JPS6199677A - Manufacture of silicon nitride - Google Patents

Manufacture of silicon nitride

Info

Publication number
JPS6199677A
JPS6199677A JP59220108A JP22010884A JPS6199677A JP S6199677 A JPS6199677 A JP S6199677A JP 59220108 A JP59220108 A JP 59220108A JP 22010884 A JP22010884 A JP 22010884A JP S6199677 A JPS6199677 A JP S6199677A
Authority
JP
Japan
Prior art keywords
vessel
film
silicon nitride
treated
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59220108A
Other languages
Japanese (ja)
Other versions
JP2620063B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP59220108A priority Critical patent/JP2620063B2/en
Priority to US06/710,111 priority patent/US4704300A/en
Publication of JPS6199677A publication Critical patent/JPS6199677A/en
Application granted granted Critical
Publication of JP2620063B2 publication Critical patent/JP2620063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To form a film of Si3N4 on the surface of a material to be treated by placing said material in a vacuum vessel, introducing gaseous Si2F6 and N2 or NH3, etc. therein while heating the material to be treated and applying further electric energy thereto. CONSTITUTION:The material 2 to be treated such as a single crystal silicon substrate is placed on the lower electrode 4' of upper and lower electrodes 4, 4' in the vacuum vessel 1. The substrate is heated to 200-400 deg.C by halogen heaters 3, 3' disposed to the upper and lower parts of the vessel 1 and the gaseous N2 or NH3 is introduced therein through an inlet 10. The gaseous Si3F6 is introduced into the vessel through an inlet 11 and, in the case of using hydrazine (N2H4) 20, the hydrazine is introduced into the vessel 1 after dehumidifying and refining with a molecular sieve 21. High-frequency electric power is at the same time supplied from an electric energy supply device 5 to the electrodes 4, 4' to convert the above-mentioned reactive gases in the vacuum vessel to plasma, thus forming the film of Si3N4 on the surface of the single crystal Si substrate 2.

Description

【発明の詳細な説明】 この発明は、熱、プラズマ化学反応を用いた気相反応方
法(以下CVD法という)により弗素が添加された窒化
珪素、例えば光フアイバー用のコーティング、また半導
体エレクトロニクス用のバッジベイシラン被膜を作製す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to silicon nitride doped with fluorine by a vapor phase reaction method using heat and plasma chemical reactions (hereinafter referred to as CVD method), for example, coatings for optical fibers and semiconductor electronics. The present invention relates to a method for producing a Badgebasilan coating.

この発明は弗素が低級に添加され5i−F結合を有する
とともに、低い放電エネルギでプラズマ化学反応を実施
することにより、被形成面のスパッタを少なくして窒化
珪素を作製する方法に関する。
The present invention relates to a method for producing silicon nitride which is doped with a low amount of fluorine and has 5i-F bonds, and which reduces sputtering on the surface to be formed by carrying out a plasma chemical reaction with low discharge energy.

この発明は5ixthとアンモニアまたはヒドラジンと
を反応せしめ、窒化珪素被膜を500°C以下の温度好
ましくは100〜400°C例えば300 ’Cで形成
する方法に関する。
The present invention relates to a method of reacting 5ixth with ammonia or hydrazine to form a silicon nitride film at a temperature below 500°C, preferably from 100 to 400°C, for example 300'C.

従来、窒化珪素膜を作製せんとするには、グロー放電法
を用いたプラズマ気相反応方法によりシラン(SiH2
)とアンモニア(NH3)とを反応せしめ、200〜4
00℃の基板温度にて被膜を作製していた。
Conventionally, in order to produce a silicon nitride film, silane (SiH2
) and ammonia (NH3) to react with 200-4
The film was produced at a substrate temperature of 00°C.

しかしかかる窒化珪素膜は、その膜内に珪素の不対結合
手、さらにシランを気体状態において含有しているため
、この分離により近接する珪素同志が結合しあい、結果
として珪素のクラスタが残存することにより残留電荷を
生ずる。さらに耐圧低下を誘発する。このために、MO
S、IC等の紫外線透過用のファイナル・コーティング
として用いることができなかった。
However, since such a silicon nitride film contains dangling bonds of silicon and silane in a gaseous state, this separation causes adjacent silicon to bond with each other, resulting in silicon clusters remaining. This results in a residual charge. Furthermore, it induces a decrease in pressure resistance. For this purpose, M.O.
It could not be used as a final coating for ultraviolet light transmission of S, IC, etc.

さらに、この方法においては、生成された酸化珪素中に
クラスタおよびOHが残存してしまう。このため実用上
において反応性気体状態において含有しにくい254n
mの波長の紫外光が透過する窒化珪素被膜を作製する方
法が求められていた。
Furthermore, in this method, clusters and OH remain in the produced silicon oxide. For this reason, in practice, 254n is difficult to contain in the reactive gas state.
There has been a need for a method for producing a silicon nitride film that transmits ultraviolet light having a wavelength of m.

本発明はかかる目的のため、即ち珪素の弗素化物である
5izF、を含む5inFzn−z (n≧2)を用い
ることにより窒化珪素を作製せんとするものである。
The present invention aims to produce silicon nitride for such purpose, that is, by using 5inFzn-z (n≧2) containing 5izF, which is a fluoride of silicon.

以下に図面に従って本発明を記す。The present invention will be described below according to the drawings.

第1図は本発明に用いられたCVD装置の概要を示す。FIG. 1 shows an outline of the CVD apparatus used in the present invention.

図面において、反応容器(真空容器)(1)は内壁が石
英からなっている。基板(2)は平行平板型電極の一方
の電極上に配設され、反応炉の上部、下部に配設された
ハロゲンヒータ(3) 、 (3’)により室温〜60
0℃、好ましくは200〜400℃、例えば300℃に
加熱がされている。ドーピング系は流量計(6)、バル
ブ(7)よりなり、アンモニアまたは窒素は(10)よ
り供給される。ヒドラジン(Nil (MPl、4℃、
BP 113.5℃)は室温で液体であるため、バブラ
(20)に充填されている。このヒドラジンは無水を用
い、さらにモレキュラシーブ(21)により超高純度に
除湿精製した。また、珪素の弗素化物し は(11)よりSi、F、とじてボンベより供給される
In the drawing, a reaction vessel (vacuum vessel) (1) has an inner wall made of quartz. The substrate (2) is placed on one of the parallel plate electrodes and heated to room temperature to 60°C by halogen heaters (3) and (3') placed at the top and bottom of the reactor.
It is heated to 0°C, preferably 200 to 400°C, for example 300°C. The doping system consists of a flow meter (6) and a valve (7), and ammonia or nitrogen is supplied from (10). Hydrazine (Nil (MPl, 4°C,
BP (113.5° C.) is a liquid at room temperature, so it is filled in a bubbler (20). This hydrazine was anhydrous and further dehumidified and purified to ultra-high purity using a molecular sieve (21). Further, silicon fluoride (11) is supplied together with Si and F from a cylinder.

これらの反応性気体が反応容器内に導入し、さらに排気
口より圧力調整バルブ(12)、ストンプバルブ(13
)をへて、真空ポンプ(14)より排気させた。
These reactive gases are introduced into the reaction vessel, and are further passed through the exhaust port through the pressure adjustment valve (12) and stomp valve (13).
) and was evacuated using a vacuum pump (14).

プラズマ化学反応させる電気エネルギ供給装置(5)が
設けられているが、この低周波エネルギ供給用コイル(
4)を囲んで抵抗加熱ヒータ(3)が設けられている。
An electric energy supply device (5) for causing a plasma chemical reaction is provided, and this low frequency energy supply coil (
4), a resistance heater (3) is provided surrounding it.

以下にその実施例を示す。Examples are shown below.

実施例1 この実施例は5i2F&とアンモニアとのプラズマ気相
反応により窒化珪素被膜を単結晶珪素基板上に作製した
Example 1 In this example, a silicon nitride film was formed on a single crystal silicon substrate by a plasma vapor phase reaction between 5i2F& and ammonia.

基板温度は100〜500℃例えば350℃、圧力0.
07torrs を気エネルギ(50KHz)を一対の
電極(4)、(4’)への供給により反応性気体をプラ
ズマ化(プラズマ密度0.1mW/ad) した。この
5izF6を用いるとSiF4を用いる場合に比べてプ
ラズマに必要な電気エネルギ密度を172〜1/3にす
ることができた。
The substrate temperature is 100 to 500°C, for example 350°C, and the pressure is 0.
The reactive gas was turned into plasma (plasma density: 0.1 mW/ad) by supplying air energy (50 KHz) of 0.7 torrs to the pair of electrodes (4) and (4'). By using this 5izF6, the electric energy density required for plasma could be reduced to 172 to 1/3 compared to the case of using SiF4.

そのため被形成面上のスバフタ(Flit傷)を少なく
することができるという特徴を有している。この電気エ
ネルギの周波数は10〜200にHzの低周波とした。
Therefore, it has the characteristic that it is possible to reduce the number of flaws (Flit scratches) on the surface to be formed. The frequency of this electrical energy was a low frequency of 10 to 200 Hz.

その形成された被膜は熱エネルギによりより安定性を有
せしめるためにきわめて重要であった。
The coating formed was extremely important to provide greater stability with thermal energy.

即ち10MHz以上の周波数では形成された被膜(50
00Å以上の厚さ)を350℃の温度で長時間(100
0時間以上)保存するとクランクが発生してしまった。
That is, at frequencies above 10 MHz, the formed film (50
00 Å or more thick) at a temperature of 350°C for a long time (100 Å or more).
A crank occurred when I stored it for more than 0 hours).

この窒化珪素上に対抗電極を作り、ダイオード構造とし
て、C−V特性を測定した。その結果、界面準位密度は
3 XIO”cm−”以下であって、酸化珪素被膜は直
流電界を加えた場合、I X106V/cmにおいて初
めてヒステリシス特性が観察され、珪素基板上に形成さ
れた窒化珪素中に珪素クラスタの存在により電荷捕獲中
心が少ないことが判明した。
A counter electrode was formed on this silicon nitride to form a diode structure, and the CV characteristics were measured. As a result, the interface state density was 3XIO"cm-" or less, and when a DC electric field was applied to the silicon oxide film, hysteresis characteristics were observed for the first time at IX106V/cm, and the nitride film formed on the silicon substrate It was found that there are fewer charge trapping centers due to the presence of silicon clusters in silicon.

この生成物を0.5μの厚さとしてIR(赤外線吸収ス
ペクトル)で調べたところ、100100O’に大きな
吸収が見られ、窒化珪素膜であることが判明した。さら
に、本発明方法において重要なことは、SIMS (二
次イオン分析法)によりこの被膜中の酸素濃度を調べた
ところ、従来のSiH,とNH3とのプラズマ気相反応
においては、2 X 10”cm−3〜5X1020C
II+−3の多量の濃度の酸素を含有していたが、本発
明においては、1〜5 XIO”am−’であり、従来
の1/30以下しか含有していないことである。
When this product was examined by IR (infrared absorption spectrum) with a thickness of 0.5 μm, a large absorption was observed at 100100 O', and it was found that it was a silicon nitride film. Furthermore, what is important in the method of the present invention is that when the oxygen concentration in this film was investigated by SIMS (secondary ion spectrometry), it was found that in the conventional plasma gas phase reaction between SiH and NH3, the oxygen concentration was 2 cm-3~5X1020C
Although it contained a large amount of oxygen at a concentration of II+-3, in the present invention, it is 1 to 5 XIO"am-', which is less than 1/30 of the conventional value.

その理由として以下が考えられる。即ちSiF4とN2
H4との反応の後の残存ガスとしてIIFが発生する。
Possible reasons for this are as follows. That is, SiF4 and N2
IIF is generated as a residual gas after reaction with H4.

このHPが不純物として存在するSiO,5iOHと再
反応し、 5iOz  +  4HF−+5iFn+  HzOに
より水素と)IPよりも安定なSiF4が生成される。
This HP re-reacts with SiO and 5iOH present as impurities, and SiF4, which is more stable than IP (with hydrogen), is generated by 5iOz + 4HF- + 5iFn + HzO.

その結果、水はかかる状態でSiF4と反応できないた
め、結果として被膜形成と同時に高純度化作用もされて
いるものと推察される。
As a result, since water cannot react with SiF4 in such a state, it is presumed that as a result, the film is formed and at the same time has a high purification effect.

即ち、本発明方法において、5itFbと窒素/水素混
合気体もしくは窒化物気体(NH3,N2114.NF
3)との反応方法は、膜中に酸素クラスタを含まず、紫
外光が透過し得るため、紫外線消去型のEF ROM半
導体ディバイスのパッシベイション膜としてきわめて有
効であることが判明した。
That is, in the method of the present invention, 5itFb and nitrogen/hydrogen mixed gas or nitride gas (NH3, N2114.NF
It has been found that the reaction method with 3) is extremely effective as a passivation film for ultraviolet-erasable EF ROM semiconductor devices because the film does not contain oxygen clusters and can transmit ultraviolet light.

本発明において、プラズマCVD法に加えて300nm
以下の光エネルギの照射を同時に併用して実施してもよ
いことはいうまでもない。
In the present invention, in addition to plasma CVD method, 300 nm
It goes without saying that the following light energy irradiations may be carried out simultaneously.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するためのCVD装置の概要
を示す。
FIG. 1 shows an outline of a CVD apparatus for carrying out the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、Si_2F_6を含む弗化珪素と窒素化物気体との
混合反応性気体に熱エネルギと電気エネルギとを加える
ことにより、被形成面上に窒化珪素を作製することを特
徴とする窒化珪素作製方法。
1. A method for producing silicon nitride, which comprises producing silicon nitride on a surface to be formed by applying thermal energy and electrical energy to a mixed reactive gas of silicon fluoride containing Si_2F_6 and nitride gas.
JP59220108A 1984-03-12 1984-10-19 Semiconductor device Expired - Lifetime JP2620063B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59220108A JP2620063B2 (en) 1984-10-19 1984-10-19 Semiconductor device
US06/710,111 US4704300A (en) 1984-03-12 1985-03-11 Method for producing silicon nitride layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59220108A JP2620063B2 (en) 1984-10-19 1984-10-19 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6199677A true JPS6199677A (en) 1986-05-17
JP2620063B2 JP2620063B2 (en) 1997-06-11

Family

ID=16746033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59220108A Expired - Lifetime JP2620063B2 (en) 1984-03-12 1984-10-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2620063B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131971A (en) * 1983-12-20 1985-07-13 Canon Inc Formation of deposited film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131971A (en) * 1983-12-20 1985-07-13 Canon Inc Formation of deposited film

Also Published As

Publication number Publication date
JP2620063B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
EP0104658B1 (en) Process for forming thin film
US5376591A (en) Method for manufacturing semiconductor device
JP2003332333A (en) Low-temperature deposition method of insulation film
US4717602A (en) Method for producing silicon nitride layers
JPH11233502A (en) Apparatus and method of forming oxide film on semiconductor
JP2884968B2 (en) Method for manufacturing silicon oxide film
US4704300A (en) Method for producing silicon nitride layer
JP2723472B2 (en) Apparatus and method for depositing borophosphosilicate glass on a substrate
JPS6199677A (en) Manufacture of silicon nitride
JPS60190564A (en) Preparation of silicon nitride
JPH02259074A (en) Method and apparatus for cvd
JPS60144940A (en) Method of producing silicon oxide
JPS60190566A (en) Preparation of silicon nitride
JPS60190567A (en) Preparation of silicon nitride
JPS6052578A (en) Formation of silicon nitride film
JPS5941773B2 (en) Vapor phase growth method and apparatus
JPS6027121A (en) Photo chemical vapor deposition device
JPH01129972A (en) Formation of silicon oxynitride film
JPS62158866A (en) Preparation of silicon oxide
JPS6199676A (en) Manufacture of silicon nitride
JPS59147435A (en) Formation of silicon oxide film
JPH07335643A (en) Film forming method
JPS6240377A (en) Production of antimony nitride
JPH0674502B2 (en) Semiconductor device
JPH0677145A (en) Thin film formation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term