JPS6199539A - Nonferrous clad ingot and its production - Google Patents

Nonferrous clad ingot and its production

Info

Publication number
JPS6199539A
JPS6199539A JP22091584A JP22091584A JPS6199539A JP S6199539 A JPS6199539 A JP S6199539A JP 22091584 A JP22091584 A JP 22091584A JP 22091584 A JP22091584 A JP 22091584A JP S6199539 A JPS6199539 A JP S6199539A
Authority
JP
Japan
Prior art keywords
core material
walnut
casting
melting point
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22091584A
Other languages
Japanese (ja)
Inventor
Hidenari Kitaoka
北岡 英就
Osamu Haida
拝田 治
Yasuhiro Kakio
垣生 泰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22091584A priority Critical patent/JPS6199539A/en
Publication of JPS6199539A publication Critical patent/JPS6199539A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/02Casting compound ingots of two or more different metals in the molten state, i.e. integrally cast
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain an ingot having good quality even if the difference in m.p. between a core material and insert-casting material is >=150 deg.C in the stage of producing the low-melting nonferrous clad ingot by controlling the casting temp. of the molten insert- casting material and the rising speed of the molten metal surface in a casting mold according to the m.p. of the core material and liquidus line temp. of the inset-casting material. CONSTITUTION:The thickness of the solidified shell of the molten metal is smaller as the difference (the degree of overheating of the molten metal) DELTAT between the casting temp. of the molten metal of the insert-casting material and the liquids line temp. of the insert-casting material for said material is larger in the case of using an Ni-Cu alloy having 1,340 deg.C m.p. for the core material and a carbon steel having 1,520 deg.C liquidus line temp. for the insert-casting material. The thickness of the above- mentioned shell is smaller as the initial temp. of the core material surface is higher. The initial temp. degreases parabolically with an increase in the rising speed V of the molten metal surface in the casting mold and the core material component leaks to the insert-casting material side at >=300 deg.C initial temp. The combination of the degree DELTAT of overheating of the molten metal and the speed V is controlled in a suitable range in order to prevent the leakage from the above-mentioned result and the range thereof varies with the m.p. of the core material.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、融点の異なる異種金属材料からなるクラツ
ド材の素材としての鋳くるみ法によるクラッド鋳塊、特
に芯材として相対的に融点の低い非鉄金属材料を用いか
つ鋳くるみ材として相対的に融点の高い鉄系材料などを
用いた非鉄クラッド鋳塊、およびその非鉄クラッド鋳塊
を鋳くるみにより製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to clad ingots produced by the casting method as raw materials for clad materials made of dissimilar metal materials with different melting points, particularly non-ferrous metals with relatively low melting points as core materials. The present invention relates to a non-ferrous clad ingot using a ferrous material with a relatively high melting point as the walnut material, and a method for producing the non-ferrous clad ingot using walnut.

従来の技術 一般に炭素鋼、低合金鋼、高合金鋼などの鉄系材料の表
面に、その鉄系材料よりも融点の低い各種非鉄金戊材料
をPi覆したクラツド材は、鉄系材料からは得られない
非鉄金属材料特有の優れた特性を発揮できると同時に、
全体を非鉄金属材料で形成した場合よりも格段と安価と
なり、また非鉄金属材料では不足し勝ちな強度面を鉄系
材料で補償できるなど、種々の長所を有し、最近では各
方面で使用されるようになっている。例えばキュプロニ
ッケルとして知られる90%Cu−10%N1合金で鋼
を被覆したクラツド材は、耐海水性が著しく優れ、しか
も比較的安価なため、海水淡水化装置などに実用化され
、またモネルメタルとして知られる70%N+ −30
%Cu合金で鋼を被覆したクラツド材は、耐食性が著し
く優れるため、石油化学プラント等に使用されている。
Conventional technology In general, clad materials are made by covering the surface of ferrous materials such as carbon steel, low alloy steel, and high alloy steel with various non-ferrous metal materials that have a lower melting point than the ferrous material. At the same time, it can demonstrate the excellent properties unique to non-ferrous metal materials that cannot be obtained.
It has various advantages, such as being much cheaper than forming the entire body with non-ferrous metal materials, and can compensate for the strength that non-ferrous metal materials tend to lack with ferrous materials, and has recently been used in various fields. It has become so. For example, a clad material made by coating steel with a 90% Cu-10% N1 alloy known as cupronickel has excellent seawater resistance and is relatively inexpensive, so it has been put to practical use in seawater desalination equipment, etc., and is also used as Monel metal. Known 70%N+ -30
% Cu alloy is used in petrochemical plants and the like because it has extremely excellent corrosion resistance.

このようなりラッド材の製造方法としては、従来からオ
ーバーレイ法、組立圧延法、爆着法、あす    るい
は拡散法などが開発・実用化されてし゛る・またクラッ
ドするべき一方の金属材料を芯材として鋳型内に股!し
、他方の金属材料を注湯凝固させて前記芯材を鋳くるむ
、所謂鋳くるみ法(例えば特開昭58−119479号
等)も実用化されている。
As methods for producing such cladding materials, overlay methods, assembly rolling methods, explosive bonding methods, and diffusion methods have been developed and put into practical use. Crotch inside the mold as material! However, the so-called casting method (for example, JP-A-58-119479), in which the other metal material is poured and solidified and the core material is cast, has also been put into practical use.

発明が解決すべき問題点 前述したクラツド材製造方法のうち、オーバーレイ法、
組立圧延法、爆着法あるいは拡散法などにおいては、製
造工程における工数が著しく多く、そのため製造コスト
が極めて高く、また製造工程を自動化するための設備費
が膨大なものとなるため人的作業に頼る工程が多く、し
たがって生産性が低くならざるを得ないなどの問題があ
った。
Problems to be solved by the invention Among the above-mentioned cladding material manufacturing methods, the overlay method,
In the assembly rolling method, explosion bonding method, diffusion method, etc., the number of man-hours in the manufacturing process is extremely high, and therefore the manufacturing cost is extremely high.In addition, the equipment cost for automating the manufacturing process is enormous, so it is difficult to perform manual work. There were problems such as there were many dependent processes, and therefore productivity had to be low.

一方、鋳くるみ法によるクラツド材の製造方法は、量産
のための自動化が容易でまた工数も比較的少なくて済む
ため、工業的凹座規模での生産性が高いという長所は有
するものの、次のような問題があった。
On the other hand, the manufacturing method of cladding material using the cast walnut method has the advantage of being highly productive on an industrial concavity scale because it is easy to automate for mass production and requires relatively few man-hours. There was a problem like this.

すなわち鋳くるみ法によってクラツド材を製造する方法
は、鉄系材料などの相対的に11融点の材料を芯材とし
てその芯材を低融点の非鉄金属材料で鋳くるむ方法と、
逆に低融点の非鉄金属材料を芯材としてその芯材を高融
点の鉄系材料で鋳くるむ方法とに大別されるが、前者の
高融点の芯材を用いる方法では、低融点の非鉄金属材か
らなる鋳くるみ材が高融点の芯材となじまずに、その境
界部分で融接不良が生じたり、また芯材表面にスラグが
付着してその部分に接合不良が生じたりすることが多く
、その結果芯材と鋳くるみ材との間の接合強度が不充分
となって製品段階で剥離が生じてしまうおそれがある。
In other words, the method of producing clad material by the casting method is to use a material with a relatively melting point of 11, such as a ferrous material, as a core material, and then cast the core material with a non-ferrous metal material with a low melting point.
On the other hand, there are two main methods: casting a core material made of a non-ferrous metal material with a low melting point and encasing the core material in a ferrous material with a high melting point. Cast walnut materials made of metal do not blend well with the core material, which has a high melting point, resulting in poor fusion welding at the boundary, or slag adhering to the surface of the core material may cause bonding defects in that area. As a result, the bonding strength between the core material and the cast walnut material may become insufficient, and there is a risk that peeling may occur during the product stage.

一方後者の低融点の非鉄芯材を用いる方法では、鋳くる
み時において芯材に高融点の鋳くるみ材が充分になじみ
、したがって融接不良が生じるおそれは少ないが、従来
の−q2的な方法では芯材が鋳くるみ時に表面から溶融
して芯材成分と鋳くるみ相成分とが混合し、その程度が
甚だしくなればクラツド材本来の特性を充分に発揮でき
なくなったり、また有害な金WEE化合物相などが生成
されたりして、鋳くるみ鋳塊全体を廃棄せざるを得ない
ような’51Rが生じることが多かった。
On the other hand, in the latter method, which uses a non-ferrous core material with a low melting point, the cast material with a high melting point fully adapts to the core material during casting, and therefore there is little risk of defective fusion welding. When the core material is cast, it melts from the surface and the core material components and the cast walnut phase components mix, and if the degree of this becomes severe, the original characteristics of the clad material cannot be fully demonstrated, and harmful gold WEE compounds may be produced. In many cases, '51R' occurred where phases were formed and the entire cast walnut ingot had to be discarded.

上述のように生産性、コストの点からは鋳くるみ法が優
れており、そして鋳くるみ法のうちでも特に芯材と鋳く
るみ材との接合強度の点からは低融点の非鉄金属材料を
芯材として高融点の鉄系材料などで鋳くるむ方法が優れ
ているが、鋳くるみ時の芯材の溶融の問題から芯材と鋳
くるみ材との融点の差があまり大きいものには適用でき
ず、そのためクラツド材に使用される素材の種類、特に
芯材としての非鉄金属材料の種類が制約される問題があ
った。
As mentioned above, the cast walnut method is superior in terms of productivity and cost, and among the cast walnut methods, a non-ferrous metal material with a low melting point is particularly preferred in terms of bonding strength between the core material and the cast walnut material. Casting with high-melting-point iron-based materials is an excellent method, but it cannot be applied to materials where the difference in melting point between the core material and cast walnut material is too large due to the problem of melting of the core material during casting. Therefore, there was a problem in that the type of material used for the cladding material, particularly the type of non-ferrous metal material used as the core material, was restricted.

問題点を解決するための手段 前述のような問題を解決するべく、本発明者等は芯材と
して低融点の非鉄金属材料を用い、鋳くるみ材として高
融点の鉄系材料などを用いた場合の鋳くるみ法によるク
ラッド鋳塊の製造において、鋳くるみ時に芯材と鋳くる
み材との間の界面付近で生じる現象について実験・検討
を重ねた結果、次のような事実が判明した。
Means for Solving the Problems In order to solve the above-mentioned problems, the inventors used a non-ferrous metal material with a low melting point as the core material and a ferrous material with a high melting point as the cast walnut material. As a result of repeated experiments and studies on the phenomena that occur near the interface between the core material and the cast walnut material during walnut production in the production of clad ingots using the walnut method, the following facts were discovered.

すなわち鋳型内に非鉄金属材料からなる芯材を配設して
高融点の鋳くるみ材溶瀉を下注ぎにより注入した際には
、先ず芯材表面に接する鋳くるみ材溶湯が急冷されてそ
の界面から詩くるみ材の凝固シェルが成長するとともに
、芯材に訪くるみ打倒からの熱が伝達されて芯材の温度
が上昇し、時間の経過とともに芯材が表面から溶融して
行くが、その溶融した芯材溶湯と未凝固の鋳くるみ材溶
瀾は既に凝固した鋳くるみ材凝固シェルによって離隔さ
れた状態となることを見出した。そしてその場合芯材が
溶融した時点における鋳くるみ材凝固シェルの厚みが未
だ薄ければ、溶融した芯材成分が譚固シェルを破って外
側の未凝固鋳くるみ材溶消中へ漏れ出し、芯材成分と鋳
くるみ材成分とが混合してクラツド材本来の性能を発揮
できなくなることを見出した。このような本発明者等が
新規に見出した事実に着目し、さらに実験を進めた結果
、芯材を設置した鋳型内へ芯材よりも融点の高い鋳くる
み材溶濶を下注ぎで鋳込む際に芯材の融点および鋳くる
み材の液相11m度に応じて鋳くる(    み材溶湯
の鋳込み温度と鋳くるみ材溶澗のVI型型内部面上昇速
度いわゆる泪上り速度)とをvJ御することによって、
芯材溶融開始時の鋳くるみ材凝固シェルの厚みを溶融し
た芯材の漏れが生じない程度に厚くして、芯材成分と鋳
くるみ材成分との混合を防止することができ、特に芯材
と鋳くるみ材との融点差が150℃以上と大きい場合で
も良好な品質のクラッド鋳塊が得られることを見出し、
この発明をなすに至ったのである。
In other words, when a core material made of a non-ferrous metal material is placed in a mold and molten cast walnut material with a high melting point is injected by under-pouring, the molten cast walnut material that is in contact with the surface of the core material is first rapidly cooled and its interface As the solidified shell of the walnut wood grows, the heat from the walnut crushing is transmitted to the core material, increasing the temperature of the core material, and as time passes, the core material melts from the surface, but the melting It has been found that the molten core material and the unsolidified molten walnut material are separated by the solidified shell of the walnut material that has already solidified. In that case, if the thickness of the solidified cast walnut shell is still thin at the time the core material is melted, the molten core material components will break through the solidified shell and leak into the unsolidified cast walnut material on the outside. It has been discovered that the cladding material cannot exhibit its original performance due to mixing of the material components and the cast walnut material components. Focusing on these newly discovered facts, the inventors of the present invention conducted further experiments and found that molten walnut material, which has a higher melting point than the core material, was poured into the mold in which the core material had been installed. At the time of casting, the melting point of the core material and the liquid phase of 11m degrees of the cast walnut material (the casting temperature of the molten material and the rising speed of the VI type internal surface of the molten walnut material, so-called rising speed) are controlled by VJ. By,
By increasing the thickness of the solidified shell of the cast walnut material at the start of core melting to an extent that does not cause leakage of the molten core material, mixing of the core material components and the cast walnut material components can be prevented. It was discovered that good quality clad ingots can be obtained even when the melting point difference between the walnut material and the cast walnut material is as large as 150°C or more.
This led to this invention.

具体的には、第1発明は非鉄金属材料を芯材とし、その
芯材と異なる金属材料からなる鋳くるみ材で芯材を鋳く
るんだ非鉄クラッド鋳塊において、芯材の融点が鋳くる
み材の融点よりも低く、かつそれらの融点差が150℃
以上あることを特徴とする非鉄クラッド鋳塊を提供する
Specifically, the first invention provides a non-ferrous clad ingot in which the core material is a non-ferrous metal material and the core material is cast with a cast walnut material made of a metal material different from the core material, the melting point of the core material being that of the cast walnut material. lower than the melting point of , and the difference in their melting points is 150℃
Provided is a non-ferrous clad ingot characterized by the above.

また第2発明は、第1発明の非鉄クラッド鋳塊を製造す
る方法であって、非鉄金属材料からなる芯材を鋳型内に
設置し、その鋳型内に芯材よりも高融点の鋳くるみ材溶
湯を下注ぎにより鋳込むにあたり、芯材の融点および鋳
くるみ材の液相線温度に応じて鋳くるみ材溶凛の鋳込み
温度および鋳型内i面上昇速度をvJ lすることを特
徴とするものである。
Further, a second invention is a method for manufacturing the non-ferrous clad ingot of the first invention, in which a core material made of a non-ferrous metal material is installed in a mold, and a cast walnut material having a higher melting point than the core material is placed in the mold. When pouring the molten metal by bottom pouring, the casting temperature of the molten walnut material and the rate of rise of the i-plane in the mold are set to vJ l according to the melting point of the core material and the liquidus temperature of the walnut material. It is.

こで第2発明の方法を実施するにあたってその具体的制
御手法としては、芯材の融点To (”C)と、鋳くる
み材の鋳込み温度と液相線温度との差ΔT(℃)と、鋳
型内湯面上昇速度V(a/■〉との関係が、次の(i)
式もしくは(ii)式を満足するように制御すれば良い
Here, in carrying out the method of the second invention, the specific control method is to control the melting point To ("C) of the core material, the difference ΔT (°C) between the casting temperature and the liquidus temperature of the cast walnut material, The relationship with the rate of rise of the mold surface level V (a/■) is as follows (i)
It is sufficient to perform control so as to satisfy the expression (ii) or the expression (ii).

61640℃のとき、    ■≧0.15    ・
・・(+)ΔT〉40℃のとき。
When the temperature is 61640℃, ■≧0.15 ・
...When (+)ΔT>40℃.

■≧0.15 + (0,02395−1,65x10
’ xTo ) (ΔT−40)  ・(B)発明の詳
細な説明 この発明は、前述のように低融点の非鉄金属材料を下注
ぎ法で高融点の鉄系材料等の鋳くるみ材により鋳くるむ
際には先ず芯材と接する部分から鋳くるみ材溶渇が凝固
開始して凝固シェルが形成され、その後芯材表面の溶融
が開始される迄に成長した鋳くるみ材凝固シェルの厚み
が、芯材成分の鋳くるみ打倒への漏れの発生に影響を及
ぼすとの知見に基づき、その芯材成分の漏れが生じない
ような厚みの初期鋳くるみ材凝固シェルを生成するに必
要な条件を、次に記すような伝熱計算結果や実際の訪込
み実験により見出してなされたちのである。
■≧0.15 + (0,02395-1,65x10
` In this case, the walnut material first begins to melt and solidify from the part that contacts the core material to form a solidified shell, and then the thickness of the walnut material solidified shell that grows until the core material surface begins to melt is the thickness of the core material. Based on the knowledge that the core material components affect the occurrence of leakage when the core material components are crushed, the following conditions are necessary to generate a solidified shell of the initial cast walnut material with a thickness that prevents leakage of the core material components. This discovery was made based on the results of heat transfer calculations and actual in-depth experiments as described in .

すなわち第1図は芯材として融点1340℃のNr−c
u金合金用い、鋳くるみ材として液相I’11文152
0℃の炭素鋼を用いて芯材を鋳くるむ際に、芯材表面が
溶融開始するまでの時間内に成長する鋳くるみ材溶涌の
凝固シェル厚に及ぼす鋳造要因、特に鋳くるみ材WJ濶
の鋳込み温度とその鋳くるみ材の液相I温度との差〈す
なわち所謂溶浦過熟度)ΔTと、芯材表面の初期温度と
が鋳くるみ材の前記凝固シェル厚に及ぼす影響について
伝熱モデル計算した結果を示すものである。なおここで
芯材表面の初期温度とは、鋳くるみ材溶湯と接する際の
芯材表面温度に相当し、したがって後述するように芯材
の位置によって異なる温度となる。
In other words, in Figure 1, Nr-c with a melting point of 1340°C is used as the core material.
Using u-gold alloy, liquid phase I'11 152 as cast walnut material
When core material is cast using carbon steel at 0°C, casting factors that affect the solidified shell thickness of the molten cast walnut material that grows during the time until the core material surface starts to melt, especially the WJ thickness of the cast walnut material. Regarding the influence of the difference ΔT between the casting temperature and the liquid phase I temperature of the cast walnut material (that is, the so-called molten overripening degree) and the initial temperature of the core material surface on the solidified shell thickness of the cast walnut material, heat transfer is conducted. This shows the results of model calculations. Note that the initial temperature of the core material surface here corresponds to the core material surface temperature when it comes into contact with the molten cast walnut material, and therefore, as will be described later, the temperature varies depending on the position of the core material.

第1図かられかるように、溶澹過熟度Δ丁が大きいほど
、すなわち鋳くるみ材の鋳込み温度がその鋳くるみ材の
液相線温度より品いはと凝固シェル厚は薄くなり、しか
も芯材表面の初期温度が高いほど凝固シェル厚は薄くな
る。ここで芯材表面のi度は鋳くるみ材注瀧間始前まで
は常温であるが、鋳くるみ材の鋳込み開始とともにその
鋳くるみ相溶iに未だ浸漬されていない部分にも溶湯か
らの輻射熱が加わり、かつ溶湯に浸漬された部分から芯
材高さ方向への熱伝導が開始され、鋳くるみ相溶瀉のI
面上昇に伴なって未浸漬部分の温度が上昇し、前記の芯
材表面初期温度が高くなる。
As can be seen from Figure 1, the larger the degree of overmaturity Δ, that is, the casting temperature of the cast walnut material is lower than the liquidus temperature of the cast walnut material, the thinner the solidified shell thickness becomes. The higher the initial temperature of the core material surface, the thinner the solidified shell thickness becomes. Here, the i degree of the core material surface is at room temperature until the beginning of pouring of the cast walnut material, but as soon as the casting of the cast walnut material starts, the radiant heat from the molten metal is also applied to the parts that are not yet immersed in the cast walnut compatible i. is added, and heat conduction starts from the part immersed in the molten metal in the height direction of the core material, and the I
As the surface rises, the temperature of the unimmersed portion increases, and the initial temperature of the surface of the core material increases.

そして芯材表面初期温度の上昇は、上記輻射熱と熱伝導
の影響を最も長時間受ける芯材頭部で最も顕著となり、
その程度は湯面の上昇が遅いほど大きくなる。すなわち
鋳くるみ相溶瀾の鋳型内における表面上昇速度が芯材表
面初期濃度に大きな影響を与えるものと考えられる。
The increase in the initial temperature on the surface of the core material is most noticeable at the head of the core material, which is affected by the above-mentioned radiant heat and heat conduction for the longest time.
The degree of this becomes larger as the rise of the hot water level is slower. In other words, it is thought that the rate of surface rise of the cast walnut compatibility in the mold has a great influence on the initial concentration on the surface of the core material.

そこで本発明者等は、前記同様に鋳くるみ材として液相
線温度1520℃の炭素鋼を用いて融点1340℃のN
i−Cu合金の芯材を下注ぎ法で鋳t   < 8 G
 m ′)X u M W ’ ” ’ ” ” ’ 
K ” ” ’ ” ’度との関係を実際の鋳込み実験
で調べたところ、第2因に示す結果が得られた。またこ
の実験においては、鋳塊の1,72幅で縦方向に破断し
、その断面のマクO組織を観察して、芯材表層部の鋳く
るみ材側への溶融漏れの有無を調べた。その溶融漏れが
認められなかった鋳塊を0印で示し、また溶allれが
求められた鋳塊を・印で示す。
Therefore, the present inventors used carbon steel with a liquidus temperature of 1520°C as the cast walnut material in the same way as described above, and N2 with a melting point of 1340°C.
i-Cu alloy core material is cast by bottom pouring method t < 8 G
m ′)
When we investigated the relationship between K `` `` `` `` '' in an actual casting experiment, we obtained the results shown in the second factor. Also, in this experiment, the ingot fractured in the longitudinal direction at the 1.72 width. The macro-O structure of the cross section was observed to check for melt leakage to the walnut material side of the surface layer of the core material.The ingots in which no melt leakage was observed were marked with a 0 mark, and the melted all The ingot for which this was determined is indicated with a mark.

第2図から明らかなように、芯材頭部の表面初期温度は
湯面上界速度の増加に伴ない放物線状に低下することが
認められた。そして芯材表面初期温度が300℃以上で
は芯材表層部の溶融部分が鋳くるみ材側へ漏れたことが
判明した。これらの結果から、芯材表面の初期濃度上昇
は湯面上界速度が大きい程、小さくすることができ、そ
れに伴なって芯材溶@漏れが防止できることが明らかと
なった。
As is clear from FIG. 2, it was observed that the initial surface temperature of the core head decreased parabolically as the interface velocity above the surface of the molten metal increased. It was also found that when the initial temperature of the surface of the core material was 300° C. or higher, the melted portion of the surface layer of the core material leaked to the walnut material side. From these results, it has become clear that the increase in initial concentration on the surface of the core material can be reduced as the critical velocity above the surface of the molten metal increases, and that melting of the core material and leakage can be prevented accordingly.

以上の結果に基づき、さらに本発明者等は液相線温度1
520℃の炭素鋼を鋳くるみ材として用い、芯材として
のNi−Cu合金の成分比を種々変化させてその融点を
1000〜1300℃の範囲内で変化させ、実操業膚模
の5を鋳塊(高さ1.5111)l込用下注ぎ鋳型を用
いて鋳込実験を行なった。そしてこの実験において鋳く
るみ相溶1の鋳込み温度および泪面上昇速度を種々変化
させ、得られた各クラッド鋳塊をF!!断して芯材表層
部の溶殖R生状況お上び溶融した芯材成分の鋳くるみ材
!1への門れの有無を調べた。その結果をm i3過熱
度Δ丁、すなわち鋳くるみ材の鋳込み温度と液相ηと度
との差へTと、湯面上界速度と対応()て第3図、第4
図に示す。ここで第3図は芯材の融点が1340℃の場
合、第4図は芯材の融点が1005℃の41合を示し、
またこれらの図においてO印tユ芯材表m部の溶融は認
められたものの鋳くる7五寸閂へのiれが認められなか
った場合を示し、う印は門れが認められた場合を示す。
Based on the above results, the inventors further determined that the liquidus temperature 1
Using 520°C carbon steel as the casting material and varying the composition ratio of the Ni-Cu alloy as the core material to vary its melting point within the range of 1000 to 1300°C, actual skin pattern 5 was cast. A casting experiment was carried out using a bottom pouring mold for lump (height 1.5111) l. In this experiment, the casting temperature and the surface rising speed of the cast walnut compatible 1 were variously changed, and each of the obtained clad ingots was F! ! Cut the surface layer of the core material to show the melted R growth condition and the melted core material components of cast walnut material! We investigated whether there is a gate to 1. The results are expressed as m i3 superheating degree ΔT, that is, the difference between the casting temperature of the cast walnut material and the liquid phase η, and the correspondence () to the critical velocity above the surface of the molten metal (Figs. 3 and 4).
As shown in the figure. Here, Fig. 3 shows the case where the melting point of the core material is 1340°C, and Fig. 4 shows the 41st case where the melting point of the core material is 1005°C.
In addition, in these figures, O indicates a case where melting of the surface m of the core material was observed, but no leakage was observed in the 75-inch bar to be cast, and a cross indicates a case where a gate was observed. shows.

第3図、男4図から、芯材成分の鋳くるみ材側への1机
を防止するためには、鋳込み溶湯過熱ヴ△丁と鋳型内−
面上昇速度\lどの組合せに適切な1罰が存在すること
が明らかであり、その範囲は芯材のI!!!点によって
すなることがわかる。すなわf5鋳込み過!′!度ΔT
が40℃以下の場合には湯面上界速度■が0.15m、
’甫以上であれば芯材の帛点(、二無関係に芯材成分の
肩れを防止できるが、鋳込み溶濶過熟度ΔTが40℃を
越える場合に芯材成分の漏れを防止するためには、鋳込
み溶湯過熱度ΔTが大きくなるほど湯面上昇速度■を大
きくしなければならず、しかも芯材の融点が低いほど1
面上昇31度■を大きくしなければならない。このよう
な関係を整理して、芯材成分の鋳くるみ材側への漏れを
防止するために必要な鋳込み溶湯過熱度Δ丁と湯面上昇
速度V(i/m)との関係式を芯材の融点To(℃)の
関数として求めれば、次の(i)、(ii)式が得られ
る。
From Fig. 3 and Fig. 4, in order to prevent the core material components from flowing to the casting walnut material side, it is necessary to
It is clear that there is an appropriate 1 penalty for each combination of surface rising speed \l, and that range is the I of the core material! ! ! You can see that it is sulcus by the dots. In other words, f5 is overcast! ′! degree ΔT
When is below 40℃, the critical velocity above the hot water surface is 0.15 m,
If it is above 40°C, it is possible to prevent the core material component from shifting regardless of the temperature, but in order to prevent the core material component from leaking if the casting overmaturity ΔT exceeds 40℃. To achieve this, the higher the degree of superheating ΔT of the molten metal, the higher the rate of rise in the level of the molten metal.
The surface rise of 31 degrees■ must be increased. By sorting out these relationships, a relational expression between the degree of superheating of the molten metal Δd and the rate of rise of the molten metal V (i/m), which is necessary to prevent core material components from leaking to the walnut material side, can be calculated. If it is determined as a function of the melting point To (° C.) of the material, the following equations (i) and (ii) can be obtained.

ΔT≦40℃のとき、    ■≧0.15    ・
・・(i)ΔT〉40℃のとき。
When ΔT≦40℃, ■≧0.15 ・
...(i) When ΔT>40°C.

V≧0.15 + (0,02395−1,65xlO
’ XTo ) (ΔT−40)  −(ii)ここで
鋳込み溶溌過熟度ΔTは既に述べたように誘くるみ相溶
湯の鋳込み温度と鋳くるみ材の液相線温度との差で与え
られる。したがって芯材の融点TOおよび鋳くるみ材の
液相線温度に応じて鋳くるみ材1瀉の鋳込み温度および
湯面上昇速度Vヲi!1IJtlDtルコトニJ:ツT
 (i ) 式、(it) 式ヲ満足させることができ
、このように副葬することにより芯材成分の訪くるみ打
倒への漏れを防止し、良好な品質のクラッド鋳塊を得る
ことが可能となるっそして特に芯材の融点が鋳くるみ材
の液相線;」度より著しく低く、その融点差が150℃
以上ある場合でも芯材成分の鋳くるみ打倒への漏れを防
止し、クラツド材本来の特性を発揮することが可能とな
るのである。
V≧0.15 + (0,02395-1,65xlO
' XTo ) (ΔT-40) - (ii) Here, the pouring overripe degree ΔT is given by the difference between the casting temperature of the induced walnut compatible metal and the liquidus temperature of the cast walnut material, as described above. Therefore, depending on the melting point TO of the core material and the liquidus temperature of the cast walnut material, the casting temperature of the cast walnut material 1 and the rate of rise in the melt level Vwoi! 1IJtlDtLukotoniJ:TST
Equations (i) and (it) can be satisfied, and by burial in this way, it is possible to prevent the core material components from leaking into the falling walnuts and to obtain a clad ingot of good quality. In particular, the melting point of the core material is significantly lower than the liquidus line of cast walnut material, and the difference in melting point is 150°C.
Even in the above cases, it is possible to prevent core material components from leaking into the walnut and to exhibit the original properties of the cladding material.

ここで、鋳くるみ材よりも低融点の芯材を用いた梼くる
みクラッド鋳塊について、従来から提案されている方法
による鋳塊とこの発明の方法によるnilの例における
る材と鋳くるみ材の融点差を第1表に示す。
Here, regarding the walnut clad ingot using a core material with a lower melting point than the cast walnut material, we will compare the ingot made by the conventionally proposed method, the nil material made by the method of this invention, and the cast walnut material. The melting point differences are shown in Table 1.

第1表に示すように従来法(1)、(2)は、ステンレ
ス圀からなる芯材l二中炭素鏑を鋳くるんjどクラツド
鋼、従来法(3)は高炭素鋼の芯材に低炭素4gを鋳く
るんだクラツド鋼であり、いずれも芯材と詩くるみ材と
の融点差は150℃より小さい。一方侵述する実施例1
.2に示す本光明法によるものは融点差が150℃と著
しく大きく、この発明はこのように融点差が150℃以
上の低l!点非鉄芯材を高融点賃くるみ材で鋳くるむ方
法を確立したのである。
As shown in Table 1, conventional methods (1) and (2) use a core material made of stainless steel and cast clad steel, and conventional method (3) uses a core material of high carbon steel. It is a clad steel cast with 4g of low carbon, and the difference in melting point between the core material and the walnut material is less than 150°C. On the other hand, Example 1
.. The melting point difference of the product made by the present Komei method shown in No. 2 is as large as 150°C, and the present invention has a low melting point difference of 150°C or more. They established a method of casting a non-ferrous core material with high melting point walnut material.

なお但忌点非鉄芯材としては上記のNi−Cu合金に限
らず、最終的に要求される特性に応じて任意のものを通
訳でき、また鋳くるみ材は炭素項、:氏合金′、1、高
合金恨などの鉄系材料を使用するのが通常であるが、も
ちろんそれに限定されるものではない。
However, the non-ferrous core material is not limited to the above-mentioned Ni-Cu alloy, but any material can be used depending on the final properties required, and the cast walnut material can be used in the carbon term, : Mr. Alloy', 1 Usually, iron-based materials such as high-alloy metals are used, but of course the material is not limited thereto.

実施1カ 実乃例 1 第1 a L 示シタようニルB点13 ll O℃(
’) 70%N+−30%CIJ合金を芯材とし、液相
0温度1520℃の0.12%炭素鋼を鋳くるみ材とし
て次のようにクラッド鋳塊を製造した。
Practical Example 1 1st a L Indication Point B 13 ll 0°C (
') A clad ingot was manufactured as follows using a 70%N+-30%CIJ alloy as a core material and a 0.12% carbon steel with a liquidus zero temperature of 1520°C as a casting material.

すなわち前記j’Ji−CLI合金からなる厚さ110
m+q、幅11050r、長さ1510aの芯拐仮を下
注ぎ鋳型の厚さ中心と鋳型内壁との間の中央に懸垂保持
し、前記鋳くるみ材の層温を、鋳込み溶2名過熱度ΔT
−60’で1面上昇速度を0.151tl/cJlO,
30m/ −10,45m/sの3段階に変化させて下
注ぎ法により鋳込み、各鋳塊を分塊圧延してスラブとし
た。祷塊高さ方向のトップ、ミドル、ボトムに相当する
スラブからサンプルを採取し、そのC断面を切削研摩後
、マクロ組織を検出させ、芯材と鋳くるみ材との界面性
状および芯材成分の鋳くるみ打倒への漏れ発生状況を調
べた。その結果を第2表に併せて示す。なおここで溶溌
過熱喧ΔT=60℃における湯面上昇速度0.15m/
 y)の条件は、前記(i;)式を満足しない比較倒、
肩面上昇速度0,3f)e/−の条件および0.454
+/mtnの条件はそれぞれ前記(it)式を満足する
本発明例である。
That is, the thickness 110 made of the j'Ji-CLI alloy
m+q, width 11050r, length 1510a, the core material is suspended in the center between the thickness center of the bottom pouring mold and the inner wall of the mold, and the layer temperature of the cast walnut material is adjusted to the superheat degree ΔT of two pouring melts.
-60', the rate of rise per plane is 0.151tl/cJlO,
The ingots were cast in three steps at 30 m/s/-10 and 45 m/s by the bottom pouring method, and each ingot was bloomed into a slab. Samples were taken from the slabs corresponding to the top, middle, and bottom in the height direction of the lump, and after cutting and polishing the C cross section, the macrostructure was detected, and the interface properties between the core material and the cast walnut material and the core material components were investigated. We investigated the occurrence of leaks in cast walnuts. The results are also shown in Table 2. Here, the melting surface rising speed at ΔT=60°C is 0.15 m/
Condition y) is a comparison that does not satisfy the above formula (i;),
Shoulder surface rising speed 0,3f) e/- condition and 0.454
The conditions +/mtn are examples of the present invention that satisfy the above formula (it).

第2表 第2表から明らかなように、この発明の方法による場合
、芯材成分の坊くるみ打開への漏れは全く認められなか
った。
As is clear from Table 2, when the method of the present invention was used, no leakage of core material components into the opening of the walnut was observed.

実施例 2 第1表に示したように融点1085℃の10%\1−9
0%Cu合金を芯材とし、液相線温度1520℃の0.
12%炭素鋼を芯くるみ材として次のようにクラッドt
iBAt製造した。すなわち実施例1の場合と同様に寸
法の芯材板を下注ぎ鋳型にす   おiプる鋳型内厚さ
中心と鋳型内壁と0間の中央9恕垂保持し、坊くるみ相
溶渇を鋳込み溶あ過熱度ΔT=50℃で肩面上昇速度0
,15a+、’6.0.3001り、0.0.45m/
論の3段重で変化させて下注ぎ法で鋳込み、各鋳塊を分
塊圧延法によりスラブとした。そして実施例1と同様に
鋳塊高ざのトップ、ミドル、ボトムに相当するスラグか
らサンプルを採取し、そのC断面のマクロ組識3観京し
て、芯材上くるみ材との界面は吠と芯材成分の鋳くるみ
打開への漏れ発生状況を調べた。その調査F8果も実施
例1とほぼ同様であり、この発明の方法では芯材成分の
鋳くるみ打開へのδれが認められないことが確認された
Example 2 As shown in Table 1, 10%\1-9 with a melting point of 1085°C
The core material is 0% Cu alloy, and the liquidus temperature is 1520°C.
The cladding material is made of 12% carbon steel as the core material.
iBAt was manufactured. That is, as in the case of Example 1, a core material plate with the same dimensions as the bottom pouring mold is poured.The center of the mold is held at the center between the center of the thickness of the mold and the inner wall of the mold. Shoulder surface rising speed is 0 at melt superheat degree ΔT = 50℃
,15a+,'6.0.3001ri,0.0.45m/
The ingots were cast using the bottom pouring method with varying three-stage weights, and each ingot was made into a slab using the blooming rolling method. Then, as in Example 1, samples were taken from the slag corresponding to the top, middle, and bottom of the ingot height, and the macrostructure of the C cross section was observed. We investigated the occurrence of leakage of core material components into the cast walnut. The F8 results of the investigation were almost the same as in Example 1, and it was confirmed that the method of the present invention did not show any δ deviation of the core material components to the cracking of the cast walnut.

発明の効果 以上の説明で明らかなようにこの発明によれば、低融点
の非鉄金属0料からなる芯材を融点性が150℃以上の
高融点の鉄系材料などの訪くるみ材で鋳くるむにあたっ
て、低助点芯0戊分の鋳くるみ打開への割れが生じるこ
とが有効に防止され、したがって芯材成分と坊くるみ材
成分とがは合した不良鋳塊を生じることなく、融点差1
50℃以上の低融点非鉄芯材−高fd p g9 <る
み材を用いた非鉄クラッド鋳塊の良品を硼実かつ安定し
て1!ろことかできる。そしてまたこの発明によれば、
上述のように融点差の大きい非鉄クラッド鋳塊を実涼に
製造することか可能となるため、素材の成分、!)頴が
制÷りさ4することなく、用途に応じて種々のフラッド
1フ:鬼を;ワることが可能となる効果も得ら)しる、 4、口面の口ルな説明 第131よ芯材表面から成長する詩くるみ材の凝固シェ
ルの芯ソ溶Qn袷時までの厚みに及ぼす鋳くるみオi5
込み石、uY度(ΔT)と芯材表面の?乃明、a度の彰
で;二ついて、伝熱モデル計算拮果(こニづいて示す検
図、′:f42図は芯材表面初朗1度に):Jζ長込み
溶;りの:1面上4迷度の影響と芯材成aの14<るみ
j3 pHj\のJれ状況の関係を示す相関図、第3図
は芯ソな膚が1340℃の場合におけご、詩込み7携y
5スき度(ΔT)および場面上昇速度と芯材成分の13
りるみ打開への濡れ発生状況との閃保を示す相関図、第
4図は芯材融点が10856の)易合における鋳込み溶
滉過熟度(ΔT)およτブ、を面上昇速度と芯材成分の
鋳くるみ打開への漏れ発生状況との1SrI係を示す相
関図である。
Effects of the Invention As is clear from the above explanation, according to the present invention, a core material made of a low melting point non-ferrous metal is cast with a walnut material such as a high melting point ferrous material having a melting point of 150° C. or higher. In this process, cracking of the cast walnut with a low support point of 0 is effectively prevented from occurring, and therefore a defective ingot in which the core material component and the reduced walnut material component are combined is not produced, and the melting point difference is 1.
Low melting point non-ferrous core material of 50°C or higher - high fd p g9 <Producing quality non-ferrous clad ingots using solid wood steadily and stably 1! I can do roto. And also according to this invention,
As mentioned above, it is possible to produce non-ferrous clad ingots with a large difference in melting point in a really cool way, so the composition of the material,! 4) You can also obtain the effect of being able to defeat various floods depending on the purpose without having to control ÷ risa 4. The effect of cast walnut oil on the thickness of the solidified shell of walnut wood growing from the surface of the core material until the time of lining.
Filled stone, uY degree (ΔT) and core material surface? Noaki, A degree of Akira; Two, heat transfer model calculation result (check diagram shown next, ': f42 figure is the first temperature of the core material surface): Jζ long melting; Rino: A correlation diagram showing the relationship between the influence of 4 degrees of confusion on the first surface and the J deviation situation of 14 < Rumi j3 pH j\ of core material formation a. 7th hand
5 Clearance degree (ΔT), scene rising speed and core material component 13
Figure 4 is a correlation diagram showing the flash protection with the wetting condition to break through the melting process. Figure 4 shows the overripeness of casting melting (ΔT) and τ curve when the melting point of the core material is 10856) as the surface rise rate. FIG. 2 is a correlation diagram showing the relationship between 1SrI and the state of leakage of core material components into the cast walnut breakthrough.

第1図 @Δ〃水)望給度ΔT(℃) 第2図 イ   00.2 0.40.6 0.8 1.0渦市
J:昇左友”’/m1n)
Figure 1 @Δ〃Water) Desirability ΔT (°C) Figure 2 A 00.2 0.40.6 0.8 1.0 Uzuichi J: Noboru Satomo''/m1n)

Claims (3)

【特許請求の範囲】[Claims] (1)非鉄金属材料を芯材とし、かつその芯材と異種の
金属材料からなる鋳くるみ材で前記芯材を鋳くるんだ非
鉄クラッド鋳塊において、前記芯材の融点が鋳くるみ材
の融点よりも低く、かつその融点差が150℃以上であ
ることを特徴とする非鉄クラッド鋳塊。
(1) In a non-ferrous clad ingot in which a non-ferrous metal material is used as a core material and the core material is cast with a cast walnut material made of a metal material different from the core material, the melting point of the core material is the melting point of the cast walnut material. A non-ferrous clad ingot characterized by having a melting point difference of 150°C or more.
(2)非鉄金属材料からなる芯材を鋳型内に設置し、そ
の鋳型内に、前記芯材よりも融点が高い異種金属材料か
らなる鋳くるみ材の溶湯を下注ぎにより鋳込むにあたり
、芯材の融点および鋳くるみ材の液相線温度に応じて鋳
くるみ材溶湯の鋳込み温度および鋳型内湯面上昇速度を
制御することを特徴とする非鉄クラッド鋳塊の製造方法
(2) A core material made of a non-ferrous metal material is placed in a mold, and when molten walnut material made of a different metal material with a higher melting point than the core material is poured into the mold by under-pouring, the core material is 1. A method for producing a non-ferrous clad ingot, comprising controlling the casting temperature of molten walnut material and the rate of rise in the level of the molten metal in the mold according to the melting point of the molten walnut material and the liquidus temperature of the walnut material.
(3)前記鋳くるみ材溶湯を鋳込むにあたり、芯材と鋳
くるみ材との融点差を150℃以上とし、かつ芯材の融
点T_o(℃)と、鋳くるみ材溶湯の鋳込み温度と液相
線温度との差ΔT(℃)と、鋳型内湯面上昇速度V(m
/mm)とが次の(i)式もしくは(ii)式を満足す
るように制御する特許請求の範囲第2項記載の非鉄クラ
ッド鋳塊の製造方法。 ΔT≦40℃のとき、 V≧0.15・・・(i)ΔT
>40℃のとき、 V≧0.15+(0.02395−1.65×10^−
^5×T_o)(ΔT−40)・・・(ii)
(3) When casting the molten walnut material, the melting point difference between the core material and the walnut material should be 150°C or more, and the melting point T_o (°C) of the core material, the casting temperature and liquid phase of the molten walnut material The difference ΔT (℃) from the linear temperature and the rate of rise in the mold level V (m
3. The method for producing a non-ferrous clad ingot according to claim 2, wherein: /mm) is controlled so that it satisfies the following formula (i) or (ii). When ΔT≦40℃, V≧0.15...(i) ΔT
When >40℃, V≧0.15+(0.02395-1.65×10^-
^5×T_o)(ΔT-40)...(ii)
JP22091584A 1984-10-19 1984-10-19 Nonferrous clad ingot and its production Pending JPS6199539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22091584A JPS6199539A (en) 1984-10-19 1984-10-19 Nonferrous clad ingot and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22091584A JPS6199539A (en) 1984-10-19 1984-10-19 Nonferrous clad ingot and its production

Publications (1)

Publication Number Publication Date
JPS6199539A true JPS6199539A (en) 1986-05-17

Family

ID=16758532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22091584A Pending JPS6199539A (en) 1984-10-19 1984-10-19 Nonferrous clad ingot and its production

Country Status (1)

Country Link
JP (1) JPS6199539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007168841A (en) * 2005-12-21 2007-07-05 Japan Crown Cork Co Ltd Screw cap

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007168841A (en) * 2005-12-21 2007-07-05 Japan Crown Cork Co Ltd Screw cap

Similar Documents

Publication Publication Date Title
CN101928872B (en) Production method of low-magnetic iron castings
CN106825469A (en) The method for reducing the casting metal inside degree of superheat
EP0532331B1 (en) Cast-in-place iron-based cylinder liners
JPS6199539A (en) Nonferrous clad ingot and its production
CN107530769A (en) Crystallizer protecting residue and use its continuous cast method, and using its manufacture slab
US3324933A (en) Centrifugal casting
JPH0366447A (en) Method for casting layered cast slab
JPS6120397B2 (en)
JPH0445264B2 (en)
JPS6191372A (en) Production of light metal product
US4345952A (en) Method for the manufacture of tubes from steel having high ductility at low temperature
JPS61111743A (en) Production of clad steel ingot
US1702387A (en) Compound ingot and method of producing the same
JPS586763A (en) Centrifugal casting method
JP2000071050A (en) Die manufacturing method and die
Duma Application of Controlled Directional Solidification to Large Steel Castings
JPS6163342A (en) Method and device for producing hollow steel ingot
SU835626A1 (en) Method of producing bimetallic casting
Flemings A Short History of MIT Studies on Fluid Flow in Solidification, 1952-2009
JPS6137359A (en) Production of al alloy casting
SU806241A1 (en) Method of centrifugal casting of bimetallic works
SU806240A1 (en) Method of centrifugal casting of bimetallic worm wheel
Kudoh et al. Step casting
US906204A (en) Art of casting pipes.
SU447216A1 (en) Method of centrifugal casting of cast iron pipes