JPH0696145B2 - NH 3) Waste water treatment method - Google Patents

NH 3) Waste water treatment method

Info

Publication number
JPH0696145B2
JPH0696145B2 JP2056537A JP5653790A JPH0696145B2 JP H0696145 B2 JPH0696145 B2 JP H0696145B2 JP 2056537 A JP2056537 A JP 2056537A JP 5653790 A JP5653790 A JP 5653790A JP H0696145 B2 JPH0696145 B2 JP H0696145B2
Authority
JP
Japan
Prior art keywords
gas
strip
liquid
exhaust gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2056537A
Other languages
Japanese (ja)
Other versions
JPH03258388A (en
Inventor
克之 片岡
Original Assignee
荏原インフイルコ株式会社
株式会社荏原総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原インフイルコ株式会社, 株式会社荏原総合研究所 filed Critical 荏原インフイルコ株式会社
Priority to JP2056537A priority Critical patent/JPH0696145B2/en
Publication of JPH03258388A publication Critical patent/JPH03258388A/en
Publication of JPH0696145B2 publication Critical patent/JPH0696145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、NH3含有廃水の処理方法に係り、特に、し尿
等のNH3含有廃水のNH3ストリップ法の改善方法に関する
ものである。
TECHNICAL FIELD The present invention relates to a method for treating NH 3 -containing wastewater, and more particularly to a method for improving the NH 3 stripping method for NH 3 -containing wastewater such as human waste.

〔従来の技術〕[Conventional technology]

従来、NH3含有廃水からのNH3除去方法として、NH3スト
リップ法が周知となっている。NH3ストリップ方法に
は、2つの方法があり、1つは廃水にCa(OH)または
NaOHを添加後、アルカリ性下で空気と気液接触させる方
法(空気ストリップ法)であり、2番目は、廃水を加温
して、スチームで、水蒸気蒸留することによって、NH3
をストリップする方法である。(スチームストリップ
法) しかし、これら従来法は次のような欠点があった。
Conventionally, the NH 3 strip method has been well known as a method for removing NH 3 from NH 3 -containing wastewater. There are two NH 3 strip methods, one is Ca (OH) 2 or
After adding NaOH, there is a method of contacting air with gas-liquid under alkaline condition (air strip method). The second method is to warm waste water and steam-distill it with NH 3
Is a way to strip. (Steam strip method) However, these conventional methods have the following drawbacks.

空気でストリップする方法では、冬期などの気温が
低い場合には、NH3除去率が低下してしまう。
The air stripping method reduces the NH 3 removal rate when the temperature is low such as in winter.

空気ストリップ法は、アルカリ剤の添加コストが高
額であり、スチームストリップ法は、スチームコストが
非常に高いという欠点がある。また、ボイラーが必要な
ので、設備費が高くなるという問題もある。
The air strip method has a disadvantage that the cost of adding the alkali agent is high, and the steam strip method has a very high steam cost. Moreover, since a boiler is required, there is also a problem that the equipment cost becomes high.

また、いずれの方法も、放散されたNH3含有ガスを、燃
焼酸化しNH3をN2ガスに酸化無害化したのち、大気中に
放散されているが、NH3の燃焼工程で、N2ガスの他に、N
Oxが不可避的に生成し、大気汚染源となる問題があっ
た。
Further, in any of the methods, after the emitted NH 3 -containing gas is burned and oxidized to oxidize and detoxify NH 3 into N 2 gas, it is released into the atmosphere, but in the NH 3 combustion process, N 2 In addition to gas, N
There was a problem that Ox was inevitably generated and became a source of air pollution.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、前記従来技術の問題点を適確に解決すること
を課題とするものであり、コストの高いスチームを使う
必要がなく、多量のアルカリを添加する必要がなく、し
かも、年間を通じて、外気温に左右されずに、安定して
高NH3除去率が得られ、NH3の燃焼酸化によって発生する
NOxの排出も低減できる新規方法を提供することを目的
とする。
The present invention is to solve the problems of the prior art appropriately, there is no need to use high cost steam, there is no need to add a large amount of alkali, moreover, throughout the year, A stable high NH 3 removal rate is obtained regardless of the ambient temperature, and is generated by combustion oxidation of NH 3.
It is an object of the present invention to provide a new method capable of reducing NOx emission.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するために、本発明では、NH3含有廃水
を、pHアルカリ性かつ加温下で排ガスと気液接触せし
め、NH3をストリップ除去し、該ストリップされたNH3
有気体を燃焼工程で燃焼酸化し、該燃焼排ガスを前記気
液接触用の排ガスとして用い、前記のNH3含有廃水と直
接気液接触させることを特徴とするNH3含有廃水の処理
方法としたものである。
In order to achieve the above object, in the present invention, NH 3 containing waste water is brought into gas-liquid contact with exhaust gas under pH alkaline and heating, NH 3 is stripped off, and the stripped NH 3 containing gas is burned. The method for treating NH 3 -containing wastewater is characterized in that the NH 3 -containing wastewater is directly contacted with the NH 3 -containing wastewater by using the combustion exhaust gas as the exhaust gas for gas-liquid contact.

次に、本発明を図面を参照にして詳細に説明する。Next, the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一例を示すフロー概略図であり、第
1図では、NH3含有廃水の代表例であるし尿を例に挙げ
て説明する。第1図において、し尿(浄化槽汚泥が混入
していてもよい)1に、凝集剤2を添加し、固液分離工
程3(スクリーン、沈澱槽、汚泥脱水機などを適用すれ
ばよい)で、し尿中のSS,コロイドを除去する。4は分
離汚泥、5は分離液である。
FIG. 1 is a schematic flow diagram showing an example of the present invention. In FIG. 1, human waste, which is a representative example of NH 3 -containing wastewater, will be described as an example. In FIG. 1, a coagulant 2 is added to human waste (which may contain septic tank sludge) 1, and a solid-liquid separation step 3 (a screen, a sedimentation tank, a sludge dehydrator, etc. may be applied), Remove SS and colloid in human waste. 4 is separated sludge and 5 is separated liquid.

分離液5を、後記のNH3ストリップ塔流出液11(温度60
〜90℃程度)と熱交換器6において熱交換して、加温
後、外部熱源(バーナー、電熱等)による加熱器7で、
さらに加温し、NH3ストリップ塔(充填塔)8の上部に
供給する。
The separated liquid 5 was replaced with the NH 3 strip tower effluent 11 (temperature 60
(About ~ 90 ° C) in the heat exchanger 6 and after heating, the heater 7 by an external heat source (burner, electric heat, etc.)
It is further heated and supplied to the upper part of the NH 3 strip tower (packing tower) 8.

し尿中のNH3分は、重炭酸アンモニウムNH4HCO3の形で溶
存しているので、加熱によって の反応が生じ、NH3HCO3は遊離NH3と遊離CO2に分解す
る。したがって、NH3ストリップ塔8の下部より、気体
9を供給し気液接触させると、NH3とCO2が、排出管から
NH3含有ガス10として、放散(ストリップ)され、NH3,C
O2が除去される。
NH 3 content in human waste is dissolved in the form of ammonium bicarbonate NH 4 HCO 3 , so heating And NH 3 HCO 3 decomposes into free NH 3 and free CO 2 . Therefore, when the gas 9 is supplied from the lower part of the NH 3 strip tower 8 to make gas-liquid contact, NH 3 and CO 2 are discharged from the discharge pipe.
NH 3 containing gas 10 is stripped off and NH 3 , C
O 2 is removed.

放散されたNH3含有ガス10は、触媒燃焼工程12に流入
し、Pt系,Ni系,Co系等公知の酸化触媒と温度200〜350℃
の条件で接触することによって、N2ガスに酸化される。
(NOxが少量副生する)。燃焼排ガス13は、従来、その
全量が大気中に放出されていたが、本発明は燃焼排ガス
13の大部分13′を、送風器14によってNH3ストリップ工
程8の気液接触用ガス9として、NH3ストリップ塔8の
下部に送入し、NH3含有液5と気液接触させるために再
利用する。
The released NH 3 containing gas 10 flows into the catalytic combustion step 12, and a known oxidation catalyst such as Pt-based, Ni-based, Co-based, and a temperature of 200 to 350 ° C.
By being contacted under the conditions described above, it is oxidized to N 2 gas.
(A small amount of NOx is by-produced). Conventionally, the combustion exhaust gas 13 has been entirely released into the atmosphere.
13 the majority 13 ', as for gas-liquid contact gas 9 of the NH 3 stripping process 8 by the blower 14, and fed to the bottom of the NH 3 stripping column 8, in order to NH 3 containing liquid 5 and gas-liquid contact Reuse.

なお、15は燃焼工程12への補給用酸素としての空気であ
り、13″は燃焼排ガス13の一部をブローして、大気中へ
放出する管である。
Reference numeral 15 is air as supplemental oxygen to the combustion process 12, and 13 ″ is a pipe for blowing a part of the combustion exhaust gas 13 and discharging it into the atmosphere.

しかして、高温の燃焼排ガス13′との気液接触操作によ
り、NH3が放散除去されたし尿11(この段階までで、溶
解性BODはほとんど除去されていない)は、温度80〜90
℃を示すので、凝集分離し尿5と熱交換6させ、熱回収
し、熱交換器流出液11′の温度を30〜40℃に降温させ
る。しかるのち、流出液11′をUASB法、ゼオライト粒子
などのマイクロキャリヤを核として、メタン菌を成長発
達させた流動床法などの、固定化メタン菌を用いたメタ
ン発酵工程16に供給し、高速にメタン発酵させて溶解性
BODを除去する。発生メタンガスAは、液加温部7の燃
料として利用する。
By the gas-liquid contact operation with the hot combustion exhaust gas 13 ', NH 3 was diffused and removed, and the human urine 11 (up to this stage, the soluble BOD was hardly removed) had a temperature of 80-90.
Since the temperature is 0 ° C., it is coagulated and separated, and heat exchanged 6 with the urine 5 to recover heat, and the temperature of the heat exchanger effluent 11 ′ is lowered to 30 to 40 ° C. After that, the effluent 11 'is supplied to the UASB method, a methane fermentation process 16 using immobilized methane bacteria such as a fluidized bed method in which methane bacteria are grown and developed using microcarriers such as zeolite particles as a nucleus, and high speed is provided. Solubility by methane fermentation
Remove BOD. The generated methane gas A is used as fuel for the liquid heating section 7.

本発明者の実験によれば、SSとNH3はUASB法などの固定
化メタン菌を用いた高速メタン発酵にとって、大きな阻
害要因となり、前もってSSを除去すると共に、NH3をス
トリップ除去することによって、固定化メタン菌の活動
にとって理想的な環境を与えることができ、活性の高い
メタン菌が、槽内に高濃度に維持できることが認められ
た。この結果、メタン発酵槽の滞留日数がわずか0.5日
で、し尿中の溶解性BODの90%以上が除去できることが
確認された。
According to the experiments conducted by the present inventor, SS and NH 3 are major inhibitory factors for high-speed methane fermentation using immobilized methane bacteria such as the UASB method, and by removing SS in advance and removing NH 3 by stripping, It was found that the active methane bacterium can provide an ideal environment for the activity of the immobilized methane bacterium, and that the highly active methane bacterium can be maintained at a high concentration in the tank. As a result, it was confirmed that 90% or more of the soluble BOD in human waste can be removed with the methane fermentation tank remaining for only 0.5 days.

次にメタン発酵処理水17は、放流されるかもしくは必要
に応じ、生物学的硝化脱窒素工程18において、メタン発
酵処理水17中に、少量残留するBOD,NH3を硝化・脱窒素
菌によって高度に除去する。なお、放流水の色度と非生
物分解性COD、PO4 3-を除去する必要がある場合は、生物
学的硝化脱窒素処理水19に対し、凝集、活性炭処理を行
えばよい。
Next, the methane fermentation treated water 17 is discharged or, if necessary, in the biological nitrification denitrification step 18, a small amount of BOD, NH 3 remaining in the methane fermentation treated water 17 is removed by nitrifying and denitrifying bacteria. Highly remove. Note that the chromaticity and non-biodegradable COD of discharged water, if it is necessary to remove the PO 4 3-, relative biological nitrification denitrification water 19, aggregation may be performed activated carbon treatment.

〔作用〕[Action]

本発明で、燃焼工程排ガスをNH3のストリップ用のガス
に用いたことにより、次のような作用を有する。
In the present invention, the use of the combustion process exhaust gas as the NH 3 strip gas has the following effects.

(イ)燃焼排ガスは、温度が100〜200℃と高温であるの
で、単なる空気によって、NH3ストリップを行うよりも
除去効率の良いNH3ストリップを行うことが出来る。
(A) Since the temperature of the combustion exhaust gas is as high as 100 to 200 ° C., NH 3 strip having a higher removal efficiency can be performed by simple air than the NH 3 strip.

(ロ)冬期の外気温が低い場合、空気を用いる従来の方
法では、NH3ストリップ効果が低下するが、本発明法は
季節に無関係に、高いNH3ストリップ効果を得ることが
出来る。
(B) When the ambient temperature in winter is low, the NH 3 strip effect is reduced by the conventional method using air, but the method of the present invention can obtain a high NH 3 strip effect regardless of the season.

(ハ)燃焼排ガス13中に含まれるNOxが、ストリップ塔
内で液5に吸収される。さらに、燃焼工程12において、
NOxとNH3熱化学反応を起して、NOxが除去される。
(C) NOx contained in the combustion exhaust gas 13 is absorbed by the liquid 5 in the strip tower. Furthermore, in the combustion process 12,
NOx is removed by a thermochemical reaction with NOx and NH 3 .

NOxとNH3との反応は次式で表わされる。The reaction between NOx and NH 3 is represented by the following formula.

NH3+202→NH+2HO2 NH +NO →N2+OH 〔実施例〕 以下、本発明を実施例により具体的に説明するが、本発
明はこれら実施例に限定されるものではない。
NH 3 +20 2 → NH + 2HO 2 NH + NO → N 2 + OH [Examples] Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

実施例1 第1図のフローにもとづいて、し尿のNH3ストリップ実
験を行った。
Example 1 Based on the flow of FIG. 1, a NH 3 strip experiment for human waste was performed.

し尿1の凝集分離液5をNH3ストリップ塔流出液11と熱
交換し、温度70℃に加温後、メタン発酵工程から発生す
る消化ガスAを燃焼させた熱エネルギーによって、さら
に90℃に加温したのち、ラシヒリングを充填したNH3
トリップ塔の上部に供給し、触媒燃焼排ガス13′と空気
15との混合ガス(温度90〜110℃)と向流で気液接触さ
せた。
The coagulated separated liquid 5 of the human waste 1 is heat-exchanged with the NH 3 strip tower effluent 11 and heated to a temperature of 70 ° C., and further heated to 90 ° C. by the heat energy of burning the digestion gas A generated from the methane fermentation process. After heating, it was fed to the upper part of the NH 3 strip tower filled with Raschig rings, and catalytic combustion exhaust gas 13 'and air were supplied.
The mixed gas with 15 (temperature 90 to 110 ° C.) was brought into gas-liquid contact in countercurrent.

NH3ストリップ塔の充填材層高は10m、液供給流量は1m3/
日、ガス流量は3Nm3/日、液質量速度3000kg/m2・Hrに設
定した。この条件で、NH3ストリップ処理を行ったとこ
ろ、次表のような処理結果を得た。
The NH 3 strip tower has a packing material layer height of 10 m and liquid supply flow rate of 1 m 3 /
The gas flow rate was set to 3 Nm 3 / day and the liquid mass velocity was set to 3000 kg / m 2 · Hr. When NH 3 strip treatment was performed under these conditions, the treatment results shown in the following table were obtained.

ストリップされたNH3含有ガスを、Pt系のNH3酸化ハニカ
ム触媒を用いる触媒燃焼装置に、温度350℃、SV 10,000
h-1の条件で供給し、NH3をN2に燃焼させ、この排ガス量
の80〜90%を、前記のNH3ストリップ塔に供給した。
The stripped NH 3 -containing gas was placed in a catalytic combustion device using a Pt-based NH 3 oxidation honeycomb catalyst at a temperature of 350 ° C. and an SV of 10,000.
It was fed under the condition of h −1 to burn NH 3 to N 2 , and 80 to 90% of this exhaust gas amount was fed to the NH 3 strip column.

触媒燃焼装置からの排ガスのNOx濃度25〜38ppmと少量で
あった。
The NOx concentration of the exhaust gas from the catalytic combustion device was as small as 25 to 38 ppm.

比較例1 前記実施例のし尿の凝集分離液を、90℃に加温し、温度
8℃の外気と気液接触させ、NH3ストリップ試験を行っ
た。その他のNH3ストリップの実験条件は、実施例と同
一とした。
Aggregation separated liquid of excreta in Comparative Example 1 Example, warmed to 90 ° C., then ambient air gas-liquid contact temperature 8 ° C., were NH 3 strip test. The other experimental conditions of the NH 3 strip were the same as those in the example.

この結果、表−2のNH3除去結果を得た。As a result, NH 3 removal results shown in Table 2 were obtained.

NH3含有ガスの触媒燃焼排ガスのNOx濃度は30〜46ppmで
あり、排ガスの全量を大気に放出した。
The NOx concentration of the catalytic combustion exhaust gas of NH 3 -containing gas was 30 to 46 ppm, and the total amount of the exhaust gas was released to the atmosphere.

この結果、NOx排出負荷量は、本発明法の約4〜9倍に
増加した。
As a result, the NOx emission load increased about 4 to 9 times that of the method of the present invention.

〔発明の効果〕〔The invention's effect〕

本発明によれば、次のような効果を奏することができ
る。
According to the present invention, the following effects can be achieved.

NH3含有廃水からNH3をストリップ除去するのに、単
なる空気ではなく、NH3含有ガスの燃焼排ガス(高温で
ある)を、気液接触用のガスとして利用するので、冬期
の気温の低下に無関係に年間を通じて、高NH3除去率を
安定して得ることが可能である。
To remove NH 3 from NH 3 -containing wastewater, the combustion exhaust gas of NH 3 -containing gas (which has a high temperature) is used as a gas for gas-liquid contact, not just air, which reduces the temperature in winter. Regardless of the year, it is possible to stably obtain a high NH 3 removal rate.

放散されたNH3含有ガスを燃焼させた排ガスの大気
中への排出量が、大きく減少するので、大気汚染防止効
果が大きい。
Since the emission amount of the exhaust gas obtained by burning the emitted NH 3 -containing gas into the atmosphere is greatly reduced, the effect of preventing air pollution is great.

NOxの大気中の放出量を著しく減少でき、この点か
らも大気汚染防止効果に優れている。
The amount of NOx released into the atmosphere can be significantly reduced, and from this point as well, it has an excellent effect of preventing air pollution.

NH3ストリップにスチームを使用する必要がないの
で、ボイラーが不要であり、設備費低減とスチーム発生
用の燃料不要による運転コストの節減効果が大きい。
Since there is no need to use steam for the NH 3 strip, there is no need for a boiler, and there is a large effect of reducing operating costs by reducing equipment costs and fuel for generating steam.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一例を示すフロー概略図である。 1……し尿、2……凝集剤、3……固液分離工程、4…
…分離汚泥、5……分離液、6……熱交換器、7……加
熱器、8……NH3ストリップ塔、9……気体、10……NH3
含有ガス、11……NH3除去し尿、12……触媒燃焼工程、1
3……燃焼排ガス、14……送風器、15……空気、16……
メタン発酵工程、18……生物学的硝化脱窒素工程
FIG. 1 is a schematic flow chart showing an example of the present invention. 1 ... Human waste, 2 ... Flocculant, 3 ... Solid-liquid separation process, 4 ...
… Separated sludge, 5 …… separated liquid, 6 …… heat exchanger, 7 …… heater, 8 …… NH 3 strip tower, 9 …… gas, 10 …… NH 3
Contained gas, 11 …… NH 3 removal urine, 12 …… Catalytic combustion process, 1
3 …… Combustion exhaust gas, 14 …… Blower, 15 …… Air, 16 ……
Methane fermentation process, 18 …… Biological nitrification and denitrification process

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】NH3含有廃水を、pHアルカリ性かつ加温下
で排ガスと気液接触せしめ、NH3をストリップ除去し、
該ストリップされたNH3含有気体を燃焼工程で燃焼酸化
し、該燃焼排ガスを前記気液接触用の排ガスとして用
い、前記のNH3含有廃水と直接気液接触させることを特
徴とするNH3含有廃水の処理方法。
1. A NH 3 -containing wastewater is brought into gas-liquid contact with an exhaust gas under pH alkaline and under heating to remove NH 3 by stripping,
NH 3 containing the NH 3 containing gas which is the strip burned oxidized in the combustion process, using a flue gas as a gas for the gas-liquid contact, characterized in that direct contact liquid and the NH 3 containing wastewater Waste water treatment method.
JP2056537A 1990-03-09 1990-03-09 NH 3) Waste water treatment method Expired - Lifetime JPH0696145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2056537A JPH0696145B2 (en) 1990-03-09 1990-03-09 NH 3) Waste water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2056537A JPH0696145B2 (en) 1990-03-09 1990-03-09 NH 3) Waste water treatment method

Publications (2)

Publication Number Publication Date
JPH03258388A JPH03258388A (en) 1991-11-18
JPH0696145B2 true JPH0696145B2 (en) 1994-11-30

Family

ID=13029836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2056537A Expired - Lifetime JPH0696145B2 (en) 1990-03-09 1990-03-09 NH 3) Waste water treatment method

Country Status (1)

Country Link
JP (1) JPH0696145B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111698B2 (en) * 2013-01-30 2017-04-12 栗田工業株式会社 Method and apparatus for treating hydrogen peroxide and ammonia-containing water
JP6189568B1 (en) * 2017-05-24 2017-08-30 株式会社オーイーエス Ammonia-containing wastewater treatment apparatus and method for treating ammonia-containing wastewater using the treatment apparatus
CN110759529B (en) * 2019-10-31 2022-03-29 新地环保技术有限公司 Method and system for degassing reuse water
CN113319109B (en) * 2021-05-12 2023-12-26 杨西建 Resource utilization treatment device for farm animal waste

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516352A (en) * 1974-07-09 1976-01-19 Mitsubishi Heavy Ind Ltd ANMONIAGANJUHAIEKINO SHORIHOHO
JPS5951358B2 (en) * 1978-10-16 1984-12-13 新日鐵化学株式会社 How to remove ammonia
CH673593A5 (en) * 1986-10-13 1990-03-30 Von Roll Ag

Also Published As

Publication number Publication date
JPH03258388A (en) 1991-11-18

Similar Documents

Publication Publication Date Title
JPH09150031A (en) Method and apparatus for treating exhaust gas using ammonia in contaminated water
CN109939549B (en) Comprehensive treatment method and device for flue gas
JPH10500611A (en) In particular, a method and apparatus for treating wastewater containing organic matter by wet oxidation with internal recirculation of solid residue, and a purification facility therefor
CN104190226B (en) Complexing absorption and aerobic denitrification combined smoke denitration process
JPH06343994A (en) Treatment process for digested sludge dehydrated filtrate
JP2004097856A (en) Equipment and method for waste liquid treatment
JPH0696145B2 (en) NH 3) Waste water treatment method
JP2777984B2 (en) Organic slurry processing method and processing apparatus
JPH0671293A (en) Method for treating solid waste and waste water
JPH0698358B2 (en) Treatment method for human waste
JP2002079299A (en) Method for treating ammonia-containing waste
JPH09150143A (en) Treatment of night soil system sewage
JP3723994B2 (en) Anaerobic biological reaction gas desulfurization equipment
WO2014112640A1 (en) System for treating nitrogen-containing water, and method for treating nitrogen-containing water
JP2001062486A (en) Biological treatment of heavy metal in desulfurization waste water
JP2003225636A (en) Organic waste treating apparatus
JPH0698356B2 (en) Organic wastewater treatment method
CN104609539A (en) Sewage-farm aeration tank effluent gas processing method
JPH07275895A (en) Wastewater-treatment without dilution
JPH0135720B2 (en)
JPH0852491A (en) Treatment of anaerobic biological reaction gas
CN217636932U (en) Waste gas treatment system of protein drying tower
JPH07119948A (en) Integrated processing system for discharged water and waste material
JP2002216829A (en) Power generating system using livestock excreta disposal digestive gas
JPH02265696A (en) Treatment of waste water