JPS6210076A - Method of recovering ethylene oxide - Google Patents

Method of recovering ethylene oxide

Info

Publication number
JPS6210076A
JPS6210076A JP60145850A JP14585085A JPS6210076A JP S6210076 A JPS6210076 A JP S6210076A JP 60145850 A JP60145850 A JP 60145850A JP 14585085 A JP14585085 A JP 14585085A JP S6210076 A JPS6210076 A JP S6210076A
Authority
JP
Japan
Prior art keywords
ethylene oxide
liquid
tower
absorption
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60145850A
Other languages
Japanese (ja)
Inventor
Yukihiko Kakimoto
行彦 柿本
Nobuaki Kajimoto
梶本 宣明
Isamu Kiguchi
木口 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP60145850A priority Critical patent/JPS6210076A/en
Priority to CA000512407A priority patent/CA1284334C/en
Priority to AU59269/86A priority patent/AU590888B2/en
Priority to DE8686108722T priority patent/DE3688444T2/en
Priority to EP86108722A priority patent/EP0207448B1/en
Priority to KR1019860005200A priority patent/KR920003199B1/en
Priority to CN86104909A priority patent/CN1019270B/en
Publication of JPS6210076A publication Critical patent/JPS6210076A/en
Priority to US07/127,488 priority patent/US4875909A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Epoxy Compounds (AREA)

Abstract

PURPOSE:To use effectively energy and to recover EO, by subjecting the bottom solution of EO desorption tower to flash treatment, compressing a gaseous phase part, using the part as a heat source for the EO desorption tower, subjecting a liquid phase part to heat exchange with the bottom solution of an EO absorption column and generating steam by the use of a heat pump. CONSTITUTION:The bottom solution of the ethylene oxide(EO) absorption tower 2 is heated 5, an inert gas is separated 7, fed to the top part of the EO desorption tower 10 and EO is stripped and recovered 11. Part of the bottom solution containing substantially no EO is fed from the bottom of the desorption tower 10 to the flash tank 41 to generate low-pressure steam, the steam is compressed 43 to high pressure, the pressure at the bottom of the desorption tower 10, introduced to the gaseous phase part at the bottom of the desorption tower, used as part of its heat source, the rest of the solution of the tank 41 is fed to the heat exchanger 5, subjected to heat exchange with the bottom solution of the EO absorption tower, sent to the refrigerant evaporator 51, cooled 18 and used as the absorption solution of the absorption tower 2. The refrigerant evaporated in the evaporator 51 is compressed, sent to the refrigerant condenser 55 and fluid in the outside is provided with heat and steam is generated 60.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エチレンを銀触媒の存在下、分子状酸素含有
ガスにより接触気相酸化して得られるエチレンオキシド
を回収する方法に関するものである。さらに詳しくは、
エチレンを銀触媒の存在下、分子状酸素含有ガスにより
接触気相酸化して得られるエチレンオキシドを含む反応
生成ガスをエチレンオキシド吸収塔へ導き吸収液に吸収
させてエチレンオキシドを回収し、ついでエチレンオキ
シドを含む吸収液をエチレンオキシド放散塔へ送り加熱
によりエチレンオキシド放散塔頂部よりエチレンオキシ
ドを放散しエチレンオキシド放rl 塔底部より抜ぎ出
した液の一部はエチレンオキシド吸収塔へ導き吸収液と
して循環使用する工程においてエチレンオキシド11i
敗塔の加熱エネルギーを低減させ、さらにエチレンオキ
シド放散塔底部より抜ぎ出した液の熱エネルギーを回収
するエチレンオキシドの回収方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for recovering ethylene oxide obtained by catalytic gas phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst. For more details,
The reaction product gas containing ethylene oxide obtained by catalytic gas-phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst is guided to an ethylene oxide absorption tower and absorbed into an absorption liquid to recover ethylene oxide, and then the ethylene oxide-containing absorption tower The liquid is sent to an ethylene oxide stripping tower and heated to diffuse ethylene oxide from the top of the ethylene oxide stripping tower to release ethylene oxide.A part of the liquid extracted from the bottom of the tower is led to an ethylene oxide absorption tower and recycled as an absorption liquid.
This invention relates to an ethylene oxide recovery method that reduces the heating energy of a collapsed tower and further recovers the thermal energy of the liquid extracted from the bottom of the ethylene oxide stripping tower.

(従来の技術〉 エチレンオキシドを回収する工程において、反応生成ガ
スは水を主とする吸収液に吸収させエチレンオキシド水
溶液として回収し、この水溶液からエチレンオキシドを
放散せしめてエチレンオキシドを得ている。エチレンオ
キシドは一般につぎのようにして回収される。エチレン
と分子状酸素含有ガスとを銀触媒上で接触気相酸化して
生成するエチレンオキシドを含む反応生成ガスをエチレ
ンオキシド吸収塔へ導ひき水を主とする吸収液と向流接
触させエチレンオキシド水溶液として回収し、ついでエ
チレンオキシド放散塔へ送りエチレンオキシド放散塔底
部を加熱用蒸気で加熱することによってエチレンオキシ
ドを水溶液から放散させ、エチレンオキシド放散塔底部
より抜き出される実質的にエチレンオキシドを含まない
水溶液は吸収液として循環使用し、エチレンオキシド放
散塔頂部より放散されるエチレンオキシド、水、二酸化
炭素、不活性ガス(窒素、アルゴン、メタン、エタン、
)の他ホルムアルデヒド等の低沸点不純物およびアセト
アルデヒド、酢酸等の高沸点不純物を含む放散物を脱水
工程、軽質分分離工程および小質分分離工程の各々を経
て精製しエチレンオキシドを’!1造することができる
(Prior art) In the process of recovering ethylene oxide, the reaction product gas is absorbed into an absorption liquid mainly composed of water and recovered as an ethylene oxide aqueous solution, and the ethylene oxide is diffused from this aqueous solution to obtain ethylene oxide.Ethylene oxide is generally The reaction product gas containing ethylene oxide produced by catalytic gas-phase oxidation of ethylene and molecular oxygen-containing gas over a silver catalyst is led to an ethylene oxide absorption tower, and an absorption liquid mainly composed of water is recovered. The solution is recovered as an ethylene oxide aqueous solution through countercurrent contact, and then sent to an ethylene oxide stripping tower, and the bottom of the ethylene oxide stripping tower is heated with heating steam to diffuse ethylene oxide from the aqueous solution, and the solution is extracted from the bottom of the ethylene oxide stripping tower and substantially contains ethylene oxide. The remaining aqueous solution is recycled as an absorption liquid, and the ethylene oxide, water, carbon dioxide, and inert gases (nitrogen, argon, methane, ethane,
) and other low-boiling point impurities such as formaldehyde, and high-boiling point impurities such as acetaldehyde and acetic acid, are purified through a dehydration process, a light fraction separation process, and a small fraction separation process to produce ethylene oxide'! You can make one.

(発明が解決しようとする問題点) しかしながら、このようなエチレンオキシドの回収方法
はエチレンオキシド放散塔における加熱蒸気量を多量に
消費する問題およびエチレンオキシド放散塔より扱き出
された液が有する熱エネルギーの回収が十分でなく大量
の熱量が系外に廃棄されるという問題があった。従来の
方法は、100〜130℃のエチレンオキシド放散塔底
部液をエチレンオキシド吸収塔底部液と熱交換させ、熱
量の回収を行った後、冷却してエチレンオキシド吸収塔
の吸収液としていた。本発明はこれらのエチレンオキシ
ド回収工程における省エネルギーについて研究した結果
、エチレンオキシド放散塔底液のエネルギーの有効利用
に着眼し本発明を完成した。
(Problems to be Solved by the Invention) However, such a method for recovering ethylene oxide has the problem of consuming a large amount of heating steam in the ethylene oxide stripping tower, and the recovery of the thermal energy of the liquid discharged from the ethylene oxide stripping tower. There was a problem that a large amount of heat was not sufficient and was discarded outside the system. In the conventional method, the bottom liquid of the ethylene oxide stripping tower at 100 to 130°C is heat exchanged with the bottom liquid of the ethylene oxide absorption tower, and after recovering the amount of heat, it is cooled and used as the absorption liquid of the ethylene oxide absorption tower. As a result of research into energy conservation in these ethylene oxide recovery processes, the present invention was completed by focusing on the effective use of energy in the ethylene oxide stripping column bottom liquid.

(問題点を解決するための手段) エチレンを銀触媒の存在下、分子状酸素含有ガスと接触
気相酸化して生成したエチレンオキシドを含有する反応
生成ガスをエチレンオキシド吸収塔へ導入し吸収液と向
流接触させ、エチレンオキシド吸収塔頂部よりのガスの
一部はエチレン酸化反応工程へ循環し、エチレンオキシ
ドを含むエチレンオキシド吸収塔底液はエチレンオキシ
ド放散塔へ供給し、エチレンオキシド放散塔頂部から工
′チルンオキシドを放散せしめ、エチレンオキシド放散
塔底部より抜き出した液はエチレンオキシド吸収塔へ導
き吸収液として循環使用し、残部はその液に含まれるエ
チレングリコールを濃縮するため副生エチレングリコー
ル濃縮塔へ送る工程において、エチレンオキシド放散塔
底部より抜き出した液をフラッシュ処理し、気相部と液
相部に分離し、気相部は圧縮してエチレンオキシド放散
塔へ導入し、液相部は熱交換器にてエチレンオキシド吸
収塔底液と熱交換した後、ヒートポンプを用いて吸収液
の持つ熱エネルギーを回収し水蒸気を発生させ、ヒート
ポンプにより冷却された吸収液をさらに冷1413にて
冷却して後、エチレンオキシド吸収塔の吸収液とするこ
とを特徴とするエチレンオキシドの回収方法に関するも
のである。 本発明においてエチレンオキシド吸収塔へ
供給される吸収液の温度は5〜40℃、好ましくは10
〜35℃であり、吸収液の組成はPHが5〜12、好ま
しくは6〜11、エチレングリコール濃度が1〜40重
量%、好ましくは5〜30重量%、消泡剤濃度が0.l
ppm以上、好ましくは1〜1ooppm、残り水の範
囲に制御される。吸収液中のエチレングリコール濃度を
一定に保持するためエチレンオキシド吸収塔とエチレン
オキシド放散塔とを循環する吸収液の一部をエチレンオ
キシド放散塔底部から抜き出し副生エチレングリコール
濃縮塔へ送り、必要により新鮮な水が導入され制御され
る。PHの調節は、たとえばカリウム、ナトリウムのよ
うなアルカリ金属の水酸化物や炭酸塩等の吸収液に溶解
する化合物を添加することにより行うのが好ましく、添
加剤は具体的には水酸化カリウムまたは水酸化ナトリウ
ムが好ましい。
(Means for solving the problem) A reaction product gas containing ethylene oxide produced by catalytic gas-phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst is introduced into an ethylene oxide absorption tower and exchanged with the absorption liquid. A part of the gas from the top of the ethylene oxide absorption tower is circulated to the ethylene oxidation reaction process, and the bottom liquid of the ethylene oxide absorption tower containing ethylene oxide is supplied to the ethylene oxide stripping tower, where ethylene oxide is diffused from the top of the ethylene oxide stripping tower. The liquid extracted from the bottom of the ethylene oxide stripping tower is sent to the ethylene oxide absorption tower and recycled as an absorption liquid, and the remainder is sent to the by-product ethylene glycol concentrating tower to concentrate the ethylene glycol contained in the liquid. The liquid extracted is flash-treated and separated into a gas phase and a liquid phase. The gas phase is compressed and introduced into an ethylene oxide stripping tower, and the liquid phase is exchanged with the ethylene oxide absorption tower bottom liquid and heat in a heat exchanger. After the exchange, a heat pump is used to recover the thermal energy of the absorption liquid to generate water vapor, and the absorption liquid cooled by the heat pump is further cooled in the cold 1413, and then used as the absorption liquid for the ethylene oxide absorption tower. The present invention relates to a characteristic method for recovering ethylene oxide. In the present invention, the temperature of the absorption liquid supplied to the ethylene oxide absorption tower is 5 to 40°C, preferably 10°C.
-35°C, and the composition of the absorption liquid is as follows: pH is 5-12, preferably 6-11, ethylene glycol concentration is 1-40% by weight, preferably 5-30% by weight, and antifoaming agent concentration is 0. l
The amount of residual water is controlled within the range of ppm or more, preferably 1 to 1 ooppm. In order to keep the ethylene glycol concentration in the absorption liquid constant, a part of the absorption liquid that circulates between the ethylene oxide absorption tower and the ethylene oxide stripping tower is extracted from the bottom of the ethylene oxide stripping tower and sent to the by-product ethylene glycol concentration tower. will be introduced and controlled. It is preferable to adjust the pH by adding a compound that dissolves in the absorption liquid, such as a hydroxide or carbonate of an alkali metal such as potassium or sodium. Specifically, the additive is potassium hydroxide or Sodium hydroxide is preferred.

消泡剤は、エチレンオキシド、副生エチレングリコール
等に不活性であり、吸収液の消泡効果を有するものであ
ればいかなる消泡剤でも使用でき、代表的な例としては
水溶性シリコンエマルションが吸収液への分散性、希釈
安定性、熱安定性が優れているので効果的である。
Any antifoaming agent can be used as long as it is inert to ethylene oxide, by-product ethylene glycol, etc. and has an antifoaming effect on the absorption liquid.A typical example is a water-soluble silicone emulsion. It is effective because it has excellent dispersibility in liquids, dilution stability, and thermal stability.

エチレンオキシド吸収塔の操作条件は、反応生成ガス中
のエチレンオキシド濃度が0.5〜5容量%、好ましく
は1.0〜4容ω%であり、エチレンオキシド吸収塔の
操作圧は2〜40 K O/ tyiG、好ましくは1
0〜30 K (J / cd G ”Cある。
The operating conditions of the ethylene oxide absorption tower are such that the ethylene oxide concentration in the reaction product gas is 0.5 to 5% by volume, preferably 1.0 to 4% by volume, and the operating pressure of the ethylene oxide absorption tower is 2 to 40 KO/%. tyiG, preferably 1
0 to 30 K (J/cd G"C).

エチレンオキシド放散塔の操作条件は、エチレンオキシ
ド放散塔頂圧力0〜1kg/cIIiG、好ましくは0
.3〜0.6kq/cIIiG1工チレンオキシド放散
塔頂温度85〜110℃、エチレンオキシド放散塔底温
度100〜130℃、エチレンオキシド放散塔底エチレ
ンオキシド濃度は1101)p以下、好ましくは0.5
ppm以下である。
The operating conditions of the ethylene oxide stripping tower are such that the top pressure of the ethylene oxide stripping tower is 0 to 1 kg/cIIiG, preferably 0.
.. 3-0.6 kq/cIIiG1 ethylene oxide stripping tower top temperature 85-110°C, ethylene oxide stripping tower bottom temperature 100-130°C, ethylene oxide stripping tower bottom ethylene oxide concentration is 1101) p or less, preferably 0.5
ppm or less.

本発明の特徴は、エチレンを銀触媒の存在下、分子状酸
素含有ガスと接触気相酸化して生成したエチレンオキシ
ドを含有する反応生成ガスを・エチレンオキシド吸収塔
へ導入し吸収液と向流接触させ、エチレンオキシド吸収
塔頂部よりのガスの一部はエチレン酸化反応工程へ循環
し、エチレンオキシドを含むエチレンオキシド吸収塔底
液はエチレンオキシド放散塔へ供給し、エチレンオキシ
ド放散塔頂部からエチレンオキシドを放散せしめ、エチ
レンオキシド放散塔底部より抜き出した液は熱交換器に
てエチレンオキシド吸収塔底液と熱交換した後、冷却器
にて冷7JJ L、エチレンオキシド吸収塔へ導き吸収
液として循環使用し、残部はその液に含まれるエチレン
グリコールを濃縮するため副生エチレングリコール濃縮
塔へ送る工程において、エチレンオキシド放散塔底部よ
り抜き出した液が有する熱エネルギーを回収し、その回
収熱エネルギーの有効利用を計ることである。
A feature of the present invention is that the reaction product gas containing ethylene oxide produced by contact vapor phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst is introduced into an ethylene oxide absorption tower and brought into countercurrent contact with an absorption liquid. A part of the gas from the top of the ethylene oxide absorption tower is circulated to the ethylene oxidation reaction process, and the ethylene oxide absorption tower bottom liquid containing ethylene oxide is supplied to the ethylene oxide stripping tower to diffuse ethylene oxide from the top of the ethylene oxide stripping tower. The liquid extracted from the ethylene oxide absorption tower undergoes heat exchange with the bottom liquid of the ethylene oxide absorption tower in a heat exchanger, and then is cooled in a cooler and sent to the ethylene oxide absorption tower for circulation and use as an absorption liquid.The remainder is used as the ethylene glycol contained in the liquid. In the process of sending the by-product ethylene glycol to the concentrating column for concentrating it, the thermal energy possessed by the liquid extracted from the bottom of the ethylene oxide stripping column is recovered, and the recovered thermal energy is used effectively.

その手段として、エチレンオキシド放散塔底部より出る
液を常圧又はわずかに減圧で操作されるフラッシュタン
クへ導入し、低圧水蒸気を発生させる。この水蒸気の発
生は吸熱的であり溶液の温度の低下をもたらす効果があ
る。発生した水蒸気は、電気駆動の遠心式圧縮機または
スクリュウ式圧縮機あるいは往復動式圧縮機により昇圧
されエチレンオキシド放散塔底部の気相部へ供給されエ
チレンオキシド放散塔の加熱源の一部となり、エチレン
オキシド放散塔の加熱源の水蒸気の削減を持たらす。さ
らに低圧水蒸気を発生した残部の液はエチレンオキシド
吸収塔底部からの液と熱交換器により熱交換され熱回収
される。ついで熱交換器を出たエチレンオキシド放散塔
底液は、まだ利用可能な熱エネルギーを保有しているた
め、これをヒートポンプにより回収しエチレンオキシド
精製工程、特にエチレンオキシド精留塔の加熱源として
用いることによりエチレンオキシド精留塔の加熱蒸気の
削減を計ることができる。
As a means for this purpose, the liquid discharged from the bottom of the ethylene oxide stripping tower is introduced into a flash tank operated at normal pressure or slightly reduced pressure to generate low-pressure steam. This generation of water vapor is endothermic and has the effect of lowering the temperature of the solution. The generated water vapor is pressurized by an electrically driven centrifugal compressor, screw compressor, or reciprocating compressor and is supplied to the gas phase at the bottom of the ethylene oxide stripping tower, where it becomes part of the heating source of the ethylene oxide stripping tower and is used to dissipate ethylene oxide. To have a reduction in water vapor in the heating source of the tower. Furthermore, the remaining liquid that has generated low-pressure steam is heat exchanged with the liquid from the bottom of the ethylene oxide absorption tower in a heat exchanger, and the heat is recovered. Then, the ethylene oxide dispersion tower bottom liquid that exits the heat exchanger still has usable thermal energy, so it is recovered by a heat pump and used as a heating source in the ethylene oxide purification process, especially in the ethylene oxide rectification column. It is possible to reduce the amount of heating steam used in the rectification column.

本発明に用いるヒートポンプの作動流体としての冷媒は
、ヒートポンプのプロセスで蒸発陵線を繰り返して循環
使用されるためその選択に当っては熱力学的性質のほか
に熱的及び化学的に安定であること及び取り扱い上から
は臭気、毒性、および爆発性を有しないことが要求され
る。本発明で使用できる冷媒としてはR−11、R−1
2、R−22、R−113及びR−114等のフッ化炭
化水素及びプロパン、ペンタン等の炭化水素類等が挙げ
られるが、ヒートポンプ作動温度条件を考慮するとR−
12、R−114がもっとも適している。
The refrigerant used as the working fluid of the heat pump used in the present invention is used in circulation by repeating the evaporation line in the heat pump process, so in addition to its thermodynamic properties, the refrigerant is thermally and chemically stable. In terms of safety and handling, it is required that the material be odorless, non-toxic, and non-explosive. Refrigerants that can be used in the present invention include R-11 and R-1.
2, fluorinated hydrocarbons such as R-22, R-113, and R-114, and hydrocarbons such as propane and pentane, but considering the heat pump operating temperature conditions, R-
12, R-114 is the most suitable.

本発明のヒートポンプの操作条件としてはエチレンオキ
シド放散塔底部から出てエチレンオキシド吸収塔底液と
熱交換器により熱回収されたエチレンオキシドを実質的
に含まないエチレンオキシド放散塔底液が50〜60℃
の温度で冷媒の蒸発器へ入り冷媒を蒸発させ、その結果
エチレンオキシド放散塔底液の温度が5〜20℃低下し
、冷媒蒸発器を出た後、冷却されエチレンオキシド吸収
液としてエチレンオキシド吸収塔に導入される。
The operating conditions for the heat pump of the present invention are such that the ethylene oxide stripping column bottom liquid, which comes out from the bottom of the ethylene oxide stripping column and which does not substantially contain ethylene oxide and whose heat is recovered by the ethylene oxide absorption column bottom liquid and the heat exchanger, is 50 to 60°C.
The refrigerant enters the refrigerant evaporator at a temperature of be done.

エチレンオキシド放散塔底液により蒸発器で蒸発した冷
媒は遠心式又はスクリュウ式又は往復動式圧縮機により
冷媒の飽和温度が80〜100℃を有する圧力に迄圧縮
される。昇圧された冷媒は下記の2つの方法により熱を
外部に与え陵線してポンプにより冷媒蒸発器に送られ循
環使用される。
The refrigerant evaporated in the evaporator by the ethylene oxide stripping tower bottom liquid is compressed by a centrifugal, screw, or reciprocating compressor to a pressure at which the saturation temperature of the refrigerant is 80 to 100°C. The pressurized refrigerant is given heat to the outside by the following two methods, and is then sent to the refrigerant evaporator by a pump and used for circulation.

(1)伯の精留塔例えばエチレンオキシド精留塔(塔底
温度50〜70℃)のりボイラーへ冷媒の蒸気を直接送
り凝縮させその凝縮熱を精留塔底液へ与える。
(1) A refrigerant vapor is directly sent to a boiler, such as an ethylene oxide rectification tower (bottom temperature: 50 to 70°C), to condense it and give the heat of condensation to the bottom liquid of the rectification tower.

■ 冷媒陵線器へ冷媒蒸気を送り、冷lI!凝縮器内の
流体例えば水に凝縮潜熱を与え冷媒は凝縮する。
■ Send refrigerant vapor to the refrigerant liner to cool it! The refrigerant is condensed by imparting latent heat of condensation to the fluid in the condenser, such as water.

この冷媒により熱量を与えられた流体、例えば水は冷媒
の温度より5〜10℃低い温度に迄昇温されフラッシュ
により低圧蒸気を発生させその蒸気を利用することがで
きる。
A fluid, for example water, which has been given heat by this refrigerant, is heated to a temperature 5 to 10 degrees Celsius lower than the temperature of the refrigerant, and low-pressure steam is generated by flashing, which can be used.

一方、エチレンオキシド吸収塔底液は低圧水蒸気を発生
した残部の液と熱交換された後、フラッシュタンクにて
軽質分ガスを分離した後、エチレンオキシド放散塔In
部へ供給されてエチレンオキシドは放散される。本発明
においてエチレンオキシド放散塔より放散されるものは
、大部分がエチレンオキシドおよび水、受部分が二酸化
炭素および微量の酸素、エチレン、不活性ガス(窒素、
アルゴン、メタン、エタン)、ホルムアルデヒド等の低
沸点不純物、アセトアルデヒドおよび酢酸等の高沸点不
純物からなる放散物である。
On the other hand, the ethylene oxide absorption tower bottom liquid undergoes heat exchange with the remaining liquid that generated low-pressure steam, and after separating light gas in a flash tank, the ethylene oxide stripping tower In
The ethylene oxide is supplied to the reactor and dissipated. In the present invention, what is emitted from the ethylene oxide stripping tower is mostly ethylene oxide and water, and the receiving portion is carbon dioxide and trace amounts of oxygen, ethylene, and inert gases (nitrogen,
It is an emissive product consisting of low-boiling point impurities such as argon, methane, ethane) and formaldehyde, and high-boiling point impurities such as acetaldehyde and acetic acid.

本発明をさらに詳しく述べるために図−1に基づいて説
明する。
In order to describe the present invention in more detail, the present invention will be explained based on FIG.

図−1においてエチレンを銀触媒の存在下、分子状酸素
含有ガスにより接触気相酸化して生成するエチレンオキ
シドを含む反応生成ガスを導管(1)を通して、充填塔
あるいは棚段塔形式のエチレンオキシド吸収塔(2)の
下部へ供給し、導@(24)よりエチレンオキシド吸収
塔(2)の上部へ、温度40℃以下、pH=6以上、エ
チレングリコール濃度−1〜20重量%、消泡剤(水溶
性シリコンエマルジョン)alli=1〜50ppmお
よび残部は水から成る吸収液を導入し、反応生成ガスと
向流接触させ反応生成ガス中のエチレンオキシドを吸収
液に吸収させる。ここで反応生成ガス中の99重間%以
上のエチレンオキシドが回収される。エチレンオキシド
吸収塔(2)の塔頂より吸収しなかったエチレン、酸素
、二酸化炭素、不活性ガス(窒素、アルゴン、メタン、
エタン)、アルデヒド類、酸性物質等のガスは導管(3
)を通して炭酸ガス吸収工程および/または酸化反応工
程へ循環される。
In Figure 1, the reaction product gas containing ethylene oxide produced by catalytic gas phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst is passed through a conduit (1) to an ethylene oxide absorption tower in the form of a packed column or tray column. (2), and from (24) to the upper part of the ethylene oxide absorption tower (2). An absorbing liquid consisting of alli = 1 to 50 ppm and the balance being water is introduced and brought into countercurrent contact with the reaction product gas to absorb ethylene oxide in the reaction product gas into the absorbing liquid. Here, 99% by weight or more of ethylene oxide in the reaction product gas is recovered. Ethylene, oxygen, carbon dioxide, and inert gases (nitrogen, argon, methane,
Gases such as ethane), aldehydes, and acidic substances are transported through the conduit (3
) to the carbon dioxide absorption step and/or oxidation reaction step.

エチレンオキシド吸収工程においてエチレンオキシドの
他、エチレン、酸素、二酸化炭素、不活性ガス(窒素、
アルゴン、メタン、エタン、)ならびにエチレン酸化反
応工程で生成したホルムアルデヒド等の低沸点不純物、
アセトアルデヒド、酢酸等の高沸点不純物もその実質量
が同時に吸収される。
In the ethylene oxide absorption process, in addition to ethylene oxide, ethylene, oxygen, carbon dioxide, and inert gases (nitrogen,
low-boiling impurities such as argon, methane, ethane) and formaldehyde generated in the ethylene oxidation reaction process;
A substantial amount of high boiling point impurities such as acetaldehyde and acetic acid are also absorbed at the same time.

エチレンオキシド吸収塔(2)の塔底液を導管(4)、
熱交換器(5)へ送りエチレンオキシド放散塔底液と熱
交換し温度70〜110℃に高め、導管(6)により、
気液分離タンク(7)へ送り、一部エチレンオキシド、
水を含む不活性ガスの軽質分ガスが導管〈8)により分
離される。軽質分ガスをフラッシュした残部の吸収液を
導管(9)を通して圧力0.1〜1.0KO/rmG、
温度85〜11.0℃のエチレンオキシド放散塔(10
)の上部へ供給し、エチレンオキシド放散塔(10)の
加熱器(12)へ導管(13)を通して水蒸気またはダ
ウサム(米国ダウ社熱媒体商品)等の加熱媒体を供給し
て、または直接エチレンオキシド放散塔の底部に水蒸気
を導入して加熱することによりエチレンオキシドは放散
される。エチレンオキシド放散塔(10)の底部よりエ
チレンオキシドを実質的に含まない温度100〜130
℃のエチレンオキシド放散塔底液の一部は導管(14)
および導管(16)を通してフラッシュタンク(41)
へ供給され、常圧あるいは若干減圧の圧力逃圧力が下げ
られ低圧蒸気を発生させ、溶液の温度の低下をもたらす
。フラッシュタンク(41)で発生した低圧蒸気は導管
(42)を通して圧縮機(43)に送られエチレンオキ
シド放散塔(10)の塔底圧力よりわずかに高い圧力迄
圧縮され導管(44〉によりエチレンオキシド吸収塔敗
塔(10)底部の気相部に送入される。フラッシュタン
ク(41)でフラッシュした残部の液は導管(45)を
通して熱交換器(5)に導入しエチレンオキシド吸収塔
底液と熱交換される。熱交換器(5)を出た吸収液はヒ
ートポンプの冷媒蒸発器(51)を経た後、冷却器(1
8)を通して、導管(21)より水、導管(22)より
水酸化カリウム水溶液および導管(23)より消泡剤(
水溶性シリコンエマルション)を添加し、導管(24)
を通してエチレンオキシド吸収塔(2)に導入すること
ができる。
The bottom liquid of the ethylene oxide absorption tower (2) is transferred to a conduit (4),
It is sent to a heat exchanger (5) and exchanged with the bottom liquid for ethylene oxide dispersion to raise the temperature to 70 to 110°C, and through a conduit (6),
Send to gas-liquid separation tank (7) and partially remove ethylene oxide,
Light fractions of the inert gas containing water are separated by conduit <8). The remaining absorption liquid after flushing the light gas is passed through the conduit (9) at a pressure of 0.1 to 1.0 KO/rmG.
Ethylene oxide stripping tower (10
), and supply a heating medium such as steam or Dowsum (heat medium product of Dow Co., USA) through the conduit (13) to the heater (12) of the ethylene oxide stripping tower (10), or directly into the ethylene oxide stripping tower. Ethylene oxide is dissipated by introducing water vapor into the bottom of the tank and heating it. At a temperature of 100 to 130, the temperature is substantially free of ethylene oxide from the bottom of the ethylene oxide stripping tower (10).
A portion of the ethylene oxide stripping tower bottom liquid at ℃ is transferred to the conduit (14).
and through the conduit (16) to the flash tank (41)
The pressure relief pressure at normal pressure or slightly reduced pressure is lowered to generate low-pressure steam, which lowers the temperature of the solution. The low-pressure vapor generated in the flash tank (41) is sent to the compressor (43) through the conduit (42), compressed to a pressure slightly higher than the bottom pressure of the ethylene oxide stripping tower (10), and then transferred to the ethylene oxide absorption tower through the conduit (44). The remaining liquid flushed in the flash tank (41) is introduced into the heat exchanger (5) through the conduit (45) and exchanged heat with the bottom liquid of the ethylene oxide absorption column. The absorption liquid leaving the heat exchanger (5) passes through the refrigerant evaporator (51) of the heat pump, and then passes through the cooler (1).
8), water from conduit (21), potassium hydroxide aqueous solution from conduit (22), and antifoaming agent (from conduit (23)).
water-soluble silicone emulsion) and conduit (24).
The ethylene oxide can be introduced into the ethylene oxide absorption tower (2) through the ethylene oxide absorption tower (2).

一方、エチレンオキシド放散塔(10)の塔底より導管
(14)を通して抜き出した残部の吸収液は導管(15
)を通して副生エチレングリコール濃縮塔に送ることが
できる。
On the other hand, the remaining absorption liquid extracted from the bottom of the ethylene oxide stripping tower (10) through the conduit (14) is transferred to the conduit (15).
) can be sent to the by-product ethylene glycol concentration tower.

冷媒蒸発器(51)でエチレンオキシド放散塔底部液と
熱交換し蒸発して冷媒は、導管(52)を通して圧縮機
(53)に送られ圧縮された後、導管(54)を通して
冷媒凝縮器(55)に送られ外部の流体に熱を与え凝縮
する。凝縮した冷媒は導管(56)を通して再度冷媒蒸
発器(51)へ送られる。
The refrigerant is evaporated by exchanging heat with the bottom liquid of the ethylene oxide stripping tower in the refrigerant evaporator (51), and is sent to the compressor (53) through the conduit (52) and compressed, and then passed through the conduit (54) to the refrigerant condenser (55). ), which gives heat to the external fluid and condenses it. The condensed refrigerant is sent to the refrigerant evaporator (51) again through the conduit (56).

冷媒凝縮器(55)に導管(57)、導管(58)およ
びタンク(59)に導管(62)より供給された水を循
環させることにより導管(60)により水蒸気を回収す
ることができる。
Water vapor can be recovered through the conduit (60) by circulating water supplied through the conduit (62) through the refrigerant condenser (55), through the conduit (57), the conduit (58), and the tank (59).

この回収した水蒸気はエチレンオキシド製造工程の加熱
源として有効に使用することができる。特にこの水蒸気
はエチレンオキシド精留塔に使用することができる。
This recovered steam can be effectively used as a heating source in the ethylene oxide manufacturing process. In particular, this steam can be used in an ethylene oxide rectification column.

本発明をざらに詳しく述べるために従来公知の方法を図
−2に基づいて説明する。
In order to briefly describe the present invention in detail, a conventionally known method will be explained based on FIG. 2.

図−2においてエチレンを銀触媒の存在下、分子状酸素
含有ガスにより接触気相酸化して生成するエチレンオキ
シドを含む反応生成ガスを導管(1)を通して、充填塔
あるいは棚段塔形式のエチレンオキシド吸収塔(2)の
下部へ供給し、導管(24)よりエチレンオキシド吸収
塔(2)の上部へ吸収液を導入し、反応生成ガスと向流
接触させ、反応生成ガス中の99重通%以上のエチレン
オキシドを回収し、エチレンオキシド吸収塔(2)の塔
頂より吸収しなかったエチレン、lS!素、二酸化炭素
、不活性ガス(窒素、アルゴン、メタン、エタン)、ア
ルデヒド、酸性物質等のガスは導管(3)を通して二酸
化炭素吸収工程および/または酸化反応工程へ循環され
る。この吸収工程においてエチレンオキシドの他、エチ
レン、酸素、二酸化炭素、不活性ガス(窒素、アルゴン
、メタン、エタン、)ならびにエチレン酸化反応工程で
生成したホルムアルデヒド等の低沸点不純物、アセトア
ルデヒド、酢酸等の高沸点不純物もその実質量が同時に
吸収される。エチレンオキシド吸収塔(2)の塔底液を
導管(4)を通して熱交換器(5)へ送りエチレンオキ
シド放散塔底液と熱交換して温度70〜110℃に高め
、S管(6)により気液分離タンク(7)へ送られ不活
性ガスが導管(8)により分離される。一部エチレンオ
キシド、水を含む吸収液は導管(9)を通して塔頂圧力
0.1〜1.0KO/cnGS温度85〜100℃のエ
チレンオキシド放散塔(10)の上部へ供給し、エチレ
ンオキシド放a塔(10)の加熱器(12)より水蒸気
またはダウサム(ダウ社商品)等の加熱媒体で加熱する
か、または直接エチレンオキシド放散塔(10)の下部
へ水蒸気を導入する加熱方式により加熱し、吸収液中に
含まれるエチレンオキシドの99重量%以上を放散せし
め、エチレンオキシド放散塔(10)の底部よりエチレ
ンオキシドを実質的に含まない温度110〜130℃の
エチレンオキシド放散塔底液の一部は導管(14)およ
び導管(16)を通して熱交換器(5)でエチレンオキ
シド放散塔(10)の供給液と熱交換し、さらに冷却器
(18)により冷却し、ついで吸収液中のエヂレングリ
]−ル澗度を調節するため新鮮な水を導管(21〉を通
して導入し、吸収液中のD I−1を調節するため導管
(22)を通して水酸化カリウム水溶液を添加し、吸収
液中の消泡剤製団を調節するため導管(23)を通して
消泡剤を導入することができる。エチレンを分子状酸素
で酸化する酸化工程およびエチレンオキシド放散工程の
間で吸収液中にエチレンオキシドと水との加水反応で生
成する副生エチレングリコールおよびホルムアルデヒド
等の低沸点不純物、アセトアルデヒドJ3よび酢酸等の
高沸点不純物の増加を防ぐためエヂレンオキシドtIi
敗塔(10)の塔底部より導管(14)および(15)
を通してエチレンオキシド放散塔(10)の塔底液を抜
き出し、濃縮工程に送られる。
In Figure 2, the reaction product gas containing ethylene oxide produced by catalytic gas phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst is passed through a conduit (1) to an ethylene oxide absorption tower in the form of a packed column or tray column. (2), the absorption liquid is introduced into the upper part of the ethylene oxide absorption tower (2) through the conduit (24), and is brought into countercurrent contact with the reaction product gas, so that ethylene oxide with a concentration of 99% or more in the reaction product gas is The ethylene that was not absorbed was recovered from the top of the ethylene oxide absorption tower (2), lS! Gases such as hydrogen, carbon dioxide, inert gases (nitrogen, argon, methane, ethane), aldehydes, acidic substances, etc. are recycled to the carbon dioxide absorption stage and/or the oxidation reaction stage through the conduit (3). In this absorption process, in addition to ethylene oxide, ethylene, oxygen, carbon dioxide, inert gases (nitrogen, argon, methane, ethane, etc.), low-boiling point impurities such as formaldehyde generated in the ethylene oxidation reaction process, and high-boiling point impurities such as acetaldehyde and acetic acid are used. A substantial amount of impurities are also absorbed at the same time. The bottom liquid of the ethylene oxide absorption tower (2) is sent to the heat exchanger (5) through the conduit (4), and is heated to exchange with the ethylene oxide stripping bottom liquid to raise the temperature to 70-110°C. The inert gas is sent to a separation tank (7) and separated by a conduit (8). The absorption liquid partially containing ethylene oxide and water is supplied through a conduit (9) to the upper part of an ethylene oxide stripping tower (10) with a top pressure of 0.1 to 1.0 KO/cnGS and a temperature of 85 to 100°C. 10) from the heater (12) using a heating medium such as steam or Dow Sam (a product of Dow Company), or by a heating method that directly introduces steam into the lower part of the ethylene oxide stripping tower (10). A portion of the ethylene oxide stripping tower bottom liquid at a temperature of 110 to 130° C. which substantially does not contain ethylene oxide is released from the bottom of the ethylene oxide stripping tower (10) to the conduit (14) and the conduit (14). (16) to exchange heat with the feed liquid of the ethylene oxide stripping tower (10) in the heat exchanger (5), and further cooled by the cooler (18), and then to adjust the ethylene glycol degree in the absorption liquid. Fresh water is introduced through conduit (21>) and an aqueous potassium hydroxide solution is added through conduit (22) to adjust the D I-1 in the absorption liquid and to adjust the antifoam formulation in the absorption liquid. An antifoaming agent can be introduced through the conduit (23).The by-product ethylene glycol is produced in the absorption liquid by the hydrolysis reaction of ethylene oxide and water during the oxidation step of oxidizing ethylene with molecular oxygen and the ethylene oxide diffusion step. and ethylene oxide tIi to prevent an increase in low-boiling impurities such as formaldehyde and high-boiling impurities such as acetaldehyde J3 and acetic acid.
Conduits (14) and (15) from the bottom of the defeated tower (10)
The bottom liquid of the ethylene oxide stripping tower (10) is extracted through the ethylene oxide stripping tower (10) and sent to the concentration step.

(実 施 例) 以下、実施例により本発明をさらに詳細に説明する。し
かし本発明はこの実施例のみによって本発明の範囲を規
制するものでない。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the scope of the present invention is not limited only by this example.

実  施  例    1 図−1においてエチレンを銀触媒の存在下、分子状酸素
含有ガスにより接触気相酸化して生成するエチレンオキ
シドを含む反応生成ガスを導管(1)を通して、棚段塔
形式のエチレンオキシド吸収塔(2)の下部へ供給し、
導管(24)よりエチレンオキシド吸収R11(2)の
上部へ、温度29.6℃、pH=6、エチレングリコー
ル濃度=9.0重量%、消泡剤〈水溶性シリコンエマル
ジョン〉濃度=3ppmおよび残部は水から成る吸収液
を導入し、反応生成ガスと向流接触させ反応生成ガス中
のエチレンオキシドを吸収液に吸収させた。ここで反応
生成ガス中の99重間%以上のエチレンオキシドが回収
された。エチレンオキシド吸収塔(2)の塔頂より吸収
しなかったエチレン、酸素、二酸化炭素、不活性ガス(
窒素、アルゴン、メタン、エタン)、アルデヒド、酸性
物質等のガスは導管(3)を通して炭酸ガス吸収工程お
よび酸化反応工程へ循環した。
Example 1 In Figure 1, the reaction product gas containing ethylene oxide produced by catalytic gas phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst is passed through the conduit (1) to absorb ethylene oxide in a tray column format. Supplied to the lower part of the tower (2),
From the conduit (24) to the upper part of the ethylene oxide absorption R11 (2), temperature 29.6 ° C., pH = 6, ethylene glycol concentration = 9.0% by weight, antifoaming agent (water-soluble silicone emulsion) concentration = 3 ppm, and the remainder. An absorption liquid consisting of water was introduced and brought into countercurrent contact with the reaction product gas to cause ethylene oxide in the reaction product gas to be absorbed by the absorption liquid. At this point, more than 99% by weight of ethylene oxide in the reaction product gas was recovered. Unabsorbed ethylene, oxygen, carbon dioxide, and inert gas (
Gases such as nitrogen, argon, methane, ethane), aldehydes, acidic substances, etc. were circulated through the conduit (3) to the carbon dioxide absorption step and the oxidation reaction step.

エチレンオキシド吸収塔(2)の塔底液は導管(4)、
熱交換器(5)、導管(6)により、気液分11ンク(
7)へ送られ、一部エチレンオキシド、水を含む不活性
ガスの軽質分ガスが導管(8)により分離された。軽質
分ガスをフラッシュした残部の吸収液を導管(9)を通
してエチレンオキシド放散塔(10)の上部へ供給し、
エチレンオキシド放散塔(10)の加熱器(12)へ導
管(13)を通して水蒸気を供給して加熱し、エチレン
オキシド放散塔(10)の底部より実質的にエチレンオ
キシドを含まないエチレンオキシド放散塔底液を導管(
14)を通して抜き出し、その一部は導管(16)を通
してフラッシュタンク(41)へ供給され、常圧あるい
は若干減圧の圧力まで圧力が下げられ低圧蒸気を発生さ
せた。
The bottom liquid of the ethylene oxide absorption tower (2) is passed through a conduit (4),
Heat exchanger (5) and conduit (6) allow 11 tanks of gas and liquid (
7), and a light component gas of an inert gas containing a portion of ethylene oxide and water was separated by a conduit (8). The remaining absorption liquid after flushing the light gas is supplied to the upper part of the ethylene oxide stripping tower (10) through the conduit (9),
Steam is supplied to the heater (12) of the ethylene oxide stripping tower (10) through the conduit (13) for heating, and the ethylene oxide stripping tower bottom liquid, which does not substantially contain ethylene oxide, is supplied from the bottom of the ethylene oxide stripping tower (10) through the conduit (
14), and a portion of it was supplied to the flash tank (41) through the conduit (16), where the pressure was lowered to normal pressure or slightly reduced pressure to generate low-pressure steam.

フラッシュタンク(41)で発生した低圧蒸気は導管(
42)を通して圧縮II(43)に送られエチレンオキ
シド放散塔(10)の塔底圧力0.5k G / ci
 Gよりわずかに高い圧ノコ迄圧縮され導管(44)に
よりエチレンオキシド放散塔(10)底部の気相部に送
入された。フラッシュタンク(41)でフラッシュした
残りの液は導管(45)を通して熱交換器(5)に導入
しエチレンオキシド吸収塔底液と熱交換された。熱交換
器(5)を出た吸収液はヒートポンプの冷媒蒸発器(5
1)を経た後、冷却器(18)を通して、導管(21)
より水、導管(22)より水酸化カリウム水溶液および
導管(23)より消泡剤(水溶性シリコンエマルジョン
)を添加し、導管(24)を通してエチレンオキシド吸
収塔(2)に導入した。
The low pressure steam generated in the flash tank (41) is transferred to the conduit (
42) to compression II (43) and the bottom pressure of the ethylene oxide stripping tower (10) is 0.5 k G/ci.
It was compressed to a pressure slightly higher than G and sent to the gas phase at the bottom of the ethylene oxide stripping tower (10) through the conduit (44). The remaining liquid flushed in the flash tank (41) was introduced into the heat exchanger (5) through the conduit (45) and was heat exchanged with the ethylene oxide absorption tower bottom liquid. The absorption liquid leaving the heat exchanger (5) is transferred to the refrigerant evaporator (5) of the heat pump.
After passing through 1), the conduit (21) is passed through the cooler (18).
Water, an aqueous potassium hydroxide solution through the conduit (22), and an antifoaming agent (water-soluble silicone emulsion) through the conduit (23) were added, and the mixture was introduced into the ethylene oxide absorption tower (2) through the conduit (24).

一方、エチレンオキシド放散塔(10)の塔底部より導
管(14)を通して扱き出した残部の吸収液は導管(1
5)を通して副生エチレングリコール濃縮塔に送った。
On the other hand, the remaining absorption liquid discharged from the bottom of the ethylene oxide stripping tower (10) through the conduit (14) is transferred to the conduit (14).
5) to the by-product ethylene glycol concentration column.

 冷媒蒸発器(51)でエチレンオキシド放散塔底部液
と熱交換し蒸発して冷媒は、導管(52)を通して圧縮
機(53)に送られ圧縮された後、導管(54)を通し
て冷媒凝縮器(55)に送られ外部の流体に熱を与え凝
縮した。凝縮した冷媒は導管(56)を通して再度冷媒
蒸発器(51)へ送った。
The refrigerant is evaporated by exchanging heat with the bottom liquid of the ethylene oxide stripping tower in the refrigerant evaporator (51), and is sent to the compressor (53) through the conduit (52) and compressed, and then passed through the conduit (54) to the refrigerant condenser (55). ), which gives heat to the external fluid and condenses it. The condensed refrigerant was sent to the refrigerant evaporator (51) again through the conduit (56).

冷媒凝縮器(55)に導管(57)、導管(58)およ
びタンク(59)に導管(62)より供給された水を循
環させることにより導fJ (60)により水蒸気を回
収した。
Water vapor was recovered by the conduit fJ (60) by circulating water supplied from the conduit (62) to the refrigerant condenser (55), the conduit (57), the conduit (58), and the tank (59).

表−1にこのプロヒスの連続操作条件を一括して表示す
る。
Table 1 shows the conditions for continuous operation of this PROHIS.

比  較  例    1 図−2においてエチレンを銀触媒の存在下、分子状酸素
含有ガスにより接触気相酸化して生成するエチレンオキ
シドを含む反応生成ガスを導管(1)を通して、棚段塔
形式のエチレンオキシド吸収塔(2)の下部へ供給し、
導管(24)よりエチレンオキシド吸収塔(2)の上部
へ吸収液を導入し、温度29.6℃、pH=6、エヂレ
ングリ]−ル濃度=9.0重石%、消泡剤(水溶性シリ
コンエマルション)濃度=3ppmおよび、残部は水か
ら成る吸収液を導入し、反応生成ガスと向流接触させ反
応生成ガス中のエチレンオキシドを吸収液に吸収させた
。エチレンオキシド吸収塔(2)の塔頂部より吸収しな
かったエチレン、酸素、二酸化炭素、不活性ガス(窒素
、アルゴン、メタン、エタン)、アルデヒド類、酸性物
質等のガスは導管(3)を通して炭酸ガス吸収工程およ
び/または酸化反応工程へ循環した。エチレンオキシド
吸収塔(2)の塔底液は導管(4)、熱交換器(5)、
導管(6)により、気液分離タンク(7)へ送られ、一
部エチレンオキシド、水を含む不活性ガスが導管(8)
により分離された。軽質弁ガスをフラッシュした残部の
吸収液を導管(9)を通してエチレンオキシド放散塔(
10)の上部へ供給した。エチレンオキシド放散塔(1
0)の加熱器(12)へ導管(13)を通して水蒸気を
供給して加熱し、エチレンオキシド放散塔(10)の底
部より実質的にエチレンオキシドを含まないエチレンオ
キシド放散塔底液を導管(14)を通して抜き出し、そ
の一部は導管(16)を通して熱交換器(5)および冷
却器(18)を通して、導管(21)より水、導管(2
2)より水酸化カリウム水溶液および導管(23)より
消泡剤(水溶性シリコンエマルション)が添加され、導
管(24)よりエチレンオキシド吸収塔頂部へ供給した
Comparison Example 1 In Figure 2, the reaction product gas containing ethylene oxide produced by catalytic gas-phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst is passed through the conduit (1) to absorb ethylene oxide in a tray column format. Supplied to the lower part of the tower (2),
The absorption liquid was introduced into the upper part of the ethylene oxide absorption tower (2) from the conduit (24), and the temperature was 29.6°C, pH = 6, ethylene glycol concentration = 9.0%, and antifoaming agent (water-soluble silicone emulsion). ) An absorption liquid having a concentration of 3 ppm and the remainder being water was introduced and brought into countercurrent contact with the reaction product gas to cause the ethylene oxide in the reaction product gas to be absorbed by the absorption liquid. Gases such as ethylene, oxygen, carbon dioxide, inert gases (nitrogen, argon, methane, ethane), aldehydes, acidic substances, etc. that are not absorbed from the top of the ethylene oxide absorption tower (2) are transferred to carbon dioxide gas through the conduit (3). It was recycled to the absorption step and/or the oxidation reaction step. The bottom liquid of the ethylene oxide absorption tower (2) is passed through a conduit (4), a heat exchanger (5),
The conduit (6) sends the inert gas to the gas-liquid separation tank (7), and the inert gas containing some ethylene oxide and water is sent to the conduit (8).
Separated by After flushing the light valve gas, the remaining absorption liquid is passed through the conduit (9) to the ethylene oxide stripping tower (
10). Ethylene oxide stripping tower (1
Steam is supplied to the heater (12) of 0) through the conduit (13) to heat it, and the ethylene oxide stripping tower bottom liquid, which is substantially free of ethylene oxide, is extracted from the bottom of the ethylene oxide stripping tower (10) through the conduit (14). , a part of which passes through the conduit (16), the heat exchanger (5) and the cooler (18), and the water from the conduit (21), the conduit (2).
2), an aqueous potassium hydroxide solution and an antifoaming agent (water-soluble silicone emulsion) were added through a conduit (23), and the mixture was supplied to the top of the ethylene oxide absorption column through a conduit (24).

一方、エチレンオキシド放散塔(10)の塔底より導管
(14)を通して抜き出した残部の吸収液は導管(15
)を通して副生エチレングリコール濃縮塔に送った。表
−2にこのプロセスの操作条件を一括して表示する。
On the other hand, the remaining absorption liquid extracted from the bottom of the ethylene oxide stripping tower (10) through the conduit (14) is transferred to the conduit (15).
) was sent to the by-product ethylene glycol concentration column. Table 2 summarizes the operating conditions for this process.

(発明の効果) 本発明の方法によれば、エチレンオキシド放散塔底液を
フラッシュするときに発生した蒸気がフラッシュドラム
から分離され、圧縮手段によりエチレンオキシド放散塔
底部の圧力より少し高い圧力に圧縮されエチレンオキシ
ド放散塔底部に導入することにより、エチレンオキシド
flirll塔を加熱するに要する加熱熱囚を大幅に減
少することが可能となる効果を発揮するものである。ま
た、エチレンオキシド放散塔底液から圧縮式ヒートポン
プにより熱量を回収し、その熱をエチレンオキシド精留
塔の熱源の一部として利用することによりエチレンオキ
シド精留塔の省エネルギーも同時に達成できる。さらに
この方法を実施することによってエチレンオキシド吸収
塔に送る吸収液を冷却する冷却水の熱負荷が低減される
効果を発揮するものである。
(Effects of the Invention) According to the method of the present invention, the vapor generated when flashing the ethylene oxide stripping column bottom liquid is separated from the flash drum and compressed by the compression means to a pressure slightly higher than the pressure at the bottom of the ethylene oxide stripping column. By introducing it into the bottom of the stripping tower, it is possible to significantly reduce the amount of heating heat trapped in the ethylene oxide flirll tower. In addition, by recovering heat from the ethylene oxide stripping column bottom liquid using a compression heat pump and using the heat as part of the heat source of the ethylene oxide rectification column, energy conservation of the ethylene oxide rectification column can be achieved at the same time. Furthermore, by carrying out this method, the effect of reducing the thermal load of the cooling water for cooling the absorption liquid sent to the ethylene oxide absorption tower is exhibited.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は、本発明のエチレンオキシド回収方法の好まし
い具体例を示す一例である。 図−2は、本発明に関連する公知のエヂレンキシド回収
方法を示す一例である。 (2) エチレンオキシド吸収塔 (5) 熱交換器 (7) 気液分離タンク (10)  エチレンオキシド放散塔 (12)  加熱器 (18)  冷却器 (41)  フラッシュタンク (43)  圧縮機 (51)  ヒートポンプ冷媒蒸発器 (53)  ヒートポンプ冷媒圧縮機 (55)  ヒートポンプ冷媒凝縮器 (59)  ヒートポンプフラッシュタンク特許出願人
 日本触媒化学工業株式会社図−1 図−2
FIG. 1 is an example showing a preferred specific example of the ethylene oxide recovery method of the present invention. FIG. 2 is an example showing a known ethylene oxide recovery method related to the present invention. (2) Ethylene oxide absorption tower (5) Heat exchanger (7) Gas-liquid separation tank (10) Ethylene oxide stripping tower (12) Heater (18) Cooler (41) Flash tank (43) Compressor (51) Heat pump refrigerant Evaporator (53) Heat pump refrigerant compressor (55) Heat pump refrigerant condenser (59) Heat pump flash tank patent applicant Nippon Shokubai Chemical Co., Ltd. Figure-1 Figure-2

Claims (1)

【特許請求の範囲】[Claims] (1)エチレンを銀触媒の存在下、分子状酸素含有ガス
と接触気相酸化して生成したエチレンオキシドを含有す
る反応生成ガスをエチレンオキシド吸収塔へ導入し吸収
液と向流接触させ、エチレンオキシド吸収塔頂部よりの
ガスの一部はエチレン酸化反応工程へ循環し、エチレン
オキシドを含むエチレンオキシド吸収塔底液はエチレン
オキシド放散塔へ供給し、エチレンオキシド放散塔頂部
からエチレンオキシドを放散せしめ、エチレンオキシド
放散塔底部より抜き出した液はエチレンオキシド吸収塔
へ導き吸収液として循環使用し、残部はその液に含まれ
るエチレングリコールを濃縮するため副生エチレングリ
コール濃縮塔へ送る工程において、エチレンオキシド放
散塔底部より抜き出した液をフラッシュ処理し、気相部
と液相部に分離し、気相部は圧縮してエチレンオキシド
放散塔へ導入し、液相部は熱交換器にてエチレンオキシ
ド吸収塔底液と熱交換した後、ヒートポンプを用いて吸
収液の持つ熱エネルギーを回収し水蒸気を発生させ、ヒ
ートポンプにより冷却された吸収液をさらに冷却器にて
冷却した後、エチレンオキシド吸収塔の吸収液とするこ
とを特徴とするエチレンオキシドの回収方法。
(1) A reaction product gas containing ethylene oxide produced by contact vapor phase oxidation of ethylene with a molecular oxygen-containing gas in the presence of a silver catalyst is introduced into an ethylene oxide absorption tower, brought into countercurrent contact with the absorption liquid, and the ethylene oxide absorption tower A part of the gas from the top is circulated to the ethylene oxidation reaction process, and the ethylene oxide absorption tower bottom liquid containing ethylene oxide is supplied to the ethylene oxide stripping tower, ethylene oxide is diffused from the top of the ethylene oxide stripping tower, and the liquid is extracted from the bottom of the ethylene oxide stripping tower. is led to the ethylene oxide absorption tower and recycled as an absorption liquid, and the remainder is sent to the by-product ethylene glycol concentration tower to concentrate the ethylene glycol contained in the liquid. In the process, the liquid extracted from the bottom of the ethylene oxide stripping tower is flashed, The gas phase is separated into a gas phase and a liquid phase, and the gas phase is compressed and introduced into the ethylene oxide stripping tower.The liquid phase exchanges heat with the bottom liquid of the ethylene oxide absorption tower in a heat exchanger, and then is absorbed using a heat pump. A method for recovering ethylene oxide, which comprises recovering the thermal energy of the liquid to generate water vapor, cooling the absorption liquid by a heat pump, further cooling it in a cooler, and then using it as the absorption liquid for an ethylene oxide absorption tower.
JP60145850A 1985-06-27 1985-07-04 Method of recovering ethylene oxide Pending JPS6210076A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60145850A JPS6210076A (en) 1985-07-04 1985-07-04 Method of recovering ethylene oxide
CA000512407A CA1284334C (en) 1985-06-27 1986-06-25 Method for recovery of ethylene oxide
AU59269/86A AU590888B2 (en) 1985-06-27 1986-06-26 Method for recovery of ethylene oxide
DE8686108722T DE3688444T2 (en) 1985-06-27 1986-06-26 METHOD FOR RECOVERY OF ETHYLENE OXIDE.
EP86108722A EP0207448B1 (en) 1985-06-27 1986-06-26 Method for recovery of ethylene oxide
KR1019860005200A KR920003199B1 (en) 1985-06-27 1986-06-27 Method for recovery of ethylene oxide
CN86104909A CN1019270B (en) 1985-06-27 1986-06-27 Method for recovery of ethylene oxide
US07/127,488 US4875909A (en) 1985-06-27 1987-12-01 Method for recovery of ethylene oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60145850A JPS6210076A (en) 1985-07-04 1985-07-04 Method of recovering ethylene oxide

Publications (1)

Publication Number Publication Date
JPS6210076A true JPS6210076A (en) 1987-01-19

Family

ID=15394535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60145850A Pending JPS6210076A (en) 1985-06-27 1985-07-04 Method of recovering ethylene oxide

Country Status (1)

Country Link
JP (1) JPS6210076A (en)

Similar Documents

Publication Publication Date Title
US4875909A (en) Method for recovery of ethylene oxide
JP6368118B2 (en) Method for producing ethylene oxide
US4221727A (en) Ethylene oxide recovery
EP0207490B1 (en) Method for purification of ethylene oxide
JP5244267B2 (en) Method and apparatus for producing methanol
WO2014157699A1 (en) Method for producing ethylene oxide
JP2013209255A (en) Method for recovering carbon dioxide in production process of ethylene oxide
JP2857993B2 (en) Method for continuous production of aqueous formaldehyde solution
JPS6210076A (en) Method of recovering ethylene oxide
NL8200822A (en) PROCESS FOR ISOTHERMAL ABSORPTION OF ETHYLENE OXIDE WITH A FILM ABSORPTION DEVICE.
JPS58123070A (en) Manufacture of cold air and/or heat using carbon dioxide and condensable fluid
JPS6216472A (en) Recovery of ethylene oxide
JPS63170206A (en) Method for recovering high-purity carbon dioxide
JPS6252609B2 (en)
JPS58208104A (en) Method for purifying chlorine
JPS6092280A (en) Ethylene oxide concentration and device
JPS5926926A (en) Apparatus for removing co2 with hot potassium carbonate
JP2013082674A (en) Propylene oxide purification method
JPS62475A (en) Method for recovering ethylene oxide
JPS6212771A (en) Purification of ethylene oxide
JPS62103073A (en) Method of purifying ethylene oxide
KR920001767B1 (en) Method for purification of ethylene oxide
JP6538922B2 (en) Method of producing ethylene oxide
JP2013082675A (en) Propylene oxide recovery method
JPS6216474A (en) Purification of ethylene oxide