JPS619952A - Continuous casting method of steel - Google Patents

Continuous casting method of steel

Info

Publication number
JPS619952A
JPS619952A JP13091784A JP13091784A JPS619952A JP S619952 A JPS619952 A JP S619952A JP 13091784 A JP13091784 A JP 13091784A JP 13091784 A JP13091784 A JP 13091784A JP S619952 A JPS619952 A JP S619952A
Authority
JP
Japan
Prior art keywords
slab
continuous casting
straightening
steel
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13091784A
Other languages
Japanese (ja)
Other versions
JPH057108B2 (en
Inventor
Kazumi Yasuda
一美 安田
Kiyomi Yadori
宿利 清己
Hiromu Fujii
博務 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13091784A priority Critical patent/JPS619952A/en
Publication of JPS619952A publication Critical patent/JPS619952A/en
Publication of JPH057108B2 publication Critical patent/JPH057108B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a billet having no internal crack, surface transverse crack and corner crack by specifying the top and bottom surface temp. of the billet in a straightening zone. CONSTITUTION:The top surface temp. of the billet in the straightening region is kept at >=900 deg.C in continuous casting of a molten steel having the process of straightening the curved billet having an unsolidified phase with a multi-point straightening and curving type continuous casting device having 5m machine height. The bottom surface temp. of the billet is maintained higher by >=150 deg.C than the top surface temp. of the billet.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、溶鋼を連続鋳造して鋳片を得るに際し、内
部割れ、表面横割れ、コーナ割れのない鋳片を得るため
の彎曲型連続鋳造法に関し、特に鋳片の冷却条件に関す
る。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a curved continuous casting method for obtaining slabs free of internal cracks, surface transverse cracks, and corner cracks when continuously casting molten steel to obtain slabs. This article relates to casting methods, particularly to cooling conditions for slabs.

(従来技術) 近年、溶融金属を連続鋳造して鋳片を得る連続鋳造技術
が発達し、鉄鋼業にあっても、溶鋼を鋳型に注入して鋼
塊を得、これを分塊圧延して鋳片を得るプロセスに代っ
て、溶鋼を連続鋳造して直接鋳片(鋼片)を得る連続鋳
造プロセスが採用され、この連続鋳造プロセスによって
鋼片を製造する比率が著しく増大してきている。連続鋳
造プロセスは、従来の造塊−分塊圧延プロセスに比し、
歩留が高く、エネルギー消費量が少な〜・と℃・った点
ですぐれている。
(Prior art) In recent years, continuous casting technology has developed to obtain slabs by continuously casting molten metal, and even in the steel industry, molten steel is poured into molds to obtain steel ingots, which are then bloomed and rolled. Instead of the process of obtaining slabs, a continuous casting process in which molten steel is continuously cast to directly obtain slabs (steel slabs) has been adopted, and the proportion of steel slabs manufactured by this continuous casting process has been increasing significantly. Continuous casting process is compared to traditional ingot-blurring process,
It is superior in that it has a high yield and low energy consumption.

この連続鋳造プロセスによって得られる鋳片は、多量の
顕熱を保有しており、この顕熱を消失してしまうことな
く、冒温鋳片の状態で、圧延工程に供給すれば、常温の
鋳片を加熱して圧延するプロセスに比し、エネルギー、
コストの面で有利である。
The slab obtained by this continuous casting process has a large amount of sensible heat, and if it is supplied to the rolling process in the hot slab state without dissipating this sensible heat, it can be Compared to the process of heating and rolling a piece, it requires less energy and
It is advantageous in terms of cost.

連続鋳造によって得られた鋳片を高温のまま、直接圧延
工程に供給することを可能ならしめるためには、鋳片表
面に割れ疵等のない、換言すれば表面疵除去等の手入れ
を要しない品質のすぐれた鋳片が得られなければならな
い。品質のすぐれた鋳片とは、中心偏析、内部割れ、表
面疵、介在物のなり・鋳片をいうのであるが、就中表面
横割れ、コーナ割れ等、鋳片を常温まで降温させた後、
疵を検出し、これを除去するために手入れを要する原因
となる表面欠陥のないものでなければならな〜・。
In order to enable the slab obtained by continuous casting to be directly supplied to the rolling process while still at high temperature, the surface of the slab must be free of cracks, etc., in other words, no maintenance such as surface flaw removal is required. It is necessary to obtain slabs of excellent quality. High-quality slabs refer to slabs with center segregation, internal cracks, surface flaws, and inclusions, especially those with horizontal surface cracks, corner cracks, etc. after cooling the slab to room temperature. ,
It must be free of surface imperfections that require care to detect and remove defects.

上に述べた点も含め、鋼の連続鋳造プロセスにおける現
今の技術的課題は、以下の如くである。
The current technical issues in the continuous steel casting process, including the points mentioned above, are as follows.

(1)高速鋳造によって、高生産性を可能ならしめるこ
と。
(1) High-speed casting enables high productivity.

(2)連続鋳造された鋳片を直接、圧延工程で圧延する
プロセス、或は連続鋳造された鋳片を高温のまま圧延の
ための加熱炉に装入する、所謂ホットチャージプロセス
を可能ならしめ、圧延のための加熱エネルギな減少或は
省略すること。
(2) Enable the so-called hot charge process, in which continuously cast slabs are directly rolled in a rolling process, or continuously cast slabs are charged into a heating furnace for rolling while still at high temperatures. , reducing or eliminating heating energy for rolling.

(3)連続鋳造鋳片の直接圧延プロセス、或はホットチ
ャージプロセスを可能ならしめる高品質の鋳片を製造す
ること。
(3) To produce high-quality slabs that enable the direct rolling process or hot charging process of continuously cast slabs.

(4)設備コストが低く、メインテナンスのし易い連続
鋳造機であること。
(4) A continuous casting machine with low equipment cost and easy maintenance.

(5)安定した操業ができるプロセスであること。(5) The process must be capable of stable operation.

これらの技術的課題を解決するため、従来、彎曲型連続
鋳造機による■ 未凝固部分を有する鋳片を矯正する。
In order to solve these technical problems, conventionally, cast slabs with unsolidified parts are straightened using curved continuous casting machines.

■ 鋳型から引抜かれてくる鋳片を緩冷却し、未凝固部
分を有する状態で鋳片を真直に矯正しく彎曲したものを
曲げ戻す)、然る後復熱させる。といった操業形態が採
られていた。
(2) The slab pulled out of the mold is slowly cooled, the slab is straightened with unsolidified portions, and the curved slab is bent back), and then reheated. This type of operation was adopted.

かかる従来技術においては、以下の如き問題があった。This conventional technology has the following problems.

(1)第2図に示す750〜900℃に存在する鋼の脆
化域を回避して、鋳片を矯正することにより、表面割れ
等の疵の発生を防止し、以て鋳片の疵手入を不要にし、
高温鋳片の製造を可能ならしめるけれども、バルジング
が発生し易く、これによって、内部割れの発生、中心偏
析の悪化を招く。前記第2図は鉄と鋼第67年(198
1)第8号、1180頁から引用した。
(1) By avoiding the embrittlement region of steel that exists at 750 to 900°C as shown in Figure 2 and straightening the slab, it is possible to prevent defects such as surface cracks, thereby preventing defects on the slab. Eliminate maintenance,
Although it is possible to produce high-temperature slabs, bulging is likely to occur, which leads to internal cracking and worsening of center segregation. The above figure 2 shows the 67th year of Tetsu to Hagane (198
1) Quoted from No. 8, page 1180.

(2)このため、現行操業にあっては、連続鋳造用パウ
ダを改善し、鋳造速度、鋳片冷却強度を、鋳片の表面疵
手入れが不要であり、かつ内部割れ、中心偏析の許容限
界以下となる範囲内として操業している。従って生産性
が低下する。
(2) For this reason, in the current operation, the powder for continuous casting has been improved to improve the casting speed, slab cooling strength, eliminate the need for cleaning the slab surface, and limit internal cracking and center segregation. We operate within the following scope. Therefore, productivity decreases.

一方、緩冷却未凝固操業を、より安定化し、高品質鋳片
を得るに問題となるバルジングを抑制すべく、■ 鋳片
を支持案内するロールの鋳片進行方向における間隔を小
さくする(ロールピッチの細密化)。■ 連続鋳造機高
を低((ローヘッド化)して、溶鋼静圧を低くし、バル
ジングの増大を抑えることが実施されつつある。しかし
ながら、かかる技術的手段を以てしても、先に述べた、
(1)〜(5)項の鋼の連続鋳造プロセスにおける現今
の技術的課題は、十分には解決され得ない。
On the other hand, in order to further stabilize the slow cooling and unsolidified operation and to suppress bulging, which is a problem in obtaining high-quality slabs, we aim to reduce the spacing in the slab traveling direction of the rolls that support and guide the slabs (roll pitch). refinement). ■ Lowering the height of the continuous casting machine (lower head) to lower the static pressure of molten steel and suppressing the increase in bulging is being implemented.However, even with such technical means, the above-mentioned
The current technical problems in the continuous steel casting process of items (1) to (5) cannot be satisfactorily solved.

即ち、鋳片を支持案内するロールの鋳片進行方向におけ
る間隔を小さくする。所謂、ロールピッチの細密化は、
ロールピッチを300111111まで短縮することが
限界であり、鋳片に生起するバルジングの大きさを、鋳
片に内部割れを発生せしめないレベルにまで低下せしめ
るには到らない。一方、ロールピッチの細密化は設備コ
ストを高める難点もある。
That is, the distance between the rolls that support and guide the slab in the slab advancing direction is reduced. The so-called finer roll pitch is
The limit is to shorten the roll pitch to 300111111, and it is not possible to reduce the size of bulging that occurs in the slab to a level that does not cause internal cracks in the slab. On the other hand, finer roll pitches also have the disadvantage of increasing equipment costs.

また、連続鋳造機高を低くする、所謂、ローヘッド化は
、鋳片の進行軌跡の彎曲曲率が犬となり、鋳片を彎曲状
態から真直にする曲げ矯正における矯正歪が大きくなり
、内部割れを招くという問題がある。この彎曲した鋳片
を、真直に曲げ戻す矯正過程にお(・て発生する内部割
れを防止するために、現在、下記(1)式に示す、総合
歪εTが、0.40チ以下となるように、鋳片温度に対
応するロールピッチt、曲率半径Rを決定し、これに基
づいた連続鋳造機の設計が行なわれている。
In addition, lowering the height of the continuous casting machine, so-called low head, causes the curved curvature of the progress trajectory of the slab to become a dog, and the correction strain during bending correction to straighten the slab from a curved state becomes large, leading to internal cracks. There is a problem. In order to prevent internal cracks that occur during the straightening process of bending this curved slab back straight, the total strain εT, shown in equation (1) below, is currently kept at 0.40 inches or less. In this way, the roll pitch t and radius of curvature R corresponding to the slab temperature are determined, and a continuous casting machine is designed based on these.

即ち、 εT二ε。十εb十ε□   ・・・・・・・・・・・
 (1)ここで εT、総合歪 εU:矯正歪 εb:バルジング歪 εlTl:ミスアライメント歪、通常、定数としてε□
=0.05%として計算される。
That is, εT2ε. 1εb 1ε□ ・・・・・・・・・・・・
(1) Here, εT, total strain εU: correction strain εb: bulging strain εlTl: misalignment strain, usually as a constant ε□
= 0.05%.

D:鋳片の厚さ S:#4片の凝固殻厚さ R1: i番目の曲率半径 R4+l:i+1番目の曲率半径 L+ t:ロールピッチ δB:バルジング量 ao:形状係数 P:溶鋼静圧 ■:鋳造速度Cm/馴〕 T8+1490 TM=           +273T8:鋳片の表
面温度 Cm:ミスアライメント係数 δ :ミスアライメント量 上に述べた総合型εTを種々の曲率半径Rに対して、鋳
片厚さ、250闘、鋳造速度:V=1.5m乙−緩冷却
操業(凝固係数:に=25m/f;)の下で操業した場
合について示すと、第6図のp口(である。
D: Thickness of slab S: Solidified shell thickness of #4 piece R1: i-th radius of curvature R4+l: i+1st radius of curvature L+ t: roll pitch δB: bulging amount ao: shape factor P: molten steel static pressure ■ : Casting speed Cm/accuracy] T8+1490 TM= +273T8: Surface temperature of slab Cm: Misalignment coefficient δ: Misalignment amount The overall type εT described above is calculated for various curvature radii R, slab thickness, 250 Figure 6 shows the case of operation under slow cooling operation (solidification coefficient: 25 m/f; casting speed: V = 1.5 m).

このときの条件は、次の通りである。(1)鋳片の軌道
は、多点矯正プロフィルとする。(2)多点矯正におけ
る歪配分は、表面歪を均等に分散するように、曲率半径
を決定する。(3)連続矯正プロフィルで代表する。 
(4)ロールピッチは、分割ロールを基本とした稠密配
置とする。
The conditions at this time are as follows. (1) The trajectory of the slab shall be a multi-point straightening profile. (2) For strain distribution in multi-point correction, the radius of curvature is determined so as to evenly distribute surface strain. (3) Represented by continuous orthodontic profile.
(4) The roll pitch shall be a dense arrangement based on divided rolls.

かかる技術思想に基づいて設計された初期曲率半径R=
10.5mおよびR= 3 mの連続鋳造機を用いて、
前述の操業条件、鋳片厚さ:250m、鋳造速度:l、
577+/m、凝固係数に=25m/f;−で溶鋼の連
続鋳造を行なった処、次のような結果であった。
Initial radius of curvature R designed based on this technical idea =
Using a continuous casting machine of 10.5 m and R = 3 m,
The above operating conditions, slab thickness: 250 m, casting speed: 1,
Continuous casting of molten steel was performed at a solidification coefficient of 577+/m and a solidification coefficient of 25 m/f;-, and the following results were obtained.

■ C<0.12%の低炭素鋼の場合には、内外面割れ
は全く発生しない。
■ In the case of low carbon steel with C<0.12%, no cracking occurs on the inner or outer surfaces.

■ C〉0.13%の中炭素鋼の場合には、内部割れが
多発する。R=10.5mの連続鋳造機にあっては、圧
縮鋳造(CPC操業と呼ばれる)等により、C〉0.1
3%の中炭素鋼の鋳造にあっても、内部割れを生起せし
めないように配慮されている。
■ In the case of medium carbon steel with C>0.13%, internal cracks occur frequently. In a continuous casting machine with R=10.5m, C>0.1 is achieved by compression casting (called CPC operation), etc.
Even when casting from 3% medium carbon steel, care has been taken to prevent internal cracks from occurring.

しかしながら、初期曲率半径Rが、3mといったローヘ
ッド連続鋳造機にあっては、矯正帯長が短か(て、彎曲
鋳片を真直に曲げ戻すときに、彎曲鋳片の内面側に作用
する張力によって生起する割れを、抑止するに必要なだ
けの圧縮力を発生するに足る駆動力発生帯が充分とれな
い。加えて、圧縮力を発生させるに必要な、溶鋼静圧が
低いため、充分な矯正歪緩和をもたらし得ない。
However, in a low-head continuous casting machine where the initial radius of curvature R is 3 m, the length of the straightening band is short (due to the tension acting on the inner surface of the curved slab when it is bent back straight). There is not enough driving force generation band to generate the compressive force necessary to suppress the cracks that occur.In addition, the static pressure of molten steel required to generate the compressive force is low, so sufficient straightening is not possible. cannot bring about strain relaxation.

ローヘッド連続鋳造機にあっては、かがる理由によって
、C〉0.x3%の中炭素鋼の連続鋳造に際して内部割
れが発生し、高速鋳造が不可能となっている。
In the case of a low-head continuous casting machine, C>0. Internal cracks occur during continuous casting of x3% medium carbon steel, making high-speed casting impossible.

一方、鋳片の冷却法を工夫することによって、鋳片の矯
正型を緩和することが知られている。即ち、特開昭50
−25434号、特開昭50−102526号、特開昭
50−102527号、特開昭52−52]、26号お
よび特開昭55−5115号の各公開公報には、彎曲鋳
片を真直に曲げ戻す曲げ矯正時に、N枠上面(彎曲内側
)即ち引張り応力を生じる側の凝固殻の温度を、鋳片下
面(彎曲外側)即ち圧縮応力を生じる側の凝固殻温度よ
りも低(することにより、上面側凝固殻の強度を増大さ
せて、曲げ戻し矯正に伴なう、上面側凝固殻の引張歪量
を小さくして、曲げ戻し矯正に起因する内部割れを防ぐ
ようにすることが開示されている。
On the other hand, it is known that the straightening of the slab can be alleviated by devising a cooling method for the slab. That is, Japanese Patent Application Publication No. 1973
JP-A-25434, JP-A-50-102526, JP-A-50-102527, JP-A-52-52], JP-A-55-5115, and JP-A-55-5115, the curved slabs are straightened. When straightening the bend, the temperature of the solidified shell on the upper surface of the N frame (on the inside of the curve), that is, on the side that produces tensile stress, must be lower than the temperature of the solidified shell on the lower surface of the slab (on the outside of the curve), that is, on the side that produces compressive stress. discloses that the strength of the upper solidified shell is increased to reduce the amount of tensile strain of the upper solidified shell due to unbending straightening, thereby preventing internal cracks caused by unbending straightening. has been done.

このような、鋳片の冷却方法を採ることにより、■ 彎
曲鋳片の上面(内側)を下面(外側)より相対的に強冷
し、矯正時における鋳片の力学的中立軸を、鋳片断面の
幾何学的中心軸よりも、彎曲内側へ移動させることとな
り、これによって鋳片の内部割れが防止できる。■ 鋳
片の適正温度範囲は、鋳片の内側ニア00〜900℃、
鋳片の外側:1000℃を超えない温度である。と開示
されている。
By adopting this method of cooling the slab, the upper surface (inner side) of the curved slab is relatively strongly cooled than the lower surface (outside), and the mechanically neutral axis of the slab during straightening is It is moved to the inside of the curve rather than the geometric center axis of the cross section, thereby preventing internal cracking of the slab. ■ The appropriate temperature range for the slab is 00 to 900℃ near the inside of the slab;
Outside of slab: Temperature not exceeding 1000°C. is disclosed.

しかしながら、これらの技術を以てしても、なお先に述
べた(1)〜(5)項の技術的課題を解決するためには
充分ではない。
However, even with these techniques, it is still not sufficient to solve the technical problems of items (1) to (5) mentioned above.

鋳片断面のあらゆる部位において、鋼の脆化温度域70
0〜900℃を避けて、表面割れ、内部割れのない高品
質かつ高温、たとえば1100℃以上の鋳片を圧延ライ
ンに供給するためには、鋳片断面における短辺の冷却を
省略して、なお短辺に表面割れ、内部割れを惹起せしめ
ないプロセスが確立していないからである。
The embrittlement temperature range of steel is 70 at all parts of the slab cross section.
In order to avoid temperatures of 0 to 900°C and supply high-quality slabs with no surface cracks or internal cracks to the rolling line, for example at temperatures above 1100°C, cooling of the short sides of the slab cross section can be omitted. This is because a process that does not cause surface cracks or internal cracks on the short sides has not been established.

(発明が解決しようとする問題点) この発明は、鋳片断面における短辺に表面割れ、内部割
れを生起せしめる因子である短辺剪断歪を、低く抑え得
る機高5m以下の多点矯正彎曲型の連続鋳造プロセンを
得ることを目的としてなされた。
(Problems to be Solved by the Invention) This invention provides a multi-point straightening curvature with a machine height of 5 m or less that can suppress short-side shear strain, which is a factor that causes surface cracks and internal cracks on the short sides of a slab cross section, to a low level. It was made for the purpose of obtaining a type of continuous casting process.

(問題点を解決するための手段) この発明の特徴とする処は、機高5m以下の多点矯正彎
曲型連続鋳造装置による未凝固相を有する彎曲鋳片を、
真直に矯正する過程を有する溶鋼の連続鋳造方法にお(
・て、矯正帯域における鋳片上面(L面)の表面温度を
、900℃以上とするとともに、鋳片下面(F面)の表
面温度を、鋳片上面(L面)の表面温度よりも150℃
以上高く維持する連続鋳造方法にある。
(Means for Solving the Problems) A feature of the present invention is that a curved slab having an unsolidified phase is produced by a multi-point straightening curved continuous casting machine with a machine height of 5 m or less.
Continuous casting method for molten steel that includes straightening process (
・The surface temperature of the upper surface (L side) of the slab in the straightening zone is set to 900°C or higher, and the surface temperature of the lower surface (F side) of the slab is set to 150° C. or higher than the surface temperature of the upper surface (L side) of the slab. ℃
There is a continuous casting method that maintains higher than above.

以下に、この発明の詳細な説明する。The present invention will be explained in detail below.

機高が低い彎曲型連続鋳造装置によって、鋳造される曲
率の大きな鋳片を、真直に曲げ戻す(矯正する)ときに
、鋳片に表面割れ、内部割れを生起せしめな〜・ために
は、既に述べたように、第2図に示す鋼の脆化温度域で
ある700〜900℃の温度領域を避けなければならな
い。
In order to avoid surface cracks and internal cracks in the slab when bending (straightening) a slab with a large curvature that is cast using a curved continuous casting machine with a low machine height, As already mentioned, the temperature range of 700 to 900°C, which is the embrittlement temperature range of steel shown in FIG. 2, must be avoided.

一方、溶鋼の保有している顕熱を消失させることなく、
鋳片を鋼材に圧延するときの加熱エネルギを、低減或は
省略するためには、連続鋳造プロセスからアウトプット
される鋳片は、能う限り高温でなければならない。
On the other hand, without dissipating the sensible heat possessed by molten steel,
In order to reduce or eliminate heating energy when rolling the slab into steel, the slab output from the continuous casting process must be as hot as possible.

然るに、鋳片断面におけるコーナ部延いては短辺は、最
も温度が降下し易く、この部分を鋳片の矯正過程にお℃
・て、700〜900℃の脆化温度域に存せしめないた
めには、短辺の冷却を省略し、かつ、短辺に表面割れ或
は内部割れを生起せしめない手段が必要である。処が、
鋳片断面における短辺の冷却を省略し、短辺表面温度を
700〜900℃の温度域を超える温度に保持すると、
短辺にずれ変形を生じ易−・。
However, the temperature of the corners and short sides of the cross-section of the slab is most likely to drop, and this area is often used during the straightening process of the slab.
- In order to avoid the embrittlement temperature range of 700 to 900° C., it is necessary to omit cooling of the short sides and to prevent surface cracks or internal cracks from occurring on the short sides. The place is
If cooling of the short side of the slab cross section is omitted and the short side surface temperature is maintained at a temperature exceeding the temperature range of 700 to 900°C,
Easy to cause misalignment and deformation on the short side.

発明者等の知見によれば、極めて大きな曲率をもつ鋳片
を、真直に曲げ戻す矯正を行なうときには、鋳片断面の
上、下の長辺の凝固殻が、鋳片進行方向において、ずれ
を起しながら矯正が進行している。而して、鋳片断面の
短辺におけるずれ変形は、(長辺強度)/(短辺強度)
の比が太き(なると発生する。
According to the findings of the inventors, when straightening a slab with an extremely large curvature, the solidified shells on the upper and lower long sides of the slab's cross section correct the misalignment in the slab's advancing direction. Correction is progressing as I wake up. Therefore, the displacement deformation on the short side of the cross section of the slab is (long side strength) / (short side strength)
This occurs when the ratio of

鋳片断面の短辺に、ずれ変形が起ると、矯正歪が幾何学
的歪からはずれるのみならず、短辺に表面割れ、内部割
れといった欠陥を生ずる。矯正歪が、幾何学歪から外れ
ると、彎曲した鋳片を、真直に曲げ戻す矯正を行なうと
きの歪配分の予定が不可能となり、歪の集中に起因する
内部割れ等の欠陥を生起させる。
When misalignment occurs on the short side of the cross section of the slab, not only does the corrective strain deviate from the geometrical strain, but also defects such as surface cracks and internal cracks occur on the short side. If the straightening strain deviates from the geometrical strain, it becomes impossible to plan the strain distribution when straightening a curved slab to straighten it, and defects such as internal cracks occur due to concentration of strain.

一方、鋳片の内部或は表面に割れを生ぜしめないために
は、矯正に伴なう歪を緩和することが必要である。発明
者等は、多くの実験の結果、第5図に示す知見を得た。
On the other hand, in order to prevent cracks from occurring inside or on the surface of the slab, it is necessary to alleviate the strain caused by straightening. The inventors obtained the knowledge shown in FIG. 5 as a result of many experiments.

即ち、鋳片の上面側(L面)表面温度TLと下面側(F
面)表面温度TFの差、TF −Tt =ΔTが太なる
ほど歪緩和率βが小さくなる。この歪緩和率βは、以下
のように定義される。
That is, the surface temperature TL of the upper surface side (L side) and the lower surface side (F side) of the slab are
Surface) The thicker the difference in surface temperature TF, TF - Tt =ΔT, the smaller the strain relaxation rate β. This strain relaxation rate β is defined as follows.

従って、歪緩和率が小なるほど、歪が緩和されているこ
とになる。第5図は鋳片サイズ250厚X1050幅の
例である。
Therefore, the smaller the strain relaxation rate, the more the strain is relaxed. FIG. 5 shows an example of a slab size of 250 mm thick x 1050 mm wide.

発明者等の経験によれば、歪緩和率βは、08以下であ
れば良い。従って、△Tは150℃以上であれば良い。
According to the experience of the inventors, the strain relaxation rate β should be 08 or less. Therefore, ΔT may be 150° C. or higher.

他方、鋳片断面の短辺に、歪の集中を招かないためには
、適正な鋳片冷却パターンのあることを発明者等は見出
した。第3図に、それを示す。
On the other hand, the inventors have discovered that there is an appropriate cooling pattern for the slab in order to prevent concentration of strain on the short sides of the cross section of the slab. This is shown in Figure 3.

発明者等は、△T = Tp  TL 〉150℃とい
う前提の下で、鋳片断面短辺の表面温度T、を1100
℃とし、矯正帯域における鋳片断面上側長辺(L面)表
面温度TLを750℃(冷却B)とした場合と、950
℃(冷却A)とした場合の2水準について、−片断面短
辺部に生起する剪断歪を測定した。
The inventors set the surface temperature T of the short side of the slab cross section to 1100°C on the assumption that ΔT = Tp TL 〉150°C.
℃, and the surface temperature TL of the upper long side (L side) of the slab cross section in the straightening zone is 750℃ (cooling B), and 950℃.
℃ (cooling A), the shear strain occurring on the short side of the cross section was measured for two levels.

その結果、TLを750℃とした場合は、矯正帯域初段
において、著しい剪断歪の集中が起るけれども、TLを
950℃とした場合には、鋳片断面短辺における剪断歪
は、TLを750℃としたときの1/3の水準まで軽減
されている。
As a result, when TL is set to 750°C, significant concentration of shear strain occurs in the first stage of the straightening zone, but when TL is set to 950°C, the shear strain on the short side of the slab cross section is reduced to 750°C. It has been reduced to 1/3 of the level when expressed as °C.

このときの鋳片引抜方向における鋳片断面上長辺表面温
度TL、下長辺表面温度TFおよび短辺表面温度Tsの
推移を、第4図(a)(冷却パターンA)および第4°
図(b)(冷却パターンB)に示す。
The changes in the upper long side surface temperature TL, lower long side surface temperature TF, and short side surface temperature Ts of the slab cross section in the slab drawing direction at this time are shown in Figure 4(a) (cooling pattern A) and 4°
This is shown in Figure (b) (cooling pattern B).

以上を要するに、第1図に示す斜線領域内に、鋳片断面
各部表面温度を維持しながら、鋳片を矯正帯域を通過せ
しめることによって、鋳片断面短辺における剪断歪集中
を生起せしめることなしに、5m以下の低機高連続鋳造
機による高速鋳造が可能となる。
In summary, by allowing the slab to pass through the straightening zone while maintaining the surface temperature of each part of the slab cross section within the shaded area shown in Figure 1, concentration of shear strain on the short side of the slab cross section can be prevented. In addition, high-speed casting is possible using a continuous casting machine with a low machine height of 5 m or less.

即ち、鋳片断面上長辺(L面)側表面温度TI、を、9
00℃以上とし、かつ下長辺(F面)側表面温度TFを
、鋼の凝固域である1300℃以下で、ΔT=Tr  
Tt、〉150℃を満足する領域で、彎曲鋳片を真直に
曲げ戻す矯正プロセスを遂行する。
That is, the surface temperature TI on the long side (L side) of the slab cross section is 9
00℃ or higher, and the lower long side (F surface) side surface temperature TF is 1300℃ or lower, which is the solidification range of steel, and ΔT=Tr
A straightening process is performed to bend the curved slab back to straight in a region that satisfies Tt, >150°C.

かくすることにより、鋳片引抜方向に、ずれ変形に起因
する表面割れ、内部割れを惹起することなく、また矯正
歪が、幾何学歪から外れることもな〜・から、鋳片の矯
正過程における歪配分が正確に予定できる。
By doing this, surface cracks and internal cracks due to shear deformation will not occur in the slab drawing direction, and the straightening strain will not deviate from the geometric strain. Strain distribution can be accurately scheduled.

(実施例) l)鋳片断面寸法 25011111厚さ1050 m
幅 2)鋳造速度  V=1.7771/馴3)冷却パター
ン 第4図(a)に示すパターンTL−950℃、TF
=1.100℃、T8=1100℃4)鋳造プロフィル
  15点矯正 5)一種     中炭At−8iキルド鋼6)メニス
カスから水平部における鋳片り面までの鉛直方向(高さ
)寸法: 310011111上記諸元で溶鋼を連続鋳
造した。表面疵、内部割れのない高品質の高温鋳片が得
られた。
(Example) l) Slab cross-sectional dimensions 25011111 thickness 1050 m
Width 2) Casting speed V=1.7771/Temperature 3) Cooling pattern Pattern shown in Figure 4 (a) TL-950℃, TF
= 1.100℃, T8=1100℃ 4) Casting profile 15-point correction 5) Type medium coal At-8i killed steel 6) Vertical direction (height) dimension from meniscus to slab surface in horizontal part: 310011111 Above Molten steel was continuously cast according to the specifications. A high-quality high-temperature slab with no surface flaws or internal cracks was obtained.

比較のために、TL=750℃、TF=900℃、Ts
=1.100℃で、他は上の実施例と同一の条件で鋳造
したものは銅片に表面横割れ、内部割れが多発した。
For comparison, TL=750°C, TF=900°C, Ts
= 1.100°C, but otherwise cast under the same conditions as in the above example, the copper piece had many surface transverse cracks and internal cracks.

(発明の効果) この発明は、以上述べたように構成し、かつ作用せしめ
るようにしたから、表面割れ或は内部割れと〜・つた欠
陥のない高品質の高温鋳片を、高生産性下に圧延ライン
に供給できる。
(Effects of the Invention) Since the present invention is configured and operated as described above, it is possible to produce high-quality hot slabs without surface cracks, internal cracks, or other defects with high productivity. can be supplied to the rolling line.

従って、圧延のための加熱エネルギを低減或は省略でき
、省エネルギ、生産性の面で大きな効果を奏する。
Therefore, heating energy for rolling can be reduced or omitted, resulting in great effects in terms of energy saving and productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明になる鋼の連続鋳造プロセスにおけ
る鋳片各部の表面温度温度条件を示す図表、第2図は、
鋼の脆化温度域を示す図表、第3図は、冷却・ξターン
別の鋳片短辺型の集中の状況を示す図表、第4図(a)
は、鋳片の冷却パターンAを示す図表、第4図tb)は
、鋳片の冷却パターンBを示す図表、第5図は、TLと
TFの差ΔTと、鋳片の歪緩和率の関係を示す図表、第
6図は、初期曲率半径と鋳片の総合歪の関係を示す図表
である。 第1図 7F(’C) 嗣 茹 脆化域温度(0C) 第3図 ロール息号      婦エン゛−ン 第4図(の メニスカ入距献 (7n) 第5図 7!1l−TF−Tt 第6図 初jJA曲孝半径R(m) 手続補正書(自発) 昭和59年8月2日 特許庁長官 志 賀   学 殿 l事件の表示 昭和59年特許願第13091’7号2
4発明の名称 鋼の連続鋳造方法 3補正をする者 事件との関係 特許出願人性 所  
東京都千代田区大手町2丁目6番3号名 称  (66
5)  新日本製鐵株式食紅代表者 武 1)   豊 4代 理 人 住 所  東京都中央区日本橋3丁目3番3号5、補正
命令の日付 昭和  年  月  日(発送日)6補正
により増加する発明の数 (1)  明細書11頁20行「プロセン」を「プロセ
ス」に補正する。
Figure 1 is a chart showing the surface temperature conditions of each part of the slab in the continuous steel casting process of the present invention, and Figure 2 is
Figure 3 is a chart showing the embrittlement temperature range of steel, and Figure 4 (a) is a chart showing the concentration of short side types of slabs by cooling and ξ turns.
is a diagram showing the cooling pattern A of the slab, Figure 4 (tb) is a diagram showing the cooling pattern B of the slab, and Figure 5 is the relationship between the difference ΔT between TL and TF and the strain relaxation rate of the slab. FIG. 6 is a chart showing the relationship between the initial radius of curvature and the total strain of the slab. Fig. 1 7F ('C) Temperature in the boiling embrittlement range (0C) Fig. 3 Roll number Female engine Fig. 4 Meniscar entry distance (7n) Fig. 5 7!1l-TF-Tt Figure 6 First jJA radius R (m) Procedural amendment (spontaneous) August 2, 1980 Commissioner of the Patent Office Manabu Shiga Indication of the case 1988 Patent Application No. 13091'7 2
4. Title of the invention Continuous casting method for steel 3. Person making the amendment Relationship to the case Patent applicant Location
2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (66)
5) Nippon Steel Stock Food Coloring Representative Takeshi 1) Yutaka 4th generation Masashi Address 3-3-3-5 Nihonbashi, Chuo-ku, Tokyo Date of amendment order Showa Year, month, day (shipment date) Increased by the 6th amendment Number of inventions (1) On page 11 of the specification, line 20, "Procene" is amended to "Process".

Claims (1)

【特許請求の範囲】[Claims] 機高5m以下の多点矯正彎曲型連続鋳造装置による未凝
固相を有する彎曲鋳片を、真直に矯正する過程を有する
溶鋼の連続鋳造方法において、矯正帯域における鋳片上
面(L面)の表面温度を、900℃以上とするとともに
、鋳片下面(F面)の表面温度を、鋳片上面(L面)の
表面温度よりも150℃以上高くして連続鋳造を行なう
ようにしたことを特徴とする鋼の連続鋳造方法。
In a continuous casting method for molten steel that involves the process of straightening a curved slab having an unsolidified phase using a multi-point straightening curved continuous casting machine with a machine height of 5 m or less, the surface of the upper surface (L side) of the slab in the straightening zone. Continuous casting is carried out at a temperature of 900°C or higher, and the surface temperature of the lower surface (F side) of the slab is higher than the surface temperature of the upper surface (L side) of 150°C or more. Continuous casting method for steel.
JP13091784A 1984-06-27 1984-06-27 Continuous casting method of steel Granted JPS619952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13091784A JPS619952A (en) 1984-06-27 1984-06-27 Continuous casting method of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13091784A JPS619952A (en) 1984-06-27 1984-06-27 Continuous casting method of steel

Publications (2)

Publication Number Publication Date
JPS619952A true JPS619952A (en) 1986-01-17
JPH057108B2 JPH057108B2 (en) 1993-01-28

Family

ID=15045754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13091784A Granted JPS619952A (en) 1984-06-27 1984-06-27 Continuous casting method of steel

Country Status (1)

Country Link
JP (1) JPS619952A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283018A (en) * 2001-03-23 2002-10-02 Nippon Steel Corp Method for cooling cast slab in multi-size continuous casting facility used for both of bloom and billet and its cooling device
JP2016135499A (en) * 2015-01-23 2016-07-28 株式会社神戸製鋼所 Slab continuous casting method capable of carrying out bending-back correction before complete coagulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283018A (en) * 2001-03-23 2002-10-02 Nippon Steel Corp Method for cooling cast slab in multi-size continuous casting facility used for both of bloom and billet and its cooling device
JP2016135499A (en) * 2015-01-23 2016-07-28 株式会社神戸製鋼所 Slab continuous casting method capable of carrying out bending-back correction before complete coagulation

Also Published As

Publication number Publication date
JPH057108B2 (en) 1993-01-28

Similar Documents

Publication Publication Date Title
JP4786473B2 (en) Manufacturing method of slabs with excellent surface quality
US11141782B2 (en) Heat transfer-based width adjustment method for continuous casting mold
CN113145816B (en) Control method for reducing medium carbon steel structure defects
CN112743053B (en) Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method
JP5742550B2 (en) Method and apparatus for producing slab by continuous casting
JP5494350B2 (en) Continuous casting method for steel slabs
JPS619952A (en) Continuous casting method of steel
JPH07204811A (en) Continuous casting method
JP2001191158A (en) Continuous casting method of steel
CA1186473A (en) Process and machine for bow type continuous casting
JPS6117346A (en) Multipoint straightening method of billet
JP4723451B2 (en) Continuous casting method of high carbon steel related to internal cracks derived from recuperation
JP3093533B2 (en) Continuous casting of thin cast slab
JPH0465742B2 (en)
JPH0468064B2 (en)
JP3507263B2 (en) Continuous casting method of molten steel
JPS59113964A (en) Continuous casting method
RU2128559C1 (en) Method for making strip of springy steels and treating it
JPS6352988B2 (en)
JP2885881B2 (en) Continuous casting method
US4977037A (en) Smoother continuous cast steel bar product
CN115055657A (en) Method for controlling width of high-grade non-oriented silicon steel casting blank
JPH01228644A (en) Method for preventing surface crack on ni-contained steel in continuous casting
JPS5855158A (en) Continuous casting machine for direct coupling of steel making and rolling
JP2888071B2 (en) Thin slab continuous casting method