転台数を決定して行く最適運転台数計算フローの1例を
示すものである。又、本第1図は運転台数減操作時、台
数減操作後の復水器用、入ロ冷却水温度が規定値以下に
なることを現時点の温度から推定し。
The flowchart in Figure 1 shows how to apply the method of the present invention to capture the current condenser vacuum level as data, and also capture the condenser, inlet cooling water temperature, and cooling water amount as data, and after changing the number of operating units. Optimum operation is achieved by estimating the degree of vacuum of the vacuum and comparing the change in heat consumption rate due to changes in the degree of vacuum with the change in heat consumption rate due to changes in the power consumption of the cooling pump, and determining the number of pumps to operate based on the advantages and disadvantages. This shows an example of the number calculation flow. In addition, this Figure 1 shows that when the number of operating units is reduced, it is estimated from the current temperature that the temperature of the condenser and inlet cooling water after the operation is reduced to below the specified value.

確認の上運転台数を決定していく運転台数計算フローも
同時に示している。
The flowchart for calculating the number of vehicles in operation is also shown, which determines the number of vehicles in operation after confirmation.

本第1図に示され念ように、ステップ101では最適運
転台数を計算し、台数制御を行うに必要なデータとして
復水器真空度、復水器入口冷却水温度、復水器出口冷却
水温度、復水器冷却水量並びに冷却用ポンプの起動・停
止状態(ONloFF)が取り込まれる。第2図の系統
図はこれらの計測点を示すもので、冷却用ポンプ201
,202が台数制御の対象となる復水器203の冷却用
ポンプであシ、復水器真空度204.復水器入ロ冷却水
温度205.復水器出口冷却水温度206、復水器冷却
水量207の検出箇所がそれぞれ表わされている。
As shown in Fig. 1, in step 101, the optimum number of operating units is calculated, and the data required to control the number of units is the condenser vacuum degree, condenser inlet cooling water temperature, condenser outlet cooling water. The temperature, condenser cooling water amount, and cooling pump start/stop status (ONloFF) are captured. The system diagram in Figure 2 shows these measurement points, and the cooling pump 201
, 202 are cooling pumps for the condenser 203 whose number is to be controlled, and the condenser vacuum degree is 204. Condenser inlet cooling water temperature 205. Detection points of condenser outlet cooling water temperature 206 and condenser cooling water amount 207 are respectively shown.

第1図ステップ102では、冷却用ポンプの運転台数を
変更した場合の復水器冷却水量が現時点で計測された冷
却水量を基準として算出される。
In step 102 in FIG. 1, the amount of cooling water in the condenser when the number of operating cooling pumps is changed is calculated based on the amount of cooling water measured at the present time.

ここで、冷却水量は第3図の復水器冷却水系運転曲線に
示す如く冷却用ポンプの性能曲線301とシステム抵抗
曲線302とのバランス点(交点)303で基本的に決
まることから、運転台数のみで一義的に定数として与え
る方法もあるが、冷却用ポンプは一般に海水、河川水を
取水する斜流ポンプであり図中点線304の如く、潮位
等の影響を受けて流量が変化することから実流量を計測
することで、より正確な最適運転台数計算が可能となる
。第4図は、冷却用ポンプの運転台数による冷却水量の
変化を示すグラフであり、第3図における2台運転時の
運転曲線301と1台運転時の運転曲線305とから潮
位変化(図中点線304の如くシステム抵抗曲線が移動
する分だけ流量が変化する。)を考慮して作成したもの
で、運転台数2台から1台へ、あるいは1台から2台へ
変更した場合の冷却水ffi′fr、!み取ることがで
きる。
Here, since the amount of cooling water is basically determined by the balance point (intersection) 303 between the cooling pump performance curve 301 and the system resistance curve 302 as shown in the condenser cooling water system operating curve in Figure 3, the number of operating units is There is also a method of uniquely giving it as a constant, but cooling pumps are generally mixed flow pumps that take in seawater or river water, and as shown by the dotted line 304 in the figure, the flow rate changes due to the influence of the tide level etc. By measuring the actual flow rate, it is possible to more accurately calculate the optimal number of operating units. FIG. 4 is a graph showing changes in the amount of cooling water depending on the number of cooling pumps in operation. The flow rate changes as the system resistance curve moves as shown by the dotted line 304. 'fr,! You can take it.

第1図ステップ103人では、冷却用ポンプの運転台数
を変更した場合のポンプ消費動力が算出される。第5図
は、冷却用ポンプ運転台数による消費動力の変化を示す
グラフであり、第3図のポンプ軸動力曲線306から作
成したもので冷却水量の変化に基づいて運転台数2台か
ら1台へ、あるいは1台から2台へ変更した場合のポン
プ消費動力を読み取ることができる。
In step 103 of FIG. 1, the pump power consumption when the number of operating cooling pumps is changed is calculated. Figure 5 is a graph showing the change in power consumption depending on the number of cooling pumps in operation, and was created from the pump shaft power curve 306 in Figure 3.The number of units in operation changes from 2 to 1 based on the change in the amount of cooling water. Alternatively, you can read the power consumption of the pump when changing from one to two pumps.

第1図ステップ103Bでは、冷却用ポンプの運転台数
を変更した場合の復水器真空度が、現時点で計測された
復水器用、入ロ冷却水温度、冷却水量、及び第1図ステ
ップ102で得られた台数変更後の冷却水量から算出さ
れる。
In step 103B of Fig. 1, the condenser vacuum degree when the number of operating cooling pumps is changed is determined based on the currently measured condenser cooling water temperature, inlet cooling water temperature, cooling water amount, and step 102 of Fig. 1. Calculated from the amount of cooling water obtained after changing the number of units.

ここで、ポンプ運転台数を1台から2台に変更した場合
を例として、復水器真空度の具体的な算出方法を下記に
示す。
Here, a specific method for calculating the degree of vacuum of the condenser will be shown below, taking as an example a case where the number of pumps in operation is changed from one to two.

まず、復水器で交換される熱1は、冷却水に放出されて
冷却水温度を上昇させるが、その関係は次式に表わされ
る。
First, heat 1 exchanged in the condenser is released into the cooling water and raises the temperature of the cooling water, and the relationship is expressed by the following equation.

Q=Gw−Cp・r(tz  tt)      ・−
(t)ここでQ :復水器交換熱量(kcat/h)G
w:冷却水量(m3/h) Cp:冷却水の定圧比熱(kcat/kgr )γ :
冷却水の比重量(kg /m3)次に、これらの熱量は
冷却管表面を通じて熱交換されることから次式が成立す
る。
Q=Gw-Cp・r(tz tt) ・-
(t) Here, Q: Condenser exchange heat amount (kcat/h)G
w: Cooling water amount (m3/h) Cp: Constant pressure specific heat of cooling water (kcat/kgr) γ:
Specific weight of cooling water (kg/m3) Next, since these amounts of heat are exchanged through the surface of the cooling pipe, the following equation holds true.

Q=に−8−Q、          ・・・(2)こ
こでk :熱貫流率(kcaj/m2h C)S :冷
却面積(m2) Q、、:対数平均温度差(C) t、:冷却水入口温度(C) tt:冷却水出口温度(C) さらに、上記の対数平均温度差Q、は復水器の’I!、
3合次式で与えられろ。
Q=to-8-Q, ...(2) where k: Heat transmission coefficient (kcaj/m2h C) S: Cooling area (m2) Q, ,: Logarithmic average temperature difference (C) t,: Cooling water Inlet temperature (C) tt: Cooling water outlet temperature (C) Furthermore, the above logarithmic average temperature difference Q is the 'I!' of the condenser. ,
It is given by the triadic formula.

ここで ta :復水器内の飽和蒸気温度(C)(1)
、 (2)、 (3)式より復水器の真空度は、次式で
与えられる蒸気温度に対する飽和圧力で算出されること
になる。
Here, ta: Saturated steam temperature in the condenser (C) (1)
, (2) and (3), the vacuum degree of the condenser is calculated by the saturation pressure with respect to the steam temperature given by the following equation.

よって、1台運転時の復水器交換熱量Qを(1)式から
求めて(4)式に代入すると共に(4)式のGwK台数
変更後の流量、即ち2台運転時の冷却水量を代入するこ
とで、2台に変更した場合の復水器真空度をほぼ正確に
得ることができる。
Therefore, the amount of heat exchanged by the condenser Q when operating one unit is calculated from equation (1) and substituted into equation (4), and the flow rate after changing the number of GwK units in equation (4), that is, the amount of cooling water when operating two units, is calculated as follows: By substituting, it is possible to almost accurately obtain the condenser vacuum degree when changing to two units.

尚、(4)式でCp、  γ、Sはいずれも定数、kは
一般に採用されている米国熱交換器協会(HeatEx
change 工n5titute)で規定されている
次の計算式よシ求める。
In equation (4), Cp, γ, and S are all constants, and k is the generally adopted American Heat Exchanger Association (HeatEx
Use the following calculation formula specified in ``change''.

k;φビφ2・φ3・CVv ここでφI:冷却水入ロ温度に対する補正係数φ2:冷
却管の清浄度で冷却管の汚れに対する係数 φ3;冷却管材質および肉厚に対する補正係数 C:冷却管外径によって決定される定 数 V :冷却水の管内平均流速 参考のため、冷却水量が一定条件下で復水器交換熱量、
冷却水入口温度が変化した場合の復水器真空度の変化を
示す復水器特性例(600MW貫流プラント)を第6図
に示す。
k; φ2・φ3・CVv where φI: correction coefficient for cooling water inlet temperature φ2: coefficient for cleanliness of cooling pipe and coefficient for contamination of cooling pipe φ3; correction coefficient for cooling pipe material and wall thickness C: cooling pipe Constant V determined by the outer diameter: Average flow rate of cooling water in the pipe For reference, the amount of heat exchanged in the condenser under the condition that the amount of cooling water is constant,
FIG. 6 shows an example of condenser characteristics (600 MW once-through plant) showing changes in condenser vacuum degree when cooling water inlet temperature changes.

(4ン式において、冷却水入口温度t1を定数として与
える方法もあるが、殆んどの発電プラントの冷却水取水
源は海水であり、季節は勿論1時間によっても温度がか
なり変動することから(地方によっても異なるが、夏季
の関東地方では1日に2〜3C変動する。)実温度を計
測することにより初めて正確な最適運転台数計算が可能
となる。
(There is a method in which the cooling water inlet temperature t1 is set as a constant in the 4-channel system, but the cooling water intake source for most power plants is seawater, and the temperature fluctuates considerably not only by the season but also by the hour.) (It varies depending on the region, but in the Kanto region during the summer, the temperature fluctuates by 2 to 3 C per day.) Only by measuring the actual temperature can an accurate calculation of the optimal number of vehicles be operated.

夏季の日冷動水最高温度のデータ例を参考までに第7図
に示す。これらのデータを総合判断すると第6図交換熱
量100%の点で冷却水温度が3C上昇すると真空度が
6.5 m Hg程下がる場合があることがわかる。(
出力変化として約0.3%の減少となる。) 第1図ステップ104では、ステップ103Bで算出さ
れた復水器真空度からタービン熱消費量の変化を求める
と共に出力の変化量全算出する。
For reference, an example of data on the maximum daily cooling water temperature in summer is shown in Figure 7. Judging from these data comprehensively, it can be seen that if the cooling water temperature increases by 3C at the point of 100% heat exchange in Figure 6, the degree of vacuum may decrease by about 6.5 m Hg. (
This is a decrease of approximately 0.3% as an output change. ) In step 104 of FIG. 1, a change in turbine heat consumption is determined from the degree of vacuum of the condenser calculated in step 103B, and the total amount of change in output is calculated.

第8図は、その復水器真空度の変化によるタービン熱消
費量を算出するグラフであり、出力の変化量は次式によ
り与えられる。
FIG. 8 is a graph for calculating the turbine heat consumption due to changes in the degree of vacuum of the condenser, and the amount of change in output is given by the following equation.

第1図ステップ105では、ステップ103人で得られ
た消費動力の変化と104で得られた出力の変化とを比
較し、台数変更の効果を判定する。
In step 105 in FIG. 1, the change in power consumption obtained in step 103 and the change in output obtained in step 104 are compared to determine the effect of changing the number of machines.

第1図ステップ106では、運転台数増操作か減操作か
を判断する。
At step 106 in FIG. 1, it is determined whether the operation is to increase or decrease the number of operating vehicles.

第1図ステップ107では、ステップ105の結果で台
数減操作を行った場合、台数減操作後の復水器量、入ロ
温度差が、規定値以上になることを防止する為、現時点
の温度から出、入口温度を(1)式より算出する。これ
により規定値を満足している場合のみ運転台数変更の出
力を許可することになる。
In step 107 of FIG. 1, when the number of units is reduced as a result of step 105, in order to prevent the condenser amount and inlet temperature difference after the number of units reduced operation from exceeding the specified value, Calculate the outlet and inlet temperatures using equation (1). This allows the output for changing the number of operating units to be output only if the specified value is satisfied.

第1回ステップ108では、ステップ105゜107の
結果より効果ありの場合運転台数変更を出力する。
In the first step 108, if the results of steps 105 and 107 are effective, a change in the number of operating vehicles is output.

上述の実施例によれば、熱効率上損失を生じることなく
復水器冷却用ポンプの運転台数を;1++御することが
でき、例えば常時2台運転するように設計製作された復
水器冷却用ポンプを、状況に応じて(例えば負荷率60
%以下で、その他の条件が許すような場合)2台中の1
台を停止することができ、プラント出力に換算して約0
.2%の節減が可能となる。例えば600MWクラスの
火力発電プラントで0.2にの節減ができれば、120
0KWの節減となり、その経済的効果は絶大である。
According to the embodiment described above, the number of operating condenser cooling pumps can be controlled by 1++ without causing a loss in thermal efficiency. For example, a condenser cooling pump designed and manufactured to operate two pumps at all times can pump depending on the situation (e.g. load factor 60
% or less and other conditions permit) 1 out of 2
The machine can be stopped, and the plant output is approximately 0.
.. A savings of 2% is possible. For example, if a 600MW class thermal power plant can save 0.2, then 120
This results in a savings of 0KW, and the economic effect is tremendous.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように1本発明の方法を適用すれば、季節
1時間等によシ復水器入ロ冷却水温度や冷却水量が変化
した場合、熱効率上損失を生じることなく経済的にプラ
ントを運用することができるという優れた実用的効果を
奏する。
As detailed above, if the method of the present invention is applied, even if the cooling water temperature or amount of cooling water entering the condenser changes for one hour in a season, etc., the plant can be economically operated without causing any loss in thermal efficiency. It has an excellent practical effect in that it can be operated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の制御方法の1実施例のフローチャート
、第2図は冷却水系の系統図、第3図は復水器冷却系運
転曲線図表、第4図は運転台数変更による冷却水量変化
を示す図表、第5図は運転台数変更による消費動力変化
を示す図表、第6図は復水器特性曲線図表、第7図は夏
季日冷動水最高温度のデータを示す図表、第8図はター
ビン排気圧力熱消費率修正曲線図表である。 201.202・・・復水器冷却用ポンプ、203・・
・復水器、204・・・復水器X空度、205・・・復
水器入口冷却水温度、206・・・復水器出口冷却水温
度。 207・・・復水器冷却水量。
Fig. 1 is a flowchart of one embodiment of the control method of the present invention, Fig. 2 is a system diagram of the cooling water system, Fig. 3 is a condenser cooling system operating curve diagram, and Fig. 4 is a change in the amount of cooling water due to a change in the number of operating units. Figure 5 is a diagram showing power consumption changes due to changes in the number of units in operation, Figure 6 is a condenser characteristic curve diagram, Figure 7 is a diagram showing data on the maximum daily chilled water temperature in summer, Figure 8 is a turbine exhaust pressure heat dissipation rate correction curve chart. 201.202... Condenser cooling pump, 203...
- Condenser, 204...Condenser X emptyness, 205...Condenser inlet cooling water temperature, 206...Condenser outlet cooling water temperature. 207... Condenser cooling water amount.

Claims (1)

【特許請求の範囲】 1、複数台の復水器冷却用ポンプを備えた発電プラント
の稼働に際し、該復水器冷却用ポンプの運転台数を制御
する方法において、復水器の真空度を実測すると共に、
復水器冷却用ポンプの運転台数を変更した場合の真空度
を計算によつて算出して真空度の変化を推定し、上記の
真空度変化に伴う熱消費率の変化と、復水器冷却用ポン
プの運転台数変化に伴うポンプ消費動力の変化による熱
消費率の変化と、上記双方の熱消費率変化を比較してポ
ンプ運転台数の最適値を判定することを特徴とする復水
器冷却用ポンプの運転台数制御方法。 2、前記真空度の推定は、復水器入口冷却水温度を実測
し、その実測値を用いて計算することを特徴とする特許
請求の範囲第1項に記載の復水器冷却用ポンプの運転台
数制御方法。 3、前記真空度の推定は、復水器冷却水量を実測し、そ
の実測値を用いて計算することを特徴とする特許請求の
範囲第1項に記載の復水器冷却用ポンプの運転台数制御
方法。 4、前記運転台数の最適値の判定が運転台数の減少とな
る場合は、運転台数減少後における復水器出、入口の冷
却水温度差が規定値以下であることを確認して判定する
ものであり、かつ、上記の冷却水温度差の確認は、冷却
水温度の実測値を用いて行うことを特徴とする特許請求
の範囲第1項に記載の復水器冷却用ポンプの運転台数制
御方法。
[Claims] 1. In a method for controlling the number of operating condenser cooling pumps when operating a power generation plant equipped with a plurality of condenser cooling pumps, the degree of vacuum of the condenser is actually measured. At the same time,
The change in the degree of vacuum is estimated by calculating the degree of vacuum when the number of operating condenser cooling pumps is changed, and the change in the heat consumption rate due to the change in the degree of vacuum described above and the change in the condenser cooling A condenser cooling system characterized in that the optimum value for the number of pumps in operation is determined by comparing the change in heat consumption rate due to a change in pump power consumption due to a change in the number of pumps in operation, and the changes in both heat consumption rates. How to control the number of operating pumps. 2. The condenser cooling pump according to claim 1, wherein the degree of vacuum is estimated by actually measuring the temperature of the condenser inlet cooling water and calculating using the measured value. How to control the number of vehicles in operation. 3. The number of operating condenser cooling pumps according to claim 1, wherein the degree of vacuum is estimated by actually measuring the amount of condenser cooling water and calculating using the measured value. Control method. 4. If the above-mentioned determination of the optimum value for the number of operating units results in a decrease in the number of operating units, the judgment shall be made by confirming that the difference in cooling water temperature at the condenser outlet and inlet after the reduction in the number of operating units is below the specified value. Control of the number of operating condenser cooling pumps according to claim 1, wherein the above-mentioned cooling water temperature difference is checked using an actual measured value of the cooling water temperature. Method.
JP24062285A 1985-10-29 1985-10-29 Control method for operating number of condenser cooling pumps Expired - Lifetime JPH0631688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24062285A JPH0631688B2 (en) 1985-10-29 1985-10-29 Control method for operating number of condenser cooling pumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24062285A JPH0631688B2 (en) 1985-10-29 1985-10-29 Control method for operating number of condenser cooling pumps

Publications (2)

Publication Number Publication Date
JPS62102085A true JPS62102085A (en) 1987-05-12
JPH0631688B2 JPH0631688B2 (en) 1994-04-27

Family

ID=17062231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24062285A Expired - Lifetime JPH0631688B2 (en) 1985-10-29 1985-10-29 Control method for operating number of condenser cooling pumps

Country Status (1)

Country Link
JP (1) JPH0631688B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281681A (en) * 2008-05-23 2009-12-03 Hitachi Ltd Steam condenser and power generation facility
JP2013015276A (en) * 2011-07-05 2013-01-24 Toshiba Corp Device and method for controlling circulating water pump
JP2013087709A (en) * 2011-10-19 2013-05-13 Hitachi Ltd Condenser cooling water system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281681A (en) * 2008-05-23 2009-12-03 Hitachi Ltd Steam condenser and power generation facility
JP2013015276A (en) * 2011-07-05 2013-01-24 Toshiba Corp Device and method for controlling circulating water pump
JP2013087709A (en) * 2011-10-19 2013-05-13 Hitachi Ltd Condenser cooling water system

Also Published As

Publication number Publication date
JPH0631688B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
CN110222358B (en) Numerical calculation method for correcting heat rate of steam turbine under different loads
CN110925037B (en) Method for evaluating actual peak regulation capacity of heating heat supply unit by considering operation safety margin
CN109654680B (en) Robustness-enhanced air conditioner chilled water heat exchanger primary side water pump control method
KR20050036800A (en) Method and apparatus for controlling steam turbine inlet flow to limit shell and rotor thermal stress
CN107676920A (en) A kind of water chilling unit control method and system
JPS62102085A (en) Control of number of operating set of pump for cooling condenser
CN106017122A (en) Automatic adjusting system and method for water inflow flow speed of condenser cooling pipes
CN110107489B (en) Control method, system and unit for condensate water pump
JPH05222906A (en) Controller for power plant utilizing exhaust heat
CN109307316A (en) Energy-saving control method and heat exchange station for frequency conversion pump group
CN113513746B (en) Method for determining optimized operation mode of closed circulating water system of thermal power plant
JPS5818098A (en) Method of controlling operation of cooling tower
CN112325508A (en) Heat exchange flow adjusting system and heat medium temperature matching adjusting method
JPH08261665A (en) Operating method for cooling water pump of condenser
JP3603145B2 (en) Operating device for seawater pump
JP2653798B2 (en) Boiler and turbine plant control equipment
CN116772471B (en) Optimal control method for cooling water system of water chilling unit and cooling water system
JP7095178B2 (en) Power generation equipment
CN117332957A (en) Variable pump energy-saving effect calculation method
CN117008672B (en) Test system for regulating steam temperature stability of steam generator outlet
JPS58206812A (en) Device for adjusting discharged gas of steam turbine with vacuum
CN113639204B (en) Constant-temperature air supply PID control method for LNG fuel ship
JP2557930B2 (en) Circulating water pump blade opening control device for steam turbine exhaust cooling
SU964406A1 (en) Method of controlling power unit condensation apparatus
JPS6239658B2 (en)