JPS60190567A - Preparation of silicon nitride - Google Patents

Preparation of silicon nitride

Info

Publication number
JPS60190567A
JPS60190567A JP4684184A JP4684184A JPS60190567A JP S60190567 A JPS60190567 A JP S60190567A JP 4684184 A JP4684184 A JP 4684184A JP 4684184 A JP4684184 A JP 4684184A JP S60190567 A JPS60190567 A JP S60190567A
Authority
JP
Japan
Prior art keywords
vessel
silicon nitride
supplied
energy
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4684184A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP4684184A priority Critical patent/JPS60190567A/en
Publication of JPS60190567A publication Critical patent/JPS60190567A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride

Abstract

PURPOSE:To prepare silicon nitride which contains oxygen at a low concn. and is added with fluorine by applying heat energy or heat energy and electric energy to a reactive gaseous mixture composed of silicon fluoride expressed by SiF4 and gaseous nitride. CONSTITUTION:SiF4 is supplied from a cylinder 11 and on the other hand, anhydrous N2H4 packed in a bubbler 20 is supplied after dehumidifying and refining the same to ultra-high purity by a molecular sieve 21. The reactive gaseous mixture composed thereof is introduced into a reaction vessel 1 having an inside wall consisting of quartz. Flat plate electrodes 4, 4' are disposed in the vessel 1 and a substrate 2 is disposed on one electrode 4' thereof. The pressure in the vessel 1 is maintained preferably at 0.05-5Torr by a vacuum pump 14 and the temp. of the substrate 2 is maintained preferably at 100-500 deg.C by halogen heaters 3, 3'. The distance between the above-mentioned electrodes 4 and 4' is maintained preferably at >=15cm and preferably low-frequency energy of 10-200kHz is supplied from an electric energy supply device 5 to the vessel to cause a plasma chemical reaction.

Description

【発明の詳細な説明】 この発明は、熱、プラズマ化学反応を用いた気相反応方
法(以下CVD法という)により弗素が添加された窒化
珪素、例えば光フアイバー用のコーティング、また半導
体エレクトロニクス用のパッシベイション被膜を作製す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to silicon nitride doped with fluorine by a vapor phase reaction method using heat and plasma chemical reactions (hereinafter referred to as CVD method), for example, coatings for optical fibers and semiconductor electronics. The present invention relates to a method for producing a passivation film.

この発明は弗素が低級に添加され5i−F結合を有する
とともに、低い放電エネルギでプラズマCVD法を実施
することにより、被形成面のスパッタを少なくして窒化
珪素を作製する方法に関する。
The present invention relates to a method of manufacturing silicon nitride that is doped with a low amount of fluorine and has a 5i-F bond, and that reduces sputtering on a surface to be formed by performing a plasma CVD method with low discharge energy.

この発明はStFとアンモニアまたはヒドラジンとを反
応せしめ、窒化珪素被膜を500℃以下の温度好ましく
は100〜400℃例えば300℃で形成する方法に関
する。
The present invention relates to a method of reacting StF with ammonia or hydrazine to form a silicon nitride film at a temperature of 500°C or less, preferably 100 to 400°C, for example 300°C.

従来、窒化珪素膜を作製せんとするには、グロー放電法
を用いたプラズマ気相反応方法によりシラン(Sil1
4)とアンモニア(NH3)とを反応せしめ、200〜
400℃の基板温度にて被膜を作製していた。しかしか
かる窒化珪素膜は、その股肉に珪素の不対結合手、さら
にシランを気体状態において含有しているため、この分
離により近接する珪素同志が結合しあい、結果として珪
素のクラスタが残存することにより残留電荷を生ずる。
Conventionally, in order to produce a silicon nitride film, silane (Sil1
4) and ammonia (NH3) are reacted, and 200~
The film was produced at a substrate temperature of 400°C. However, since such a silicon nitride film contains silicon dangling bonds and silane in a gaseous state in its crotch, this separation causes adjacent silicon to bond with each other, resulting in silicon clusters remaining. This results in a residual charge.

さらに耐圧低下を誘発する。このために、MOS、 I
C等の紫外線透過用のファイナル・コーティングとして
用いることができなかった。
Furthermore, it induces a decrease in pressure resistance. For this purpose, MOS, I
It could not be used as a final coating for transmitting ultraviolet rays such as C.

さらに、この方法においては、生成された酸化珪素中に
クラスタおよび011を残存してしまう。このため実用
上において反応性気体状態において含有しにくい254
nmの波長の紫外光が透過する窒化珪素被膜を作製する
方法がめられていた。
Furthermore, in this method, clusters and 011 remain in the produced silicon oxide. For this reason, it is difficult to contain 254 in the reactive gas state in practice.
A method of producing a silicon nitride film that transmits ultraviolet light having a wavelength of nm has been considered.

本発明はかかる目的のため、即ち珪素の弗素化物である
5infを用いることにより窒化珪素を作製せんとする
ものである。
The present invention aims to produce silicon nitride for this purpose, that is, by using 5inf, which is a fluoride of silicon.

以下に図面に従って本発明を記す。The present invention will be described below according to the drawings.

第1図は本発明に用いられたCνD装置の概要を示す。FIG. 1 shows an outline of the CvD device used in the present invention.

図面において、反応容器(真空容器)〈1)は内壁が石
英からなっている。基板(2)は平行平板型電極の一方
の電極上に配設され、反応炉の上部、下部に配設された
ハロゲンヒータ(3>、< 3 ’>により、室温〜1
200℃、好ましくは200〜400 ’C例えば30
0℃に加熱がされている。ドーピング系は流蛍計(6)
、バルブ(7)よりなり、アンモニアまタハ窒素は(1
0)より供給される。ヒドラジン(N工H,)<MP’
 1.4℃、BP 113.5℃)は室温で液体である
ため、バブラ(20)に充填されている。このヒドラジ
ンは無水を用い、さらにモレキュラシープ(21)によ
り超高純度に除湿精製した。また、珪素の弗素化物は(
11)よりSit+とじてボンへより供給される。これ
らの反応性気体が反応容器内に導入し、さらに排気口よ
り圧力調整バルブ(12)、ストンプバルブ(13)を
へて、真空ポンプ(14)より排気させた。プラズマ化
学反応させる電気エネルギ供給装置(5)が設けられて
いるが、この低周波エネルギ供給用コイル(4)を囲ん
で抵抗加熱ヒータ(3)が設けられている。
In the drawing, the reaction vessel (vacuum vessel) <1) has an inner wall made of quartz. The substrate (2) is placed on one of the parallel plate electrodes, and is heated from room temperature to
200°C, preferably 200-400'C e.g. 30
It is heated to 0°C. The doping system is a flow fluorometer (6)
, valve (7), ammonia or nitrogen (1
0). Hydrazine (N Engineering H,) <MP'
1.4°C, BP 113.5°C) is a liquid at room temperature, so it is filled in the bubbler (20). This hydrazine was anhydrous and further dehumidified and purified to ultra-high purity using Molecular Sheep (21). In addition, silicon fluoride is (
11), it is combined with Sit+ and supplied to the bomb. These reactive gases were introduced into the reaction vessel, passed through a pressure regulating valve (12) and a stomp valve (13) through an exhaust port, and were exhausted by a vacuum pump (14). An electric energy supply device (5) for causing a plasma chemical reaction is provided, and a resistance heater (3) is provided surrounding this low frequency energy supply coil (4).

以下にその実施例を示す。Examples are shown below.

実施例1 この実施例はSiF4と窒素、アンモニアまたはヒドラ
ジンとの熱化学反応により窒化珪素を石英管内に作製せ
んとしたものである。
Example 1 In this example, silicon nitride was prepared in a quartz tube by a thermochemical reaction between SiF4 and nitrogen, ammonia, or hydrazine.

第1図において、ヒータ(13)内に配設された石英管
内壁上に珪素基板(2)をホルダ(22)上に配設して
いる。さらにバルブ(7)、<25)を開にしてSiF
4とN、H,とを5iP4 / Nz4 ’i 3とし
て導入した。反応容器内圧力は、0.1 =10tor
rの範囲例えば2 torrとした。温度は550℃と
した。すると反応管内に窒化珪素を熱エネルギのみの供
給による減圧CVD法を用い2.3人/秒の成長速度で
得ることができた。ごの被膜成長速度は1 torr+
0.1torrとすると、0.8 人/秒、0.3 人
/秒と減少した。
In FIG. 1, a silicon substrate (2) is placed on a holder (22) on the inner wall of a quartz tube placed in a heater (13). Furthermore, open the valve (7), <25) to
4 and N,H, were introduced as 5iP4/Nz4'i3. The pressure inside the reaction vessel is 0.1 = 10tor
The range of r is, for example, 2 torr. The temperature was 550°C. Then, silicon nitride could be obtained in the reaction tube at a growth rate of 2.3 persons/second using a low pressure CVD method by supplying only thermal energy. The film growth rate is 1 torr+
At 0.1 torr, the number decreased to 0.8 people/second and 0.3 people/second.

また基板温度を600℃、700℃とすると、2tor
rにおいて2.3人/秒、3.5人/秒と被膜成長速度
が大きくなった。
Also, if the substrate temperature is 600℃ and 700℃, 2tor
At r, the film growth rate increased to 2.3 people/sec and 3.5 people/sec.

この生成物を0.5μの厚さとしてIR(赤外線吸収ス
ペクトル)で調べたところ、1000cm”に大きな吸
収が見られ、窒化珪素膜であることが判明した。さらに
、本発明方法において重要なことは、SIMS (二次
イオン分析法)によりこの被膜中の酸素濃度をllaべ
たところ、従来のSiH4とNl+、とのプラズマ気相
反応においては2 X 1020cm−3〜5X102
0cm’の多量の濃度の酸素を含有していたが、本発明
においては、1〜5 X 1018cm+−3であり、
従来の1/30以下しか含有していないことである。そ
の理由として以下が考えられる。即ちSiF+とNLI
IQとの反応の後の残存ガスとしてIIFが発生する。
When this product was examined using IR (infrared absorption spectrum) with a thickness of 0.5μ, a large absorption was observed at 1000cm'', which revealed that it was a silicon nitride film.Furthermore, important points in the method of the present invention The oxygen concentration in this film was determined by SIMS (secondary ion spectroscopy), and it was found that in the conventional plasma gas phase reaction between SiH4 and Nl+, it was 2 x 1020 cm-3 to 5 x 102
Although it contained a large concentration of oxygen of 0 cm', in the present invention, it is 1 to 5 x 1018 cm + -3,
It contains less than 1/30 of the conventional amount. Possible reasons for this are as follows. That is, SiF+ and NLI
IIF is generated as a residual gas after reaction with IQ.

この11Fが不純物として存在する5iOI+ 5ta
llと再反応し、5iOL+ 411F→SiF4+ 
II、0により水素と14よりも安定なS i F4が
生成される。
5iOI+ 5ta in which this 11F exists as an impurity
Re-react with ll, 5iOL+ 411F→SiF4+
II,0 produces hydrogen and S i F4, which is more stable than 14.

その結果、水ばかがる状態でSi%と反応できないため
、結果として被膜形成と同時に高純度化作用もされてい
るものと推察される。
As a result, since it cannot react with Si% in a state where it is exposed to water, it is presumed that as a result, a high purity action is performed at the same time as film formation.

実施例2 この実施例はS t F4とアンモニアとのプラズマ気
相反応により窒化珪素被膜を単結晶珪素基板上に作製し
た。
Example 2 In this example, a silicon nitride film was formed on a single crystal silicon substrate by a plasma vapor phase reaction between S t F4 and ammonia.

実施例1と同様の装置を用いた。基板温度は100〜5
00℃例えば300℃、圧力0,7 torr、 ’d
i気コーネ 。
The same apparatus as in Example 1 was used. The substrate temperature is 100-5
00℃ e.g. 300℃, pressure 0.7 torr, 'd
I'm curious.

ルギ(50KH2)を一対の電極(4)、〈4′)への
供給により反応性気体をプラズマ化(プラズマ密度0.
3 d/cn) シた。この電気エネルギの周波数は1
0〜200KHzの低周波とした。その形成された被膜
は熱エネルギによりより安定性を有せしめるためにきわ
めて重要であった。即ち10Ml1z以上の周波数では
形成された被膜を350℃の温度で長時間(1000時
間以上)保存するとクランクが発生してしまった。
The reactive gas is turned into plasma (plasma density: 0.001 by supplying 50KH2) to the pair of electrodes (4) and <4').
3 d/cn) Shita. The frequency of this electrical energy is 1
A low frequency of 0 to 200 KHz was used. The coating formed was extremely important to provide greater stability with thermal energy. That is, at a frequency of 10 Ml1z or more, cranking occurred when the formed film was stored at a temperature of 350° C. for a long time (1000 hours or more).

この窒化珪素上に対抗電極を作り、ダイオード構造とし
て、C−V特性を測定した。その結果、界面準位密通は
3 ×1Qll cm−2以下であって、酸化珪素被膜
は直流電界を加えた場合、1X106V/Cl11にお
いて初めてヒステリシス特性が観察され、珪素基板」二
に形成された窒化珪素中に珪素クラスタの存在により電
荷捕獲中心が少ないことが判明した。
A counter electrode was formed on this silicon nitride to form a diode structure, and the CV characteristics were measured. As a result, the interfacial level communication was less than 3 × 1Qll cm-2, and when a DC electric field was applied to the silicon oxide film, a hysteresis characteristic was observed for the first time at 1X106V/Cl11, and the nitride film formed on the silicon substrate It was found that there are fewer charge trapping centers due to the presence of silicon clusters in silicon.

/水イ!に4A/4 即ち、本発明方法において、SiF、と會】作【τヌ′
は窒化物気体(Ni1. 、NLll、 、 N FJ
 )との反応方法は、膜中に酸素クラスタを含まず、紫
外光が透過し得るため、紫外線消去型のUP ROM半
導体ディバイスのパッシベイション膜としてきわめて有
効であることが判明した。この実施例1より作られた被
膜は、MIS、FETのゲイト絶縁物またはlTr/c
ellの電荷捕獲用キャパシタ用誘電体として有効であ
り、それぞれを用途により使い分けるとよいことが判明
した。
/ Water! 4A/4 That is, in the method of the present invention, SiF,
is nitride gas (Ni1., NLll, , NFJ
) has been found to be extremely effective as a passivation film for UV-erasable UP ROM semiconductor devices because the film does not contain oxygen clusters and can transmit ultraviolet light. The film made from this Example 1 can be used for MIS, FET gate insulator or lTr/c
It has been found that these materials are effective as dielectric materials for capacitors for charge trapping in ELLs, and that it is best to use them differently depending on the purpose.

本発明において、熱CVD法、プラスマCVD法に加え
て300nm以下の光エネルギの照射を同時に併用して
実施してもよいことはいうまでもない。
It goes without saying that in the present invention, in addition to the thermal CVD method and the plasma CVD method, irradiation with light energy of 300 nm or less may be used simultaneously.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するためのCVO装置の概要
を示す。 特許出願人
FIG. 1 shows an outline of a CVO apparatus for carrying out the method of the present invention. patent applicant

Claims (1)

【特許請求の範囲】 1、SiFうで示される弗化珪素と窒素化物気体との混
合反応性気体に熱エネルギまたは熱エネルギと電気エネ
ルギを加えることにより、被形成面上に弗素が添加され
た窒化珪素を作製することを特徴とする窒化珪素作製方
法。 2、特許請求の範囲第1項において、基板温度が100
〜500℃でありかつ反応炉内圧力を0.05〜5to
rrとし、平行平板型電極の電極距離を15cm以上と
し、かつ電気エネルギは10〜200KIIZの低周波
を供給したことを特徴とする窒化珪素作製方法。
[Claims] 1. Fluorine is added onto the surface to be formed by applying thermal energy or thermal energy and electrical energy to a mixed reactive gas of silicon fluoride and nitride gas represented by SiF. A method for manufacturing silicon nitride, characterized by manufacturing silicon nitride. 2. In claim 1, the substrate temperature is 100
~500℃ and the pressure inside the reactor is 0.05~5to
rr, the electrode distance of parallel plate electrodes is 15 cm or more, and low frequency electric energy of 10 to 200 KIIZ is supplied.
JP4684184A 1984-03-12 1984-03-12 Preparation of silicon nitride Pending JPS60190567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4684184A JPS60190567A (en) 1984-03-12 1984-03-12 Preparation of silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4684184A JPS60190567A (en) 1984-03-12 1984-03-12 Preparation of silicon nitride

Publications (1)

Publication Number Publication Date
JPS60190567A true JPS60190567A (en) 1985-09-28

Family

ID=12758562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4684184A Pending JPS60190567A (en) 1984-03-12 1984-03-12 Preparation of silicon nitride

Country Status (1)

Country Link
JP (1) JPS60190567A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296999A (en) * 1976-01-13 1977-08-15 Tohoku Daigaku Kinzoku Zairyo Silicon nitride having ultraahigh hardness and high purity process for peparing same and apparatus therefore
JPS56149306A (en) * 1980-04-21 1981-11-19 Kokusai Electric Co Ltd Formation of silicon nitride film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296999A (en) * 1976-01-13 1977-08-15 Tohoku Daigaku Kinzoku Zairyo Silicon nitride having ultraahigh hardness and high purity process for peparing same and apparatus therefore
JPS56149306A (en) * 1980-04-21 1981-11-19 Kokusai Electric Co Ltd Formation of silicon nitride film

Similar Documents

Publication Publication Date Title
US4181751A (en) Process for the preparation of low temperature silicon nitride films by photochemical vapor deposition
US4495218A (en) Process for forming thin film
JP2004119629A (en) Method of manufacturing silicon nitride film or silicon oxynitride film by thermal chemical vapor deposition method
JP2003332333A (en) Low-temperature deposition method of insulation film
US4717602A (en) Method for producing silicon nitride layers
EP0481706B1 (en) Method of producing CVD silicon oxynitride film
JP2884968B2 (en) Method for manufacturing silicon oxide film
Hollahan et al. Plasma deposition of inorganic thin films
JPS5998726A (en) Formation of oxide film
US4704300A (en) Method for producing silicon nitride layer
JPS60190567A (en) Preparation of silicon nitride
JPS60190564A (en) Preparation of silicon nitride
JP2620063B2 (en) Semiconductor device
Longeway et al. Infrared multiphoton decomposition of monosilane sensitized by silicon tetrafluoride
JPS60144940A (en) Method of producing silicon oxide
JPS60190566A (en) Preparation of silicon nitride
JPS6199676A (en) Manufacture of silicon nitride
JPH01129972A (en) Formation of silicon oxynitride film
JPS62158866A (en) Preparation of silicon oxide
JPS60190565A (en) Preparation of silicon nitride
JPS62158865A (en) Preparation of silicon oxide
JPS6145707B2 (en)
JPS61284578A (en) Formation of silicon oxide
Bhatnagar et al. The direct photochemical vapour deposition of SiO2 from Si2H6 and N2O3 mixtures
JPH0674502B2 (en) Semiconductor device