JP6111698B2 - Method and apparatus for treating hydrogen peroxide and ammonia-containing water - Google Patents

Method and apparatus for treating hydrogen peroxide and ammonia-containing water Download PDF

Info

Publication number
JP6111698B2
JP6111698B2 JP2013015775A JP2013015775A JP6111698B2 JP 6111698 B2 JP6111698 B2 JP 6111698B2 JP 2013015775 A JP2013015775 A JP 2013015775A JP 2013015775 A JP2013015775 A JP 2013015775A JP 6111698 B2 JP6111698 B2 JP 6111698B2
Authority
JP
Japan
Prior art keywords
gas
ammonia
tower
hydrogen peroxide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013015775A
Other languages
Japanese (ja)
Other versions
JP2014144445A (en
Inventor
内田 稔
内田  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013015775A priority Critical patent/JP6111698B2/en
Priority to TW102105375A priority patent/TWI503283B/en
Priority to KR1020140007115A priority patent/KR102160833B1/en
Priority to CN201410034899.9A priority patent/CN103964522B/en
Publication of JP2014144445A publication Critical patent/JP2014144445A/en
Application granted granted Critical
Publication of JP6111698B2 publication Critical patent/JP6111698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/10Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/043Treatment of partial or bypass streams

Landscapes

  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Water Treatments (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Catalysts (AREA)

Description

本発明は過酸化水素及びアンモニア含有水の処理方法及び装置に係り、特に、過酸化水素を含むアンモニア含有水を安全にかつエネルギー効率よく処理する方法及び装置に関する。   The present invention relates to a method and apparatus for treating hydrogen peroxide and ammonia-containing water, and more particularly to a method and apparatus for safely and energy-efficiently treating ammonia-containing water containing hydrogen peroxide.

アンモニア含有排水の処理方法として、放散処理(ストリッピング)がある。ストリッピングガス(又はキャリアガス)としては、通常、空気またはスチームが使用されている。空気を使用するか、スチームを使用するかは、個々の条件に応じて適宜選択されるが、一般的に小型の放散塔(ストリッパー)では簡便な空気が使用され、大型の放散塔では効率の良いスチームが使用される傾向がある。   As a method for treating ammonia-containing wastewater, there is a stripping treatment. Usually, air or steam is used as the stripping gas (or carrier gas). Whether air or steam is used is appropriately selected according to individual conditions. In general, simple air is used for small strippers, and efficiency is large for large strippers. Good steam tends to be used.

放散塔から排出されたアンモニア含有ガスは、(1)触媒による酸化分解処理、(2)硫安の製造原料としての利用、(3)濃厚アンモニア水としての回収などに供されるが、硫安やアンモニア水の流通マーケットが無い場合は、(1)触媒による酸化分解処理に供される。   The ammonia-containing gas discharged from the stripping tower is used for (1) oxidative decomposition treatment with a catalyst, (2) use as an ammonium sulfate production raw material, and (3) recovery as concentrated ammonia water. When there is no water distribution market, (1) it is used for oxidative decomposition treatment with a catalyst.

ところで、半導体製造工程におけるアンモニア/過酸化水素/水を用いるSC−1洗浄工程からは、アンモニアおよび過酸化水素を数千mg/Lのオーダーで含有するSC−1排水が排出される。このSC−1排水を放散処理するには、アンモニアの放散性を良くするためにpHを11以上にする必要があるが、pHを高くすると過酸化水素の分解も促進され、酸素ガスが発生する。アンモニアと酸素の混合ガスが高濃度で存在すると爆発の危険性があるので安全上避けるのが望ましい。   By the way, from the SC-1 cleaning process using ammonia / hydrogen peroxide / water in the semiconductor manufacturing process, SC-1 waste water containing ammonia and hydrogen peroxide in the order of several thousand mg / L is discharged. In order to dissipate this SC-1 wastewater, it is necessary to increase the pH to 11 or more in order to improve the dispersibility of ammonia. However, when the pH is increased, the decomposition of hydrogen peroxide is promoted and oxygen gas is generated. . If a mixed gas of ammonia and oxygen is present at a high concentration, there is a danger of explosion, so it is desirable to avoid it for safety.

特許文献1には、放散と触媒酸化とを組み合わせてアンモニア及び過酸化水素を含む排水を処理する方法が記載されている。この方法では、アンモニアと過酸化水素を含む排水をpH9以上に調整して放散塔で処理することにより、放散塔内で過酸化水素を分解除去すると共にアンモニアを放散させ、放散塔の流出ガスを触媒反応器に通気してアンモニアを酸化分解する。   Patent Document 1 describes a method of treating waste water containing ammonia and hydrogen peroxide by combining emission and catalytic oxidation. In this method, wastewater containing ammonia and hydrogen peroxide is adjusted to pH 9 or more and treated in a diffusion tower, whereby hydrogen peroxide is decomposed and removed in the diffusion tower and ammonia is diffused, and the effluent gas from the diffusion tower is removed. Ammonia is oxidatively decomposed by bubbling through the catalytic reactor.

この方法においては、特に大流量の排水や高濃度のアンモニア含有排水を処理する場合、ストリッピングガス(キャリアガス)としてスチームのみを用いるとアンモニア/酸素混合ガスが生じるので、安全性の面でストリッピングガスとしてはスチームではなく空気を使用するのが好ましい。   In this method, particularly when treating wastewater with a large flow rate or wastewater containing high concentration, if only steam is used as the stripping gas (carrier gas), an ammonia / oxygen mixed gas is generated. It is preferable to use air instead of steam as the ripping gas.

また、放散塔における過酸化水素の分解は、高温ほど効率が良いが、放散塔の温度を上げると塔頂ガスの水分濃度が高くなり、(1)水の蒸発潜熱量が多いため、エネルギーコストが高い、(2)塔頂ガス中の水分濃度が10体積%を超えると、この塔頂ガスを酸化処理する触媒が劣化し、寿命が短くなる、といった問題が生じる。従って、放散塔で過酸化水素を分解する方法では、この問題を回避するために、低い温度で大量の空気を用いて放散を行うことになる。   In addition, the decomposition of hydrogen peroxide in the stripping tower is more efficient at higher temperatures, but if the temperature of the stripping tower is raised, the moisture concentration of the tower top gas increases, and (1) the amount of latent heat of vaporization of water increases, so the energy cost (2) When the water concentration in the tower top gas exceeds 10% by volume, there arises a problem that the catalyst for oxidizing the tower top gas deteriorates and its life is shortened. Therefore, in the method of decomposing hydrogen peroxide in the diffusion tower, in order to avoid this problem, the radiation is performed using a large amount of air at a low temperature.

特許文献2には、放散ガスとして空気を用い、アンモニア酸化用触媒反応器からの排ガスを循環使用することにより、水分蒸発に伴うエネルギーを節約する方法が記載されている。   Patent Document 2 describes a method for saving energy associated with water evaporation by using air as a diffused gas and circulating and using exhaust gas from a catalytic reactor for ammonia oxidation.

特許文献2の方法では、特許文献1の方法に比べて、放散塔での新規の空気取り入れ量が少ないので、エネルギーコストを大幅に節約できる。しかしながら、特許文献2の方法では、特に放散塔の運転温度を低温にする場合、大きな風量が必要になり(例えば、処理水量1000m/day当たりでは、空気吹き込みの場合、40000〜50000Nm/hr程度となる。スチームの場合は、9000Nm/hr程度である。)、触媒反応器中の触媒量を多くしなければならない。また、放散塔の温度が45℃を超えると、塔頂ガス中の水分濃度が10体積%を超えるので、触媒の寿命が短くならないように高価な耐水性触媒を使用する必要がある。 In the method of Patent Document 2, since the amount of new air intake in the diffusion tower is small compared to the method of Patent Document 1, the energy cost can be greatly saved. However, in the method of Patent Document 2, a large air volume is required particularly when the operating temperature of the diffusion tower is lowered (for example, in the case of air blowing around 1000 m 3 / day of treated water, 40000 to 50000 Nm 3 / hr). In the case of steam, it is about 9000 Nm 3 / hr.), The amount of catalyst in the catalytic reactor must be increased. Further, if the temperature of the stripping tower exceeds 45 ° C., the water concentration in the tower top gas exceeds 10% by volume. Therefore, it is necessary to use an expensive water-resistant catalyst so that the life of the catalyst is not shortened.

特開2002−172384号公報JP 2002-172384 A 特開平09−323088号公報JP 09-323088 A

本発明は上記従来の問題点を解決し、過酸化水素を含むアンモニア含有水を安全かつエネルギー効率よく処理する方法及び装置を提供することを目的とする。   The object of the present invention is to solve the above-mentioned conventional problems and to provide a method and apparatus for safely and energy-efficiently treating ammonia-containing water containing hydrogen peroxide.

本発明の過酸化水素及びアンモニア含有水の処理方法は、過酸化水素とアンモニアを含む水を放散塔に導入すると共に、該放散塔に気体を吹き込んで放散処理する放散工程と、該放散塔からの放散ガスを触媒酸化処理する触媒酸化工程と、該触媒酸化工程からの処理ガスの一部を前記放散塔に循環させると共に、この循環ガスに対して新規空気を吹き込むガス循環供給工程とを有する過酸化水素及びアンモニア含有水の処理方法において、該放散塔の温度を45〜70℃とすると共に、該新規空気吹き込み流量に対する前記処理ガスの循環ガス流量を15〜60倍とすることを特徴とするものである。   The hydrogen peroxide and ammonia-containing water treatment method of the present invention introduces water containing hydrogen peroxide and ammonia into a stripping tower, blows a gas into the stripping tower and performs a stripping process, and from the stripping tower, A catalytic oxidation process for catalytically oxidizing the emitted gas, and a gas circulation supplying process for circulating a part of the treated gas from the catalytic oxidation process to the diffusion tower and blowing new air into the circulating gas. In the method for treating hydrogen peroxide and ammonia-containing water, the temperature of the stripping tower is set to 45 to 70 ° C., and the circulating gas flow rate of the treatment gas is set to 15 to 60 times the new air blowing flow rate. To do.

本発明の過酸化水素及びアンモニア含有水の処理装置は、過酸化水素とアンモニアを含む水の導入手段及びガス放散用気体の吹込手段を備えた放散塔と、該放散塔からの放散ガスを触媒酸化処理する触媒酸化塔と、触媒酸化塔からの処理ガスの一部を前記放散塔に循環させるガス循環手段と、該ガス循環手段の循環ガスに対して新規空気を吹き込む新規空気吹込手段とを有する過酸化水素及びアンモニア含有水の処理装置において、該放散塔の温度を45〜70℃とする温度制御手段と、該循環ガスへの空気吹き込み流量に対する前記処理ガスの循環ガス流量を15〜60倍とする流量制御手段とを備えたことを特徴とするものである。   The treatment apparatus for water containing hydrogen peroxide and ammonia according to the present invention comprises a diffusion tower provided with a means for introducing water containing hydrogen peroxide and ammonia and a means for blowing gas for gas diffusion, and a catalyst for the gas emitted from the diffusion tower. A catalytic oxidation tower for oxidation treatment, a gas circulation means for circulating a part of the treatment gas from the catalytic oxidation tower to the diffusion tower, and a new air blowing means for blowing new air into the circulating gas of the gas circulation means. In the hydrogen peroxide and ammonia-containing water treatment apparatus, the temperature control means for setting the temperature of the diffusion tower to 45 to 70 ° C., and the circulating gas flow rate of the processing gas with respect to the air blowing flow rate to the circulating gas is 15 to 60. The flow rate control means for doubling is provided.

前記触媒酸化工程に供給される前記放散ガスの含水率が10体積%以下であることが好ましい。   It is preferable that the moisture content of the emitted gas supplied to the catalytic oxidation step is 10% by volume or less.

本発明の一態様では、前記放散ガスを冷却して凝縮水を生成させ、該凝縮水を分離したガスを前記触媒酸化工程又は触媒酸化塔に供給する。   In one aspect of the present invention, the diffused gas is cooled to generate condensed water, and the gas from which the condensed water has been separated is supplied to the catalytic oxidation step or the catalytic oxidation tower.

本発明の一態様では、前記放散ガスを断熱圧縮し、放散塔の塔底液と熱交換させて冷却して第1凝縮水を生成させ、該第1凝縮水を分離したガスを冷却水と熱交換させて冷却し第2凝縮水を生成させ、該第2凝縮水を分離したガスを圧力開放した後に前記触媒酸化工程又は触媒酸化塔に送給する。   In one aspect of the present invention, the stripped gas is adiabatically compressed, heat-exchanged with the bottom liquid of the stripping tower, cooled to generate first condensed water, and the gas separated from the first condensed water is cooled with water. Heat-exchanged and cooled to produce second condensed water, and after releasing the pressure of the gas from which the second condensed water has been separated, the gas is fed to the catalytic oxidation step or catalytic oxidation tower.

前記過酸化水素及びアンモニア含有水のアンモニア濃度が500mg/L以上であり、過酸化水素濃度が1000mg/L以上であることが好ましい。   The ammonia concentration of the hydrogen peroxide and ammonia-containing water is preferably 500 mg / L or more, and the hydrogen peroxide concentration is preferably 1000 mg / L or more.

前記過酸化水素及びアンモニア含有水をpH9以上に調整して前記放散塔に導入することが好ましい。   It is preferable that the hydrogen peroxide and the ammonia-containing water are adjusted to pH 9 or higher and introduced into the stripping tower.

本発明の一態様では、前記放散塔の塔底液を放散塔から引き抜き90℃以上に加熱して過酸化水素を分解する。   In one aspect of the present invention, the bottom liquid of the stripping tower is drawn from the stripping tower and heated to 90 ° C. or higher to decompose hydrogen peroxide.

本発明者は上記課題を解決すべく鋭意検討を重ねた結果、特許文献2の方法において、放散塔の運転温度を高くして触媒寿命を若干犠牲にしても、エネルギー効率を高め、総合的な運転コストを低減できる条件を見出し、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has improved the energy efficiency in the method of Patent Document 2 even if the operating temperature of the stripping tower is increased and the catalyst life is slightly sacrificed. The present inventors have found a condition that can reduce the operating cost and completed the present invention.

本発明によれば、過酸化水素及びアンモニア含有水から安全かつエネルギー効率よく過酸化水素とアンモニアを除去することができる。また、触媒酸化に供する放散ガスの含水率を10体積%以下に下げることができ、これにより触媒寿命を延命することができる。   According to the present invention, hydrogen peroxide and ammonia can be removed safely and energy-efficiently from hydrogen peroxide and ammonia-containing water. In addition, the moisture content of the emitted gas used for the catalyst oxidation can be lowered to 10% by volume or less, thereby extending the catalyst life.

本発明において、放散塔の塔底液を放散塔から引き抜き90℃以上に加熱して過酸化水素を分解することにより、過酸化水素濃度の低い処理水を得ることができる。   In the present invention, by treating the bottom liquid of the stripping tower from the stripping tower and heating it to 90 ° C. or higher to decompose hydrogen peroxide, treated water having a low hydrogen peroxide concentration can be obtained.

本発明の過酸化水素及びアンモニア含有水の処理方法及び装置の実施の形態の一例を示す系統図である。It is a systematic diagram which shows an example of embodiment of the processing method and apparatus of the hydrogen peroxide and ammonia containing water of this invention. 本発明の過酸化水素及びアンモニア含有水の処理方法及び装置の実施の形態の別の例を示す系統図である。It is a systematic diagram which shows another example of embodiment of the processing method and apparatus of the hydrogen peroxide and ammonia containing water of this invention. 本発明の過酸化水素及びアンモニア含有水の処理方法及び装置の実施の形態の別の例を示す系統図である。It is a systematic diagram which shows another example of embodiment of the processing method and apparatus of the hydrogen peroxide and ammonia containing water of this invention. 本発明の過酸化水素及びアンモニア含有水の処理方法及び装置の実施の形態の別の例を示す系統図である。It is a systematic diagram which shows another example of embodiment of the processing method and apparatus of the hydrogen peroxide and ammonia containing water of this invention.

以下に本発明の過酸化水素及びアンモニア含有水の処理方法の実施の形態を詳細に説明する。   Hereinafter, embodiments of the method for treating hydrogen peroxide and ammonia-containing water of the present invention will be described in detail.

本発明で処理対象とする過酸化水素及びアンモニア含有水としては、アンモニアを500mg/L以上、例えば500〜5000mg/L含有し、過酸化水素を1000mg/L以上、例えば1000〜10000mg/L含有するものが好適である。このような過酸化水素及びアンモニア含有水としては、SC−1排水が例示される。   The hydrogen peroxide and ammonia-containing water to be treated in the present invention contain ammonia at 500 mg / L or more, for example, 500 to 5000 mg / L, and hydrogen peroxide at 1000 mg / L or more, for example, 1000 to 10,000 mg / L. Those are preferred. Examples of such hydrogen peroxide and ammonia-containing water include SC-1 waste water.

過酸化水素及びアンモニア含有水がSC−1排水である場合、そのpHは通常8〜10程度である。   When the hydrogen peroxide and ammonia-containing water is SC-1 wastewater, its pH is usually about 8-10.

アンモニアの放散率及び過酸化水素の分解率を高くする場合には、好ましくは、過酸化水素及びアンモニア含有水に水酸化ナトリウム、水酸化カリウムなどのアルカリを添加し、pHを9以上、例えば9〜13特に10.5〜12に調整した後、放散処理を行う。   In order to increase the diffusion rate of ammonia and the decomposition rate of hydrogen peroxide, preferably, an alkali such as sodium hydroxide or potassium hydroxide is added to hydrogen peroxide and ammonia-containing water, and the pH is 9 or more, for example, 9 ~ 13 Especially after adjusting to 10.5 ~ 12, the dissipation process is performed.

本発明では、かかる過酸化水素及びアンモニア含有水を放散塔にて45〜70℃好ましくは50〜65℃にて放散(ストリッピング)処理し、放散塔からの流出ガスを触媒酸化塔で酸化処理する。放散処理を行うには、充填材を充填して充填層を形成した放散塔を用いるのが好ましく、この放散塔内の充填層よりも上側の塔頂部、例えば塔頂のガス出口部の温度を上記範囲とすることが好ましい。放散塔の温度制御は、塔底液の温度を調整することにより制御することができる。   In the present invention, the hydrogen peroxide and ammonia-containing water are stripped in a stripping tower at 45 to 70 ° C., preferably 50 to 65 ° C., and the effluent gas from the stripping tower is oxidized in a catalytic oxidation tower. To do. In order to perform the stripping treatment, it is preferable to use a stripping tower filled with a filler to form a packed bed. The temperature at the top of the tower above the packed bed in the stripping tower, for example, the temperature of the gas outlet at the top of the tower is set. The above range is preferable. The temperature control of the stripping tower can be controlled by adjusting the temperature of the bottom liquid.

この放散塔に気体を吹き込むことによりアンモニアを放散させる。放散塔内への過酸化水素及びアンモニア含有水の供給量をW(m/hr)とし、放散塔内への気体の吹込量をG(Nm/hr)とした場合、G/Wは100〜1000特に300〜600程度が好ましい。
また、放散塔でフラッディングを起こさない塔径であって充填高さが2m〜15m程度になるように気体吹込量および充填材の種類を選ぶのが好ましい。
Ammonia is diffused by blowing gas into the stripping tower. When the supply amount of hydrogen peroxide and ammonia-containing water into the stripping tower is W (m 3 / hr) and the amount of gas blown into the stripping tower is G (Nm 3 / hr), G / W is 100 to 1000, particularly about 300 to 600 are preferable.
Further, it is preferable to select the gas blowing amount and the kind of the filler so that the tower diameter does not cause flooding in the diffusion tower and the filling height is about 2 to 15 m.

放散塔に吹き込まれる気体は、触媒酸化塔からの循環ガスに対し新規空気を添加したものである。触媒酸化塔からの循環ガス流量をFc(Nm/hr)とし、新規空気の添加流量をFf(Nm/hr)とした場合、Fc/Ffを15〜60好ましくは20〜50とする。
循環ガス流量は、循環ガス流量と新規空気流量との合計が、放散塔でアンモニアを放散するのに十分なガス量となるような流量とする。また、新規空気の添加流量は、後段の触媒酸化塔でアンモニアを酸化するのに必要な酸素を十分に供給できるような流量とする。
The gas blown into the stripping tower is obtained by adding new air to the circulating gas from the catalytic oxidation tower. When the circulating gas flow rate from the catalytic oxidation tower is Fc (Nm 3 / hr) and the addition flow rate of new air is Ff (Nm 3 / hr), Fc / Ff is 15 to 60, preferably 20 to 50.
The circulation gas flow rate is set such that the sum of the circulation gas flow rate and the new air flow rate is a gas amount sufficient for releasing ammonia in the diffusion tower. Further, the flow rate of the new air is set so that oxygen necessary for oxidizing ammonia in the subsequent catalytic oxidation tower can be sufficiently supplied.

本発明では、放散塔塔頂からの流出ガス(以下、放散ガスということがある。)を触媒酸化する前に凝縮処理して放散ガスの含水率(水蒸気含有率)を10vol%以下特に8vol%以下とすることが好ましい。このように放散ガスの含水率を低くすることにより、触媒酸化塔の酸化触媒の劣化を防止(抑制)することができる。   In the present invention, the effluent gas from the top of the stripping tower (hereinafter sometimes referred to as stripped gas) is subjected to condensation treatment before catalytic oxidation, so that the moisture content (water vapor content) of the stripped gas is 10 vol% or less, particularly 8 vol%. The following is preferable. Thus, by reducing the moisture content of the emitted gas, it is possible to prevent (suppress) the deterioration of the oxidation catalyst of the catalytic oxidation tower.

放散ガスを凝縮処理するには、熱交換器によって降温させた後、凝縮水を気液分離することが好ましい。この冷却凝縮の前段で、放散ガスを圧縮した後、熱交換器で冷却し、次いで冷却水と熱交換させて水を凝縮させて気液分離してもよい。気液分離で分離された凝縮水は放散塔内の上部に散水されることが好ましい。   In order to condense the emitted gas, it is preferable to gas-liquid separate the condensed water after the temperature is lowered by a heat exchanger. Before the cooling and condensation, the diffused gas may be compressed, then cooled by a heat exchanger, and then heat exchanged with cooling water to condense the water and separate the gas and liquid. It is preferable that the condensed water separated by gas-liquid separation is sprinkled on the upper part in the diffusion tower.

本発明では、凝縮処理後のガスを加温して露点を高くした後、触媒充填層を有した触媒反応器に導入してアンモニアを酸化分解することが好ましい。この反応器入口ガス温度は300〜400℃特に320〜350℃程度であることが好ましい。アンモニア分解用酸化触媒としては、例えば、アルミナ、ゼオライトなどの担体に、ルテニウム、白金などの貴金属を担持させた触媒を用いることができる。アンモニアの酸化反応式は次の通りである。   In the present invention, it is preferable to heat the gas after the condensation treatment to increase the dew point and then introduce it into a catalyst reactor having a catalyst packed bed to oxidatively decompose ammonia. The reactor inlet gas temperature is preferably about 300 to 400 ° C, particularly about 320 to 350 ° C. As the oxidation catalyst for ammonia decomposition, for example, a catalyst in which a noble metal such as ruthenium or platinum is supported on a carrier such as alumina or zeolite can be used. The oxidation reaction formula of ammonia is as follows.

4NH+3O → 2N+6H4NH 3 + 3O 2 → 2N 2 + 6H 2 O

本発明では、放散塔の温度(好ましくは塔内の塔頂部のガス温度)を45〜70℃に設定するが、この放散処理温度では、過酸化水素の分解速度が小さく、塔底液中の過酸化水素濃度が十分に低下しないおそれがある。そこで、本発明では、塔底液を放散塔から取り出して加熱して過酸化水素を分解してもよい。この加熱の熱源としては、触媒反応器からの反応ガスの保有熱を利用し、熱交換して熱回収するのが好ましく、また、加熱により過酸化水素を分解した後の液を被処理水と熱交換させて熱回収することが好ましい。この熱交換により降温した液は気液分離し、ガスを放散塔の上部に戻し、水は処理水として取り出すことが好ましい。   In the present invention, the temperature of the stripping tower (preferably the gas temperature at the top of the tower in the tower) is set to 45 to 70 ° C. At this stripping treatment temperature, the decomposition rate of hydrogen peroxide is small, There is a possibility that the hydrogen peroxide concentration may not be sufficiently lowered. Therefore, in the present invention, hydrogen peroxide may be decomposed by removing the tower bottom liquid from the stripping tower and heating it. As a heat source for this heating, it is preferable to recover the heat by exchanging heat using the retained heat of the reaction gas from the catalytic reactor, and the liquid after decomposing hydrogen peroxide by heating is treated with the water to be treated. Heat recovery is preferably performed by heat exchange. The liquid cooled by this heat exchange is preferably separated into gas and liquid, the gas is returned to the upper part of the diffusion tower, and the water is taken out as treated water.

以下、図面を参照して実施の形態について説明する。図1〜4はそれぞれ本発明の実施の形態に係る過酸化水素及びアンモニア含有水の処理方法及び装置を示すフロー図である。   Hereinafter, embodiments will be described with reference to the drawings. 1 to 4 are flowcharts showing a method and an apparatus for treating hydrogen peroxide and ammonia-containing water, respectively, according to embodiments of the present invention.

図1の方法及び装置では、過酸化水素及びアンモニアを含有した排水が放散塔1の上部の散水器2aに被処理水供給配管2を介して供給され、該散水器2aから散水される。散水された水は、充填層3においてガスと接触しながら流下し、アンモニアが放散された塔底液Lとなる。   In the method and apparatus of FIG. 1, the waste water containing hydrogen peroxide and ammonia is supplied to the sprinkler 2a at the upper part of the diffusion tower 1 through the treated water supply pipe 2, and is sprinkled from the sprinkler 2a. The sprinkled water flows down in contact with the gas in the packed bed 3 to become a column bottom liquid L from which ammonia has been diffused.

この塔底液Lは、配管4、循環ポンプ5、配管6,7、熱交換器8、配管9を介して循環される。熱交換器8には熱源流体としてスチームが弁10を介して供給され、塔底液Lを加熱するよう構成されている。弁10の開度調節により熱交換器8へのスチーム供給量が制御される。なお、塔底液の一部は処理水として、配管6に連なる配管6aから取り出される。   The tower bottom liquid L is circulated through the pipe 4, the circulation pump 5, the pipes 6 and 7, the heat exchanger 8, and the pipe 9. Steam is supplied to the heat exchanger 8 through the valve 10 as a heat source fluid, and the tower bottom liquid L is heated. The amount of steam supplied to the heat exchanger 8 is controlled by adjusting the opening of the valve 10. A part of the tower bottom liquid is taken out from the pipe 6 a connected to the pipe 6 as treated water.

充填層3の下側の塔内に気体を吹き込むようにノズル11が設置されている。このノズル11から吹き込まれた気体が充填層3を上昇して排水と接触し、排水中のアンモニアがガスとなって放散する。放散したガス及び水の蒸発により発生した水蒸気は、空気と共に塔内を上昇し、デミスタ(ミスト分離器)12を通過して水滴が除去される。このアンモニア及び水蒸気含有ガスは、塔頂から配管13へ流出し、熱交換器14にて露点以上、好ましくは280〜380℃特に320〜350℃程度に加熱された後、配管15を通り、触媒反応器16に導入される。なお、配管15の途中に触媒反応器入口ヒーター15Aが設けられている。   The nozzle 11 is installed so that gas may be blown into the lower column of the packed bed 3. The gas blown from the nozzle 11 ascends the packed bed 3 and comes into contact with the wastewater, and the ammonia in the wastewater is diffused as a gas. Water vapor generated by evaporation of the diffused gas and water rises in the tower together with air and passes through a demister (mist separator) 12 to remove water droplets. The ammonia and water vapor-containing gas flows out from the top of the tower to the pipe 13 and is heated to a dew point or higher, preferably 280 to 380 ° C., particularly about 320 to 350 ° C. Introduced into the reactor 16. A catalyst reactor inlet heater 15 </ b> A is provided in the middle of the pipe 15.

ガス中のアンモニアは、触媒反応器16内の触媒16aと接触することにより、前記反応式に従って酸化される。この酸化反応は発熱反応であり、ガス温度が上昇する。触媒反応器16から流出したガスは、配管17から熱交換器14に導入され、放散塔流出ガスと熱交換して降温する。このガスは、次いで配管18からブロワ19及び配管20を介してノズル11に供給される。ブロワ19から送り出されたガスの一部は、配管20から分岐した配管21を介して煙突22へ送られ系外に排出される。配管21の分岐部よりも下流側(ノズル11側)に、空気(大気)がブロワ23及び配管24を介して添加される。   Ammonia in the gas is oxidized according to the above reaction formula by contacting the catalyst 16a in the catalytic reactor 16. This oxidation reaction is an exothermic reaction, and the gas temperature rises. The gas flowing out from the catalyst reactor 16 is introduced into the heat exchanger 14 through the pipe 17, and the temperature is lowered by exchanging heat with the diffusion tower outflow gas. This gas is then supplied from the pipe 18 to the nozzle 11 via the blower 19 and the pipe 20. A part of the gas sent out from the blower 19 is sent to the chimney 22 via the pipe 21 branched from the pipe 20 and discharged out of the system. Air (atmosphere) is added to the downstream side (nozzle 11 side) of the branch portion of the pipe 21 via the blower 23 and the pipe 24.

本発明において、触媒酸化塔出口ガスから熱回収した後に、ガスの大半を放散塔に循環するのが好ましい。このことにより熱利用率を高め、経済性を上げることができるのは上述した通りであるが、ガス再循環にはさらに次に述べる利点がある。   In the present invention, it is preferable to circulate most of the gas to the stripping tower after recovering heat from the catalyst oxidation tower outlet gas. As described above, this makes it possible to increase the heat utilization rate and improve the economic efficiency, but the gas recirculation has the following advantages.

触媒酸化塔でアンモニアを酸化処理すると、通常、窒素酸化物(NO)が副生する。これは公害物質の一つであり、大気に放出する場合には放出量を極力低減すべきである。特に原水中のアンモニア濃度が高い場合は窒素酸化物の放出量を十分に考慮する必要がある。 When ammonia is oxidized in the catalytic oxidation tower, nitrogen oxides (NO x ) are usually by-produced. This is one of the pollutants, and when released into the atmosphere, the amount of release should be reduced as much as possible. In particular, when the ammonia concentration in the raw water is high, it is necessary to fully consider the release amount of nitrogen oxides.

窒素酸化物の放出量は、式(1)のようにガス流量とその濃度との積で表される。しかし本発明の方法では、ガスを再循環するので、放出ガス流量を大幅に下げることができ、窒素酸化物の放出量を低減することができる。また、循環した窒素酸化物は再び触媒酸化塔に戻り、式(2)のようにアンモニアと反応して分解除去されるので、窒素酸化物の絶対量を低減することができ、大気への窒素酸化物の放出量をさらに大幅に低減することができる。
大気への窒素酸化物放出量=ガス流量×窒素酸化物濃度 …(1)
NO+NH→N+HO …(2)
The amount of nitrogen oxide released is expressed by the product of the gas flow rate and its concentration as shown in equation (1). However, in the method of the present invention, since the gas is recirculated, the flow rate of the released gas can be greatly reduced, and the amount of nitrogen oxide released can be reduced. Further, since the circulated nitrogen oxides are returned to the catalytic oxidation tower again and reacted with ammonia as shown in the formula (2), they are decomposed and removed, so that the absolute amount of nitrogen oxides can be reduced and nitrogen to the atmosphere can be reduced. The amount of oxide released can be further greatly reduced.
Release amount of nitrogen oxides into the atmosphere = gas flow rate x nitrogen oxide concentration (1)
NO X + NH 3 → N 2 + H 2 O (2)

前記放散塔1内の塔頂部のガス出口の温度を検出するように温度センサ30が設けられており、この検出温度信号が制御器31に入力される。この検出温度が45〜70℃好ましくは50〜65℃となるように弁10によって熱交換器8へのスチーム供給量が制御される。なお、スチーム加熱を行わなくてもセンサ30の検出温度が45〜70℃の範囲となる場合には、熱交換器8へのスチーム供給を停止する。   A temperature sensor 30 is provided so as to detect the temperature of the gas outlet at the top of the diffusion tower 1, and this detected temperature signal is input to the controller 31. The amount of steam supplied to the heat exchanger 8 is controlled by the valve 10 so that the detected temperature is 45 to 70 ° C., preferably 50 to 65 ° C. Note that when the temperature detected by the sensor 30 is in the range of 45 to 70 ° C. without performing steam heating, the steam supply to the heat exchanger 8 is stopped.

配管20のうち、配管21の分岐部よりも下流側かつ配管24の合流部よりも上流側に流量センサ33が設けられている。また、新規空気吹き込み用配管24に流量センサ34が設けられている。これらの流量センサ33,34の検出流量信号が制御器31に入力され、触媒反応器16からの循環ガス流量Fc(流量センサ33の検出流量)は常に一定流量を保つように制御され、空気ブロワ23からの新規空気流量Ff(流量センサ34の検出流量)はアンモニアとの当量に対して十分な量となる一定量に制御される。この結果、通常のSC−1排水の場合、Fc/Ffは15〜60程度になる。   In the pipe 20, a flow rate sensor 33 is provided on the downstream side of the branch portion of the pipe 21 and the upstream side of the joining portion of the pipe 24. Further, a flow rate sensor 34 is provided in the new air blowing pipe 24. The flow rate signals detected by these flow rate sensors 33 and 34 are input to the controller 31, and the circulating gas flow rate Fc from the catalyst reactor 16 (the flow rate detected by the flow rate sensor 33) is controlled so as to always maintain a constant flow rate. The new air flow rate Ff from 23 (the flow rate detected by the flow rate sensor 34) is controlled to a constant amount that is sufficient for the equivalent of ammonia. As a result, in the case of normal SC-1 wastewater, Fc / Ff is about 15-60.

このように、新規吹き込み空気の流量Ffを循環ガス流量Fcの1/15〜1/60とすることにより、新規空気吹込量は触媒反応器16でのアンモニア酸化反応に必要な量論量の1.05〜1.5倍程度の必要最小量となり、その他は全て循環ガスを用いることになる。   Thus, by setting the flow rate Ff of the new blown air to 1/15 to 1/60 of the circulating gas flow rate Fc, the new air blown amount is 1 of the stoichiometric amount necessary for the ammonia oxidation reaction in the catalytic reactor 16. The required minimum amount is about 0.05 to 1.5 times, and all others use circulating gas.

また、放散塔の温度を45〜70℃とすると共に、ストリッピングガス量(Fc+Ff)を理論上必要な最小流量の200%未満とすることにより、少ない空気吹き込み量で安全にかつ効率的にストリッピングすることが可能となる。ただし放散温度が45℃超であるため放散ガスの水蒸気含有率が高くなり、触媒反応器16の触媒寿命は従来より短くなりコストアップになるが、エネルギーコストが下がり、全体として運転費を従来より低減することができる。   In addition, the temperature of the stripping tower is set to 45 to 70 ° C., and the stripping gas amount (Fc + Ff) is set to less than 200% of the theoretically required minimum flow rate. Ripping is possible. However, since the diffusion temperature is higher than 45 ° C., the water vapor content of the diffusion gas is high, and the catalyst life of the catalytic reactor 16 is shorter than before and the cost is increased, but the energy cost is reduced and the operation cost is reduced as a whole. Can be reduced.

図2は、図1の過酸化水素及びアンモニア含有水の処理方法及び装置において、ストリッピングの効率を上げるために放散塔1をより高い温度(例えば50℃)で運転し、放散塔1からの流出ガスを導く配管13に、ガス温度を45℃よりも低い温度(例えば40〜45℃)にまで冷却するための冷却用熱交換器40と気液分離タンク41とを設置したものである。熱交換器40には冷温流体として温度30〜35℃程度の冷水CWが通水される。気液分離タンク41でガスから分離された凝縮水は、配管42を介して放散塔1内の好ましくは充填層3の上側の散水ノズル42aから散水される。   FIG. 2 shows a method and apparatus for treating hydrogen peroxide and ammonia-containing water in FIG. 1, in which the stripping tower 1 is operated at a higher temperature (for example, 50 ° C.) in order to increase the stripping efficiency. A cooling heat exchanger 40 and a gas-liquid separation tank 41 for cooling the gas temperature to a temperature lower than 45 ° C. (for example, 40 to 45 ° C.) are installed in the pipe 13 for guiding the outflow gas. Cold water CW having a temperature of about 30 to 35 ° C. is passed through the heat exchanger 40 as a cold fluid. The condensed water separated from the gas in the gas-liquid separation tank 41 is sprinkled through a pipe 42 from a watering nozzle 42 a in the diffusion tower 1, preferably above the packed bed 3.

気液分離タンク41からのガスは、配管41aを介して熱交換器14に送られ、昇温した後触媒反応器16に導入される。図2のその他の構成は図1と同一であり、同一符号は同一部分を示している。   The gas from the gas-liquid separation tank 41 is sent to the heat exchanger 14 through the pipe 41a, and after being heated, is introduced into the catalytic reactor 16. Other configurations in FIG. 2 are the same as those in FIG. 1, and the same reference numerals denote the same parts.

この図2の方法及び装置では、放散塔1からの放散ガスを熱交換器40で45℃よりも低い温度まで冷却して水分を凝縮させ、気液分離タンク41で凝縮水を分離するので、ガスの含水率が10vol%以下に下がる。これにより、放散塔を高い効率で運転しながら触媒反応器16の触媒への負荷が低減され、触媒寿命を長くすることができる。但し、放散ガスを冷却して水蒸気を凝縮させて放散塔1に戻した水を、放散塔1内で再度蒸発させなければならないので、その分、図1の方法及び装置よりもエネルギーコストが上昇する。   In the method and apparatus of FIG. 2, the diffused gas from the diffusion tower 1 is cooled to a temperature lower than 45 ° C. by the heat exchanger 40 to condense the moisture, and the condensed water is separated by the gas-liquid separation tank 41. The moisture content of the gas is reduced to 10 vol% or less. Thereby, the load on the catalyst of the catalytic reactor 16 is reduced while operating the stripping tower with high efficiency, and the catalyst life can be extended. However, since the water returned to the stripping tower 1 after cooling the stripped gas and condensing water vapor must be evaporated again in the stripping tower 1, the energy cost is higher than that of the method and apparatus of FIG. To do.

図3の方法及び装置は、図2の方法及び装置より高温、低風量で効率良くストリッピングするものであり、放散塔1からのガスを圧縮機43にて圧縮した後、冷却用熱交換器44にて冷却する。この熱交換器44の低温流体(塔底液)として、配管6から分岐した配管46によって処理水の一部が導入される。熱交換器44で熱交換することにより昇温した処理水の一部は、配管47を介して放散塔1内(好ましくは充填層3の下側)に戻される。   The method and apparatus shown in FIG. 3 efficiently strips at a higher temperature and lower air volume than the method and apparatus shown in FIG. 2. After the gas from the stripping tower 1 is compressed by the compressor 43, the heat exchanger for cooling is used. Cool at 44. A part of the treated water is introduced as a low-temperature fluid (column bottom liquid) of the heat exchanger 44 through a pipe 46 branched from the pipe 6. A part of the treated water whose temperature has been raised by heat exchange in the heat exchanger 44 is returned to the inside of the diffusion tower 1 (preferably below the packed bed 3) through the pipe 47.

圧縮機43からの高温ガスを熱交換器44によって冷却して凝縮させるので、熱交換器44から配管47を介して放散塔1に戻る塔底液の温度が97〜110℃特に100〜105℃程度に高くなっている。このため、図3では放散塔1の塔底液加熱用の熱交換器8は省略されている。   Since the high temperature gas from the compressor 43 is cooled and condensed by the heat exchanger 44, the temperature of the bottom liquid returning from the heat exchanger 44 to the stripping tower 1 through the pipe 47 is 97 to 110 ° C, particularly 100 to 105 ° C. It is getting higher. For this reason, in FIG. 3, the heat exchanger 8 for heating the bottom liquid of the stripping tower 1 is omitted.

圧縮された放散ガスが熱交換器44で冷却された後、気液分離タンク48に導入される。この凝縮水は、気液分離タンク48の底部から配管49を介して取り出され、減圧バルブ50及び配管51を介して被処理水供給配管2に戻される。   The compressed emitted gas is cooled by the heat exchanger 44 and then introduced into the gas-liquid separation tank 48. This condensed water is taken out from the bottom of the gas-liquid separation tank 48 through the pipe 49 and returned to the treated water supply pipe 2 through the pressure reducing valve 50 and the pipe 51.

気液分離タンク48で凝縮水が分離されたガスは、冷水を冷温流体とする冷却用熱交換器40にて冷却された後、気液分離タンク41にて凝縮水が分離される。この図3の実施の形態では、気液分離タンク41にて分離された凝縮水は、配管52を介して被処理排水供給配管2に戻されるよう構成されているが、図2と同じく放散塔1の上部に戻されてもよい。   The gas from which condensed water has been separated in the gas-liquid separation tank 48 is cooled in a cooling heat exchanger 40 using cold water as a cold fluid, and then condensed in a gas-liquid separation tank 41. In the embodiment of FIG. 3, the condensed water separated in the gas-liquid separation tank 41 is configured to be returned to the treated wastewater supply pipe 2 via the pipe 52. It may be returned to the top of 1.

この気液分離タンク48からのガスを、図2の場合と同様に熱交換器40で冷却して水蒸気を凝縮させ、気液分離タンク41で凝縮水を分離し、その後、減圧バルブ45を通って熱交換器14によって加温した後、触媒反応器17に供給する。なお、この気液分離タンク48からの凝縮水は配管51によって被処理水供給配管2に戻されているが、図2の配管42のように放散塔1の上部のノズル42aに供給するよう構成されてもよい。   The gas from the gas-liquid separation tank 48 is cooled by the heat exchanger 40 in the same manner as in FIG. 2 to condense the water vapor, the condensed water is separated by the gas-liquid separation tank 41, and then passed through the pressure reducing valve 45. Then, the mixture is heated by the heat exchanger 14 and then supplied to the catalyst reactor 17. The condensed water from the gas-liquid separation tank 48 is returned to the treated water supply pipe 2 by the pipe 51, but is configured to be supplied to the nozzle 42a at the upper part of the diffusion tower 1 like the pipe 42 in FIG. May be.

図3の装置では、圧縮機43の回転数、熱交換器40への冷却水通水量などを制御することにより放散塔1の塔頂ガス温度を制御することができる。図3のその他の構成は図2と同一であり、同一符号は同一部分を示している。   In the apparatus of FIG. 3, the top gas temperature of the stripping tower 1 can be controlled by controlling the number of rotations of the compressor 43, the amount of cooling water passing through the heat exchanger 40, and the like. Other configurations in FIG. 3 are the same as those in FIG. 2, and the same reference numerals denote the same parts.

この図3の方法及び装置によると、放散塔1からの放散ガスを圧縮機43で断熱圧縮することによりガスを高温に昇温させ、次いで熱交換器44で塔底液と熱交換させて降温させると共に水蒸気を凝縮させて、気液分離タンク48で凝縮水を分離し、ガスの含水率を下げる。この場合の凝縮温度は塔底液温度(例えば60℃)以下にはできないので、さらに冷却水を用いた熱交換器40で45℃以下に冷却して気液分離タンク41で凝縮水を分離してガスの含水率を10vol%以下まで下げる。これにより触媒反応器16の導入ガスの含水率が低くなり、触媒寿命を長くすることができる。   According to the method and apparatus of FIG. 3, the gas is heated to a high temperature by adiabatic compression of the diffused gas from the diffusion tower 1 by the compressor 43, and then the temperature is lowered by heat exchange with the tower bottom liquid by the heat exchanger 44. At the same time, the water vapor is condensed and the condensed water is separated in the gas-liquid separation tank 48 to lower the moisture content of the gas. In this case, the condensation temperature cannot be lower than the tower bottom liquid temperature (for example, 60 ° C.). The water content of the gas is reduced to 10 vol% or less. As a result, the moisture content of the gas introduced into the catalyst reactor 16 is lowered, and the catalyst life can be extended.

図4は、図1の方法及び装置において、被処理水供給配管2に供給される被処理水のpHを9以上、好ましくは10.5〜12に調整するために、アルカリ添加手段81を有したpH調整槽80を設置している。また、処理水中の過酸化水素濃度を低くするために、塔底液の一部を熱交換器60で加熱して塔底液中の過酸化水素を分解し、気液分離器64で気液分離後、液を処理水として取り出し、ガスを放散塔1の上部に戻すようにしている。   FIG. 4 shows the method and apparatus of FIG. 1 having an alkali adding means 81 in order to adjust the pH of the water to be treated supplied to the water to be treated supply pipe 2 to 9 or more, preferably 10.5 to 12. A pH adjusting tank 80 is installed. Further, in order to reduce the hydrogen peroxide concentration in the treated water, a part of the tower bottom liquid is heated by the heat exchanger 60 to decompose the hydrogen peroxide in the tower bottom liquid, and the gas-liquid separator 64 After the separation, the liquid is taken out as treated water, and the gas is returned to the upper part of the diffusion tower 1.

即ち、放散塔1の塔底液Lの一部は、配管4、ポンプ5、配管6,6aを介して熱交換器60に通液され、加熱される。この熱交換器60の伝熱チューブ60aに加熱用高温流体を流通させるために、前記触媒反応器16からの反応ガス配管17の途中(熱交換器14よりも触媒反応器16側)に熱交換器70が設置され、熱媒体(例えば熱媒体油)が配管71、伝熱チューブ60a、配管72、循環ポンプ73、配管74を介して熱交換器60,70間を循環するよう構成されている。   That is, a part of the bottom liquid L of the stripping tower 1 is passed through the heat exchanger 60 via the pipe 4, the pump 5, and the pipes 6 and 6a and heated. In order to circulate the high-temperature fluid for heating through the heat transfer tube 60a of the heat exchanger 60, heat exchange is performed in the middle of the reaction gas pipe 17 from the catalyst reactor 16 (on the side of the catalyst reactor 16 relative to the heat exchanger 14). The heat exchanger (for example, heat medium oil) circulates between the heat exchangers 60 and 70 via the pipe 71, the heat transfer tube 60a, the pipe 72, the circulation pump 73, and the pipe 74. .

塔底液Lが熱交換器60で好ましくは90℃以上、例えば90〜98℃に加熱されることにより、過酸化水素の分解が進行する。熱交換器60で加熱された液は、配管61から熱交換器62に通液され、被処理水と熱交換して25〜35℃例えば約30℃まで降温した後、配管63を介して気液分離タンク64に導入され、気液分離処理される。ガスが分離された処理水は配管65を介して取り出され、過酸化水素の分解により生じたOや、その他の成分(例えば水蒸気)を含んだガスは配管66を介して放散塔1の上部(デミスタ12よりも下側)に導入される。図4のその他の構成は図1と同一であり、同一符号は同一部分を示している。 The tower bottom liquid L is heated in the heat exchanger 60 preferably at 90 ° C. or higher, for example, 90 to 98 ° C., so that decomposition of hydrogen peroxide proceeds. The liquid heated by the heat exchanger 60 is passed through the pipe 61 to the heat exchanger 62, exchanges heat with the water to be treated, cools to 25 to 35 ° C., for example, about 30 ° C., and then flows through the pipe 63. It is introduced into the liquid separation tank 64 and subjected to gas-liquid separation processing. The treated water from which the gas has been separated is taken out through the pipe 65, and the gas containing O 2 generated by the decomposition of hydrogen peroxide and other components (for example, water vapor) is connected to the upper portion of the stripping tower 1 through the pipe 66. (Below the demister 12). The other configurations in FIG. 4 are the same as those in FIG. 1, and the same reference numerals denote the same parts.

この図4の方法及び装置によると、過酸化水素が十分に分解された処理水が配管65から得られる。また、この実施の形態では、熱交換器60からの高温処理水を熱交換器62において被処理水と熱交換させ、配管2から放散塔1に導入される被処理水の温度を高く(好ましくは80〜100℃、例えば約90℃)しているので、熱交換器8の負荷が軽減される。   According to the method and apparatus of FIG. 4, treated water in which hydrogen peroxide is sufficiently decomposed is obtained from the pipe 65. In this embodiment, the high-temperature treated water from the heat exchanger 60 is heat-exchanged with the treated water in the heat exchanger 62, and the temperature of the treated water introduced into the diffusion tower 1 from the pipe 2 is increased (preferably 80 to 100 ° C., for example, about 90 ° C.), the load on the heat exchanger 8 is reduced.

上記実施の形態はいずれも本発明の一例であり、本発明は図示以外の形態とされてもよい。例えば、図4に示す過酸化水素分解機構(熱交換器60,62,70、気液分離器64、循環ポンプ73及び各配管)を図1〜3の装置に設置してもよい。また、図4において、図2又は図3に示す放散ガス凝縮機構を設置してもよい。なお、図1〜3においては被処理水のpHを9以上に調整するためのpH調整槽80及びアルカリ添加手段81を省略しているが、これを設置してpHを調整するものとする。   Each of the above embodiments is an example of the present invention, and the present invention may be configured other than illustrated. For example, the hydrogen peroxide decomposition mechanism (heat exchangers 60, 62, 70, gas-liquid separator 64, circulation pump 73 and each pipe) shown in FIG. 4 may be installed in the apparatus shown in FIGS. Moreover, in FIG. 4, you may install the diffused gas condensing mechanism shown in FIG. 2 or FIG. 1 to 3, the pH adjusting tank 80 and the alkali adding means 81 for adjusting the pH of the water to be treated to 9 or more are omitted, but this is installed to adjust the pH.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

以下の実施例において処理した原水は、アンモニア濃度2000mg/L、過酸化水素濃度5000mg/LのSC−1工程からの排水をpH11に調整したものであり、この原水を41.7m/hrにて放散塔1に供給した。放散塔1の直径は1.8m、充填高さは7.8mである。触媒反応器16には貴金属系触媒を4.3m充填した。アンモニア濃度の測定はイオン電極法により行い、過酸化水素濃度の測定は硫酸チタン法により行った。 The raw water treated in the following examples was prepared by adjusting the waste water from the SC-1 process having an ammonia concentration of 2000 mg / L and a hydrogen peroxide concentration of 5000 mg / L to pH 11, and the raw water was adjusted to 41.7 m 3 / hr. And supplied to the stripping tower 1. The diameter of the stripping tower 1 is 1.8 m, and the packing height is 7.8 m. The catalyst reactor 16 was filled with 4.3 m 3 of a noble metal catalyst. The ammonia concentration was measured by an ion electrode method, and the hydrogen peroxide concentration was measured by a titanium sulfate method.

[実施例1〜2、比較例1〜2]
図1に示す処理フローに従って、表1に示す条件で処理し、結果を表1に示した。なお、表1中、放散ガスの含水率は、放散塔の塔頂ガスの含水率であり、触媒反応器流入ガス含水率は触媒反応器の入口ガスの含水率であり、それぞれ抽気してガス分析することにより求めた値である。塔頂ガス温度は温度センサ30の検出温度である。
[Examples 1-2, Comparative Examples 1-2]
According to the processing flow shown in FIG. 1, processing was performed under the conditions shown in Table 1, and the results are shown in Table 1. In Table 1, the moisture content of the stripping gas is the moisture content of the top gas of the stripping tower, and the catalyst reactor inflow gas moisture content is the moisture content of the inlet gas of the catalyst reactor. This is a value obtained by analysis. The tower top gas temperature is the temperature detected by the temperature sensor 30.

実施例1のように、放散塔の温度を高くすることにより、少ない風量でアンモニアの99%を放散させ、少ない触媒量でアンモニアを分解することができる。また、触媒反応器入口ヒーターに熱負荷をかけることなく、分解が可能である。   As in Example 1, by increasing the temperature of the diffusion tower, 99% of ammonia can be diffused with a small amount of air, and ammonia can be decomposed with a small amount of catalyst. Further, the decomposition can be performed without applying a heat load to the catalyst reactor inlet heater.

実施例2のように、放散塔温度を50℃まで下げると、放散塔ガス量を28000Nm/hまで増加しなければならない。このため、触媒量は3.0mから4.3mに増加となる。また、触媒反応器入口ヒーターの熱負荷を202kWにしなければならない。しかし、ガス中の水分量が19.6vol%から12.1vol%に減るので触媒寿命は長くなることが期待できる。 As in Example 2, when the stripping tower temperature is lowered to 50 ° C., the stripping tower gas amount must be increased to 28000 Nm 3 / h. For this reason, the catalyst amount is increased from 3.0 m 3 to 4.3 m 3 . In addition, the heat load of the catalyst reactor inlet heater must be 202 kW. However, since the moisture content in the gas is reduced from 19.6 vol% to 12.1 vol%, it can be expected that the catalyst life will be extended.

比較例1では、放散塔運転温度が40℃である。このため、放散塔ガス量は41000Nm/hになり、触媒量は6.3mを必要とする。また、触媒反応器入口ヒーターの熱負荷は335kWになる。低含水率ではあるが、ヒーター負荷が大きいのでランニングコスト全体を押し上げる結果となる。 In Comparative Example 1, the operating temperature of the stripping tower is 40 ° C. For this reason, the amount of stripping tower gas is 41000 Nm 3 / h, and the amount of catalyst is 6.3 m 3 . Further, the heat load of the catalyst reactor inlet heater is 335 kW. Although the moisture content is low, the heater load is large, which increases the overall running cost.

比較例2では、新規空気量を480Nm/hまで下げたところ、触媒反応器出口の酸素濃度がゼロになり、未反応アンモニアが100ppmにまで増加した。480Nm/hはアンモニアとちょうど当量になる酸素量なので、それ以上の酸素が必要になることが分かる。 In Comparative Example 2, when the amount of new air was reduced to 480 Nm 3 / h, the oxygen concentration at the outlet of the catalyst reactor became zero, and the unreacted ammonia increased to 100 ppm. Since 480 Nm 3 / h is an amount of oxygen that is just equivalent to ammonia, it can be seen that more oxygen is required.

[実施例3、比較例3]
図2に示す処理フローに従って、表2に示す条件で処理し、結果を表2に示した。なお熱交換器40により放散塔1の塔頂流出ガスを45℃に冷却して気液分離タンク41に導入した。
[Example 3, Comparative Example 3]
According to the processing flow shown in FIG. 2, processing was performed under the conditions shown in Table 2, and the results are shown in Table 2. The tower top effluent gas of the stripping tower 1 was cooled to 45 ° C. by the heat exchanger 40 and introduced into the gas-liquid separation tank 41.

表2に示す実施例3は、比較例3と比べて新規空気量を少なくしたために放散塔塔底ヒーターおよび触媒反応器入口ヒーターの負荷が小さくなっている。また、実施例3は、表1の実施例と比べて加熱用エネルギーや冷却水などのユーティリティコストがかかるが、触媒反応器に入るガスの含水率が格段に低いので、長期の触媒寿命が期待できる。触媒交換費用を考慮すると、運転費の低減に貢献できる。   In Example 3 shown in Table 2, since the amount of new air was reduced as compared with Comparative Example 3, the load on the strip tower bottom heater and the catalyst reactor inlet heater was reduced. Moreover, although Example 3 requires utility costs, such as heating energy and cooling water, compared with the Example of Table 1, since the moisture content of the gas which enters a catalyst reactor is remarkably low, a long catalyst life is expected. it can. Considering the catalyst replacement cost, it can contribute to the reduction of the operating cost.

[実施例4]
図2のフローに基く実施例3は、図1のフローに基く実施例1と比較すると、触媒反応器入口ガスの含水率は低くなるが、触媒反応器入口ヒーターの負荷が大きくなり、かつ冷却水が必要になる。ユーティリティコストが大きいことが実施例3のデメリットである。これを改善する方法として、図3に示すように塔頂ガスから蒸気圧縮により熱回収してエネルギー消費を低減することが考えられる。この場合、放散塔運転温度を更に高くして塔頂ガスの含水率を高くし、触媒反応器流入ガス量を減らして触媒量を少なくするのが得策である。
図3に示す処理フローに従って、表3に示す条件で処理し、結果を表3に示した。なお、圧縮機43にて圧縮後のガス温度は133℃であり、これを熱交換器44にて80℃まで冷却し、気液分離タンク48で気液分離した後、膨張弁45を通して断熱膨張させた。この分離ガスを熱交換器40で45℃に降温させて気液分離タンクに導入した。放散塔1の塔頂ガス温度は塔底ヒーターにより制御した。
実施例4と実施例3を比較すると、実施例4では圧縮機動力がかかるが、触媒の量を減らすことができる。動力費と触媒価格とのバランスによりフローを選択すれば良い。
[Example 4]
Compared with Example 1 based on the flow of FIG. 1, Example 3 based on the flow of FIG. 2 has a lower moisture content of the catalyst reactor inlet gas, but increases the load on the catalyst reactor inlet heater, and cooling. I need water. The large utility cost is a disadvantage of the third embodiment. As a method of improving this, it is conceivable to reduce the energy consumption by recovering heat from the tower top gas by vapor compression as shown in FIG. In this case, it is advantageous to further increase the operating temperature of the stripping tower to increase the moisture content of the tower top gas, to reduce the amount of catalyst reactor inflow gas, and to reduce the amount of catalyst.
According to the processing flow shown in FIG. 3, processing was performed under the conditions shown in Table 3, and the results are shown in Table 3. The gas temperature after compression by the compressor 43 is 133 ° C., which is cooled to 80 ° C. by the heat exchanger 44, separated from the gas and liquid by the gas / liquid separation tank 48, and then adiabatically expanded through the expansion valve 45. I let you. The separated gas was cooled to 45 ° C. by the heat exchanger 40 and introduced into the gas-liquid separation tank. The tower top gas temperature of the stripping tower 1 was controlled by a tower bottom heater.
Comparing Example 4 and Example 3, compressor power is applied in Example 4, but the amount of catalyst can be reduced. The flow may be selected according to the balance between the power cost and the catalyst price.

[実施例5]
図4に示す処理フローに従って、表4に示す条件で処理し、結果を表4に示した。なお原水をpH調整槽80に導入し、水酸化ナトリウムを添加してpH11.0とした。熱交換器60では、塔底液を90℃に加熱し、これを熱交換器62で30℃に降温させた後、気液分離器64に導入した。その他の条件は実施例1と同一である。
[Example 5]
The processing was performed under the conditions shown in Table 4 in accordance with the processing flow shown in FIG. The raw water was introduced into the pH adjusting tank 80, and sodium hydroxide was added to adjust the pH to 11.0. In the heat exchanger 60, the column bottom liquid was heated to 90 ° C., the temperature was lowered to 30 ° C. by the heat exchanger 62, and then introduced into the gas-liquid separator 64. Other conditions are the same as those in the first embodiment.

[考察]
表1〜4から明らかな通り、本発明に係る各実施例によるとアンモニア及び過酸化水素の濃度を十分に低下させることができる。特に実施例1,2によると従来法より触媒量を大幅に削減でき、実施例3によると触媒反応器入口ガス中の水分濃度を低くできるので、触媒寿命を大幅に長くすることができ、実施例4によると少ない触媒量で長期の触媒寿命が期待でき、実施例5によると処理水中の過酸化水素濃度を著しく低くすることができる。
[Discussion]
As is apparent from Tables 1 to 4, according to the respective embodiments of the present invention, the concentrations of ammonia and hydrogen peroxide can be sufficiently reduced. In particular, according to Examples 1 and 2, the amount of catalyst can be greatly reduced compared to the conventional method, and according to Example 3, the moisture concentration in the catalyst reactor inlet gas can be lowered, so that the catalyst life can be greatly extended. According to Example 4, a long catalyst life can be expected with a small amount of catalyst, and according to Example 5, the hydrogen peroxide concentration in the treated water can be remarkably lowered.

Figure 0006111698
Figure 0006111698

Figure 0006111698
Figure 0006111698

Figure 0006111698
Figure 0006111698

Figure 0006111698
Figure 0006111698

1 放散塔
3 充填層
16 触媒反応器
22 煙突
30 温度センサ
31 制御器
33,34 流量計
41,48,64 気液分離タンク
43 圧縮機
80 pH調整槽
81 アルカリ添加手段
DESCRIPTION OF SYMBOLS 1 Stripping tower 3 Packing bed 16 Catalytic reactor 22 Chimney 30 Temperature sensor 31 Controller 33, 34 Flowmeter 41, 48, 64 Gas-liquid separation tank 43 Compressor 80 pH adjustment tank 81 Alkali addition means

Claims (13)

過酸化水素とアンモニアを含む水を放散塔に導入すると共に、該放散塔に気体を吹き込んで放散処理する放散工程と、
該放散塔からの放散ガスを触媒酸化処理する触媒酸化工程と、
該触媒酸化工程からの処理ガスの一部を前記放散塔に循環させると共に、この循環ガスに対して新規空気を吹き込むガス循環供給工程と
を有する過酸化水素及びアンモニア含有水の処理方法において、
該過酸化水素とアンモニアを含む水のアンモニア濃度が500〜5000mg/Lで、過酸化水素濃度が1000〜10000mg/Lであり、
該放散塔への該過酸化水素とアンモニアを含む水の供給量W(m /hr)に対する該放散塔への該気体の吹込量G(Nm /hr)の比G/Wが100〜1000であり、
該放散塔の塔頂部の温度を45〜70℃とすると共に、
該新規空気吹き込み流量に対する前記処理ガスの循環ガス流量を15〜60倍とすることを特徴とする過酸化水素及びアンモニア含有水の処理方法。
A diffusion step of introducing water containing hydrogen peroxide and ammonia into the diffusion tower, and blowing the gas into the diffusion tower to perform a diffusion treatment;
A catalytic oxidation process for catalytically oxidizing the gas emitted from the diffusion tower;
In the method for treating hydrogen peroxide and ammonia-containing water, a part of the treatment gas from the catalytic oxidation step is circulated to the stripping tower and a gas circulation supply step for blowing new air into the circulation gas is provided.
The ammonia concentration of water containing hydrogen peroxide and ammonia is 500 to 5000 mg / L, and the hydrogen peroxide concentration is 1000 to 10000 mg / L.
The ratio G / W of the gas blowing amount G (Nm 3 / hr) to the stripping tower to the supply amount W (m 3 / hr) of water containing hydrogen peroxide and ammonia to the stripping tower is 100 to 1000,
The temperature at the top of the stripping tower is 45 to 70 ° C.,
A method for treating hydrogen peroxide and ammonia-containing water, wherein a circulation gas flow rate of the treatment gas with respect to the new air blowing flow rate is 15 to 60 times.
過酸化水素とアンモニアを含む水を放散塔に導入すると共に、該放散塔に気体を吹き込んで放散処理する放散工程と、
該放散塔からの放散ガスを触媒酸化処理する触媒酸化工程と、
該触媒酸化工程からの処理ガスの一部を前記放散塔に循環させると共に、この循環ガスに対して新規空気を吹き込むガス循環供給工程と
を有する過酸化水素及びアンモニア含有水の処理方法において、
該放散塔の塔頂部の温度を45〜70℃とすると共に、
該新規空気吹き込み流量に対する前記処理ガスの循環ガス流量を15〜60倍とし、
前記触媒酸化工程に供給される前記放散ガスの含水率が10体積%以下であることを特徴とする過酸化水素及びアンモニア含有水の処理方法。
A diffusion step of introducing water containing hydrogen peroxide and ammonia into the diffusion tower, and blowing the gas into the diffusion tower to perform a diffusion treatment;
A catalytic oxidation process for catalytically oxidizing the gas emitted from the diffusion tower;
In the method for treating hydrogen peroxide and ammonia-containing water, a part of the treatment gas from the catalytic oxidation step is circulated to the stripping tower and a gas circulation supply step for blowing new air into the circulation gas is provided.
The temperature at the top of the stripping tower is 45 to 70 ° C.,
The circulating gas flow rate of the processing gas with respect to the new air blowing flow rate is 15 to 60 times ,
A method for treating hydrogen peroxide and ammonia-containing water, wherein the moisture content of the emitted gas supplied to the catalytic oxidation step is 10% by volume or less .
過酸化水素とアンモニアを含む水を放散塔に導入すると共に、該放散塔に気体を吹き込んで放散処理する放散工程と、
該放散塔からの放散ガスを触媒酸化処理する触媒酸化工程と、
該触媒酸化工程からの処理ガスの一部を前記放散塔に循環させると共に、この循環ガスに対して新規空気を吹き込むガス循環供給工程と
を有する過酸化水素及びアンモニア含有水の処理方法において、
該放散塔の塔頂部の温度を45〜70℃とすると共に、
該新規空気吹き込み流量に対する前記処理ガスの循環ガス流量を15〜60倍とし、
前記放散ガスを冷却して凝縮水を生成させ、該凝縮水を分離したガスを前記触媒酸化工程に供給することを特徴とする過酸化水素及びアンモニア含有水の処理方法。
A diffusion step of introducing water containing hydrogen peroxide and ammonia into the diffusion tower, and blowing the gas into the diffusion tower to perform a diffusion treatment;
A catalytic oxidation process for catalytically oxidizing the gas emitted from the diffusion tower;
In the method for treating hydrogen peroxide and ammonia-containing water, a part of the treatment gas from the catalytic oxidation step is circulated to the stripping tower and a gas circulation supply step for blowing new air into the circulation gas is provided.
The temperature at the top of the stripping tower is 45 to 70 ° C.,
The circulating gas flow rate of the processing gas with respect to the new air blowing flow rate is 15 to 60 times ,
A method for treating hydrogen peroxide and ammonia-containing water, wherein the stripped gas is cooled to generate condensed water, and the gas separated from the condensed water is supplied to the catalytic oxidation step .
過酸化水素とアンモニアを含む水を放散塔に導入すると共に、該放散塔に気体を吹き込んで放散処理する放散工程と、
該放散塔からの放散ガスを触媒酸化処理する触媒酸化工程と、
該触媒酸化工程からの処理ガスの一部を前記放散塔に循環させると共に、この循環ガスに対して新規空気を吹き込むガス循環供給工程と
を有する過酸化水素及びアンモニア含有水の処理方法において、
該放散塔の塔頂部の温度を45〜70℃とすると共に、
該新規空気吹き込み流量に対する前記処理ガスの循環ガス流量を15〜60倍とし、
前記放散ガスを断熱圧縮し、放散塔の塔底液と熱交換させて冷却して第1凝縮水を生成させ、該第1凝縮水を分離したガスを冷却水と熱交換させて冷却し第2凝縮水を生成させ、該第2凝縮水を分離したガスを圧力開放した後に前記触媒酸化工程に送給することを特徴とする過酸化水素及びアンモニア含有水の処理方法。
A diffusion step of introducing water containing hydrogen peroxide and ammonia into the diffusion tower, and blowing the gas into the diffusion tower to perform a diffusion treatment;
A catalytic oxidation process for catalytically oxidizing the gas emitted from the diffusion tower;
In the method for treating hydrogen peroxide and ammonia-containing water, a part of the treatment gas from the catalytic oxidation step is circulated to the stripping tower and a gas circulation supply step for blowing new air into the circulation gas is provided.
The temperature at the top of the stripping tower is 45 to 70 ° C.,
The circulating gas flow rate of the processing gas with respect to the new air blowing flow rate is 15 to 60 times ,
The diffused gas is adiabatically compressed, heat exchanged with the bottom liquid of the diffusion tower and cooled to produce first condensed water, and the gas separated from the first condensed water is cooled and exchanged with cooling water for cooling. A method for treating hydrogen peroxide and ammonia-containing water , comprising: generating two condensed water, releasing the pressure of the gas from which the second condensed water is separated, and supplying the condensed water to the catalytic oxidation step .
請求項1、3又は4において、前記触媒酸化工程に供給される前記放散ガスの含水率が10体積%以下であることを特徴とする過酸化水素及びアンモニア含有水の処理方法。 5. The method for treating hydrogen peroxide and ammonia-containing water according to claim 1 , 3 or 4 , wherein the moisture content of the emitted gas supplied to the catalytic oxidation step is 10% by volume or less. 請求項1又はにおいて、前記放散ガスを冷却して凝縮水を生成させ、該凝縮水を分離したガスを前記触媒酸化工程に供給することを特徴とする過酸化水素及びアンモニア含有水の処理方法。 5. The method for treating hydrogen peroxide and ammonia-containing water according to claim 1 or 4 , wherein the diffusion gas is cooled to generate condensed water, and the gas separated from the condensed water is supplied to the catalytic oxidation step. . 請求項1において、前記放散ガスを断熱圧縮し、放散塔の塔底液と熱交換させて冷却して第1凝縮水を生成させ、該第1凝縮水を分離したガスを冷却水と熱交換させて冷却し第2凝縮水を生成させ、該第2凝縮水を分離したガスを圧力開放した後に前記触媒酸化工程に送給することを特徴とする過酸化水素及びアンモニア含有水の処理方法。 Oite to claim 1, said stripping gas adiabatically compressed, the bottom liquid and allowed to heat exchange with stripping column to produce a first condensed water and cooling, the gas separating the first condensed water and cooling water Treatment with hydrogen peroxide and ammonia-containing water, wherein the second condensed water is generated by heat exchange and cooled, and the gas from which the second condensed water is separated is released from pressure and then sent to the catalytic oxidation step Method. 請求項1ないしのいずれか1項において、前記過酸化水素及びアンモニア含有水をpH9以上に調整して前記放散塔に導入することを特徴とする過酸化水素及びアンモニア含有水の処理方法。 The method for treating hydrogen peroxide and ammonia-containing water according to any one of claims 1 to 7 , wherein the hydrogen peroxide and the ammonia-containing water are adjusted to pH 9 or more and introduced into the stripping tower. 請求項1ないしのいずれか1項において、前記放散塔の塔底液を放散塔から引き抜き90℃以上に加熱して過酸化水素を分解することを特徴とする過酸化水素及びアンモニア含有水の処理方法。 In any one of claims 1 to 8, wherein the stripping column bottoms liquid from the stripping tower of hydrogen peroxide and ammonia-containing water, wherein the decomposition of hydrogen peroxide by heating the withdrawal 90 ° C. or more Processing method. 過酸化水素とアンモニアを含む水の導入手段及びガス放散用気体の吹込手段を備えた放散塔と、
該放散塔からの放散ガスを触媒酸化処理する触媒酸化塔と、
触媒酸化塔からの処理ガスの一部を前記放散塔に循環させるガス循環手段と、
該ガス循環手段の循環ガスに対して新規空気を吹き込む新規空気吹込手段と
を有する過酸化水素及びアンモニア含有水の処理装置において、
該放散塔の塔頂部の温度を45〜70℃とする温度制御手段と、
該循環ガスへの空気吹き込み量に対する前記処理ガスの循環ガス流量を15〜60倍とする流量制御手段と
を備え
前記放散ガスを冷却して凝縮水を生成させる手段と、
該凝縮水をガスから分離する手段と、
凝縮水が分離されたガスを前記触媒酸化塔に供給する手段と
をさらに備えたことを特徴とする過酸化水素及びアンモニア含有水の処理装置。
A diffusion tower provided with a means for introducing water containing hydrogen peroxide and ammonia and a means for blowing gas for gas emission;
A catalytic oxidation tower that performs catalytic oxidation treatment of the gas emitted from the diffusion tower;
A gas circulation means for circulating a part of the processing gas from the catalytic oxidation tower to the diffusion tower;
In a hydrogen peroxide and ammonia-containing water treatment apparatus having new air blowing means for blowing new air into the circulating gas of the gas circulation means,
Temperature control means for setting the temperature at the top of the stripping tower to 45 to 70 ° C .;
A flow rate control means for making the circulating gas flow rate of the processing gas 15 to 60 times the amount of air blown into the circulating gas ,
Means for cooling the stripped gas to produce condensed water;
Means for separating the condensed water from the gas;
Means for supplying a gas from which condensed water has been separated to the catalytic oxidation tower;
An apparatus for treating water containing hydrogen peroxide and ammonia , further comprising:
過酸化水素とアンモニアを含む水の導入手段及びガス放散用気体の吹込手段を備えた放散塔と、
該放散塔からの放散ガスを触媒酸化処理する触媒酸化塔と、
触媒酸化塔からの処理ガスの一部を前記放散塔に循環させるガス循環手段と、
該ガス循環手段の循環ガスに対して新規空気を吹き込む新規空気吹込手段と
を有する過酸化水素及びアンモニア含有水の処理装置において、
該放散塔の塔頂部の温度を45〜70℃とする温度制御手段と、
該循環ガスへの空気吹き込み量に対する前記処理ガスの循環ガス流量を15〜60倍とする流量制御手段と
を備え
前記放散ガスを断熱圧縮し、前記放散塔の塔底液との熱交換により冷却して第1凝縮水を生成させる手段と、
該第1凝縮水をガスから分離する手段と、
該第1凝縮水が分離されたガスを冷却水と熱交換させて冷却し第2凝縮水を生成させる手段と、
該第2凝縮水をガスから分離する手段と、
該第2凝縮水が分離されたガスを圧力開放した後に前記触媒酸化塔に供給する手段と
をさらに備えたことを特徴とする過酸化水素及びアンモニア含有水の処理装置。
A diffusion tower provided with a means for introducing water containing hydrogen peroxide and ammonia and a means for blowing gas for gas emission;
A catalytic oxidation tower that performs catalytic oxidation treatment of the gas emitted from the diffusion tower;
A gas circulation means for circulating a part of the processing gas from the catalytic oxidation tower to the diffusion tower;
In a hydrogen peroxide and ammonia-containing water treatment apparatus having new air blowing means for blowing new air into the circulating gas of the gas circulation means,
Temperature control means for setting the temperature at the top of the stripping tower to 45 to 70 ° C .;
A flow rate control means for making the circulating gas flow rate of the processing gas 15 to 60 times the amount of air blown into the circulating gas ,
Means for adiabatically compressing the stripped gas and cooling it by heat exchange with the bottom liquid of the stripping tower to generate first condensed water;
Means for separating the first condensed water from the gas;
Means for heat-exchanging the gas from which the first condensate has been separated with cooling water to cool it to generate second condensate;
Means for separating the second condensed water from the gas;
Means for releasing the pressure of the gas from which the second condensed water has been separated and supplying the gas to the catalytic oxidation tower;
An apparatus for treating water containing hydrogen peroxide and ammonia , further comprising:
請求項10又は11において、前記放散塔に導入される過酸化水素及びアンモニア含有水をpH9以上に調整して前記放散塔に導入するpH調整手段を備えたことを特徴とする過酸化水素及びアンモニア含有水の処理装置。 The hydrogen peroxide and ammonia according to claim 10 or 11 , further comprising pH adjusting means for adjusting the hydrogen peroxide and ammonia-containing water introduced into the stripping tower to pH 9 or more and introducing the water into the stripping tower. Water treatment equipment. 請求項10ないし12のいずれか1項において、前記放散塔の塔底液を放散塔から引き抜き90℃以上に加熱して過酸化水素を分解する加熱手段を備えたことを特徴とする過酸化水素及びアンモニア含有水の処理装置。 The hydrogen peroxide according to any one of claims 10 to 12 , further comprising heating means for extracting the bottom liquid of the stripping tower from the stripping tower and heating it to 90 ° C or higher to decompose hydrogen peroxide. And treatment equipment for ammonia-containing water.
JP2013015775A 2013-01-30 2013-01-30 Method and apparatus for treating hydrogen peroxide and ammonia-containing water Active JP6111698B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013015775A JP6111698B2 (en) 2013-01-30 2013-01-30 Method and apparatus for treating hydrogen peroxide and ammonia-containing water
TW102105375A TWI503283B (en) 2013-01-30 2013-02-08 Method and apparatus for treating water containing hydrogen peroxide and ammonia
KR1020140007115A KR102160833B1 (en) 2013-01-30 2014-01-21 Method and apparatus for treating water containing hydrogen peroxide and ammonia
CN201410034899.9A CN103964522B (en) 2013-01-30 2014-01-24 The processing method and processing device of water containing hydrogen peroxide and ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013015775A JP6111698B2 (en) 2013-01-30 2013-01-30 Method and apparatus for treating hydrogen peroxide and ammonia-containing water

Publications (2)

Publication Number Publication Date
JP2014144445A JP2014144445A (en) 2014-08-14
JP6111698B2 true JP6111698B2 (en) 2017-04-12

Family

ID=51234589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013015775A Active JP6111698B2 (en) 2013-01-30 2013-01-30 Method and apparatus for treating hydrogen peroxide and ammonia-containing water

Country Status (4)

Country Link
JP (1) JP6111698B2 (en)
KR (1) KR102160833B1 (en)
CN (1) CN103964522B (en)
TW (1) TWI503283B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101793968B1 (en) * 2015-04-15 2017-11-07 주식회사 네패스 Apparatus for decomposition reaction of hydrogen peroxide
JP6189568B1 (en) * 2017-05-24 2017-08-30 株式会社オーイーエス Ammonia-containing wastewater treatment apparatus and method for treating ammonia-containing wastewater using the treatment apparatus
JP6871612B2 (en) * 2017-08-04 2021-05-12 株式会社オーイーエス Ammonia-containing wastewater treatment equipment and a method for treating ammonia-containing wastewater using the treatment equipment
CN108996594B (en) * 2018-07-06 2021-07-13 中持水务股份有限公司 Energy dissipation and air guide device of fluid conveying system
CN112393260A (en) * 2020-11-16 2021-02-23 中国能源建设集团山西省电力勘测设计院有限公司 Coal gas diffusion system and method of low-calorific-value gas turbine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696145B2 (en) * 1990-03-09 1994-11-30 荏原インフイルコ株式会社 NH 3) Waste water treatment method
JPH09323088A (en) * 1996-06-04 1997-12-16 英正 ▲鶴▼田 Treatment of waste water containing ammonia
TW506945B (en) * 1998-12-30 2002-10-21 Chinese Petroleum Corp Method for the removal of ammonia from water or air by using hydrophobic catalysts
JP2001025778A (en) * 1999-07-13 2001-01-30 Babcock Hitachi Kk Method for cleaning ammonia-containing waste water
JP3920531B2 (en) * 2000-05-17 2007-05-30 月島環境エンジニアリング株式会社 Method for treating waste water containing ammonia and hydrogen peroxide
JP4333859B2 (en) * 2000-07-18 2009-09-16 大阪市 Method for treating ammonia-containing water
JP4524525B2 (en) * 2000-12-05 2010-08-18 栗田工業株式会社 Method for treating wastewater containing ammonia and hydrogen peroxide
JP2003145136A (en) * 2001-02-02 2003-05-20 Nippon Shokubai Co Ltd Method and apparatus for treating wastewater
CN101597092B (en) * 2009-01-09 2011-05-11 华南理工大学 Method for treating coal gasification wastewater by single tower alkali injection and pressurization steam stripping
CN102503016B (en) * 2011-12-19 2013-09-04 杭州浙大合力科技有限公司 Device and method for treating ammonia nitrogen wastewater, recycling ammonia and preparing ammonium sulfate

Also Published As

Publication number Publication date
CN103964522B (en) 2017-10-13
TWI503283B (en) 2015-10-11
JP2014144445A (en) 2014-08-14
CN103964522A (en) 2014-08-06
KR20140097983A (en) 2014-08-07
KR102160833B1 (en) 2020-09-28
TW201429877A (en) 2014-08-01

Similar Documents

Publication Publication Date Title
JP6111698B2 (en) Method and apparatus for treating hydrogen peroxide and ammonia-containing water
EP3233723B1 (en) Process and plant for improved energy-efficient production of sulfuric acid
WO2012152919A1 (en) A method for treating a sulfur-containing gas stream
CN107892280A (en) A kind of high concentration SO2The method of metallurgical off-gas acid-making
CA3030835C (en) Plant and process for producing nitric acid
JP5914631B2 (en) Method for producing sulfuric acid
JP2013052370A (en) Ammonia separation device and ammonia separation method
WO2020233030A1 (en) Device and method for synergistic recover of sulfur and hydrogen resources from hydrogen sulfide acid gas
RU2580919C2 (en) Complex method for obtaining ammonium nitrate
KR20100103489A (en) Process for preparing sulfuric acid
JP7041745B2 (en) Method for producing sulfur and sulfuric acid
US20180155202A1 (en) Methods for carbon dioxide production and power generation
WO2004056453A1 (en) Remediation process and apparatus
JP6576288B2 (en) Carbon dioxide gas recovery device and carbon dioxide gas manufacturing method
JP4071323B2 (en) Ammonia-containing wastewater treatment method
CN218879477U (en) Ammonia nitrogen waste gas recycling and resourceful treatment system
US9845438B2 (en) Gas purification apparatus and gas purification method
FI60181C (en) FOERFARANDE FOER FRAMSTAELLNING AV SVAVELSYRA
CN107438476B (en) Continuous process and apparatus for purifying SO 2-containing gas
RU2825631C1 (en) Method of producing nitric acid
US20240189772A1 (en) Method for recycling electronic-grade and industrial-grade sulfuric acid
TW202423834A (en) Electronic grade and industrial grade sulfuric acid recovery method
JP2007022906A (en) Refining method of carbon dioxide
RU2495820C1 (en) Method of producing elementary sulphur from highly concentrated hydrogen sulphide-containing gases
GB2220200A (en) Recovering nitrogen oxides from industrial plant emissions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R150 Certificate of patent or registration of utility model

Ref document number: 6111698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250