JPS6198199A - Defect detecting method of brushless exciter - Google Patents

Defect detecting method of brushless exciter

Info

Publication number
JPS6198199A
JPS6198199A JP59219647A JP21964784A JPS6198199A JP S6198199 A JPS6198199 A JP S6198199A JP 59219647 A JP59219647 A JP 59219647A JP 21964784 A JP21964784 A JP 21964784A JP S6198199 A JPS6198199 A JP S6198199A
Authority
JP
Japan
Prior art keywords
exciter
brushless exciter
excitation current
detection method
brushless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59219647A
Other languages
Japanese (ja)
Inventor
Yuichi Watarai
渡会 裕一
Koichi Fukutomi
福冨 孝一
Masanori Iike
井池 政則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59219647A priority Critical patent/JPS6198199A/en
Publication of JPS6198199A publication Critical patent/JPS6198199A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To indirectly detect the defect of a brushless exciter by judging whether the amplitude of a brushless exciter exciting current falls within the prescribed range with respect to the operating state of a synchronous machine or not. CONSTITUTION:When a current of the maximum allowable exciting current value or higher flows for a time set by a timer 22 or longer, a brushless exciter defect detection signal 36 is generated through an OR gate 35. When a breaker open signal 26 is generated and a detection signal 25 of (n) times of a no-load rated exciting current is generated, a signal is applied through an AND gate 27 to a timer 28. When a reactive power relay phase advancing side operation signal 32 is generated and a rates exciting current value or higher detection signal 31 is generated, a signal is applied through an AND gate 33 to a timer 34.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は同期機を励磁するブラシレス励磁機の故障検
出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a failure detection method for a brushless exciter that excites a synchronous machine.

〔従来技術とその問題点〕[Prior art and its problems]

第全図はブラシレス励磁機によシ同期発電機を励磁する
場合の回路図である0この第2図においてブラシレス励
磁機4は固定界磁巻線7と回転電機子6と回転整流機′
5とで構成されておシ、固定界磁巻線7に励磁電流を流
すことにより回転電機子6に発生する交流電力を回転整
流器5によシ直流電力に変換する。ブラシレス励磁機回
転部8はこの回転電機子iと回転変流器5で形成されて
おシ、この回転部8と同体で回転する発電機電機子fl
13に回転整流器5からの直流電力を流すことにより固
定されている発電機電機子2には交流電力を発生する◇
すなわち発電機電機子2と発電機界磁巻線3とで構成さ
れている同期発電機lはブラシを必要としないブラシレ
ス励磁機4によシ励磁されるので、保守点検が容易とな
る◎ 同期発電機1が出力する交流電力は遮断器17を経て負
荷に供給されるのであるが、同時に励磁用変圧器10と
サイリスタ整流器9を経て励磁用電力°がブラシレス励
磁機4の固定界磁巻線7に与えられる。このとき同期発
電機1の出力電圧は計器用変圧器13で検出され、自動
電圧調整器16から前述のサイリスタ整流器9にゲート
信号を送って同期発電機出力電圧を一定に維持する・1
1は励磁機用変流器であシ、12は励磁機励磁電流検出
器である。また、計器用変圧器13からの電圧信号と主
回路変流器14からの電流信号とを無効電力継電器15
に入力させて同期発電機1の無効電力を門出するように
なっている・ 第2図に示すような同期発電機のブラシレス励磁機4は
、ブラシなどの消耗部品がなく、保守・点検の手間を省
くことができるが、その代シに整流器が回転しているの
でこの整流器の短絡、あるいはアーム゛の短絡などのた
めに回転している発電機界磁巻線3に所要の励磁電流を
送ることができなくなった場合に備えて、当該ブラシレ
ス励磁機40回転電機子巻線の中性□点とアースとの間
の電圧周波数信号を取シ出してその波形を常時監視する
などの故障検出方法が採用されるが複雑高価となる欠点
を有する。゛ 〔発明の目的〕 この発明は、同期機を励磁するためのブラシレス励磁機
が正常な励磁電流を供給できる状態にないことを簡単で
安価な回路で検出できるようにするブラシレス励磁機の
故障検出方法を提供することを目的とする〇 〔発明の要点〕 この発明は、ブラシレス励磁機から励磁電流を受ける同
期機の運転状態と、当該ブラシレス励磁機の励磁電流と
を監視し、ブラシレス励磁機励磁電流の大きさが同期機
の運転状態に対して所定の範囲にあるか否かを判定する
ようKして当該ブラシレス励磁機の故障を間接的に検出
しようとするものである・ 〔発明の実施例〕 第2図に示されているように同期発電機1を励磁するブ
ラシレス励磁機4が正常に運転しているとき、回転して
いる発′vL−界磁巻線3!!cはブラシレス励磁機回
転部8から励磁電流が供給されているが、その場合ブラ
シレス励磁機4の同定界磁巻線7にも自動電圧調整器1
6によって制御されるサイリスタ整流器9によシ励磁用
変圧器10から励磁機励磁電流が供給されている0こと
でブラシレス励磁機回転部8の内部たとえば回転整流器
5の故障、あるいは回転電機子6の巻線の故障などの異
常が発生すると、同期発電機界磁巻線3に供給される励
磁電流が不足あるいは零となるので、同期発電機lの出
力電圧は低下する。それ放向動電圧調整器16は同期発
電機界磁巻線3に流れる電流を増加させるべくブラシレ
ス励磁機4の固定界磁巻線7iC流れる励磁電流を増加
させるので、この電流増加を励磁機用変流器11と励磁
機励磁電流検出器12が検出し、この検出電流が同期発
電機1の運転状態に対応してあらかじめ定められている
励磁機励磁電流よりも大であシ、この過大電流が所定時
間継続するとき、ブラシレス励磁機異常と判断して保護
装置を作動させる・第1図は本発明の実施例を示す論理
回路図であって、上述のブラシレス励磁機故障の判断を
する論理回路である。
All figures are circuit diagrams when a synchronous generator is excited by a brushless exciter.
The rotary rectifier 5 converts the AC power generated in the rotating armature 6 by passing an exciting current through the fixed field winding 7 into DC power. The brushless exciter rotating part 8 is formed by this rotating armature i and the rotating current transformer 5, and the generator armature fl rotates together with this rotating part 8.
By passing DC power from the rotating rectifier 5 through the generator armature 13, alternating current power is generated in the fixed generator armature 2◇
In other words, the synchronous generator 1, which is composed of the generator armature 2 and the generator field winding 3, is excited by the brushless exciter 4 that does not require brushes, making maintenance and inspection easy. The AC power output from the generator 1 is supplied to the load via the circuit breaker 17, and at the same time, the excitation power is supplied to the fixed field winding of the brushless exciter 4 via the excitation transformer 10 and the thyristor rectifier 9. 7 is given. At this time, the output voltage of the synchronous generator 1 is detected by the potential transformer 13, and a gate signal is sent from the automatic voltage regulator 16 to the aforementioned thyristor rectifier 9 to maintain the synchronous generator output voltage constant.
1 is a current transformer for the exciter, and 12 is an exciter current detector. In addition, the voltage signal from the instrument transformer 13 and the current signal from the main circuit current transformer 14 are transferred to a reactive power relay 15.
The brushless exciter 4 of the synchronous generator shown in Figure 2 has no consumable parts such as brushes, and requires less maintenance and inspection. However, since the rectifier is rotating instead, the required excitation current is sent to the rotating generator field winding 3 due to a short circuit in the rectifier or a short circuit in the arm. In case the brushless exciter is no longer able to operate, a failure detection method such as extracting the voltage frequency signal between the neutral □ point of the brushless exciter's 40-turn armature winding and the ground and constantly monitoring its waveform. However, it has the disadvantage of being complicated and expensive. [Objective of the Invention] The present invention provides a failure detection method for a brushless exciter that enables a simple and inexpensive circuit to detect that the brushless exciter for exciting a synchronous machine is not in a state where it can supply a normal excitation current. [Summary of the Invention] The present invention monitors the operating state of a synchronous machine that receives excitation current from a brushless exciter and the excitation current of the brushless exciter, and This is an attempt to indirectly detect a failure of the brushless exciter by determining whether the magnitude of the current is within a predetermined range with respect to the operating state of the synchronous machine. Example] As shown in FIG. 2, when the brushless exciter 4 that excites the synchronous generator 1 is operating normally, the rotating generator'vL-field winding 3! ! The excitation current c is supplied from the brushless exciter rotation unit 8, but in this case, the automatic voltage regulator 1 is also supplied to the field winding 7 of the brushless exciter 4.
Since the exciter excitation current is supplied from the excitation transformer 10 to the thyristor rectifier 9 controlled by the thyristor rectifier 9 controlled by the thyristor rectifier 6, the inside of the rotating part 8 of the brushless exciter 8 may be damaged, for example, a failure of the rotary rectifier 5 or a failure of the rotating armature 6. When an abnormality such as a winding failure occurs, the excitation current supplied to the synchronous generator field winding 3 becomes insufficient or becomes zero, so the output voltage of the synchronous generator 1 decreases. The discharge dynamic voltage regulator 16 increases the excitation current flowing through the fixed field winding 7iC of the brushless exciter 4 in order to increase the current flowing through the synchronous generator field winding 3. The current transformer 11 and the exciter excitation current detector 12 detect, and this detected current is larger than the exciter excitation current predetermined according to the operating state of the synchronous generator 1, and this excessive current is detected. If this continues for a predetermined period of time, it is determined that the brushless exciter is abnormal and the protection device is activated. FIG. It is a circuit.

この第1図において、許容最大励磁電流値以上検出信号
21は同期発電機1の負荷が急増するときに大きなイン
ダクタンスを有する発電機界磁巻線3に流れる励磁電流
を急増させるための励磁機突上げ励磁電流であって、一
般に励磁機定格励磁電流の数債の値である0よってこの
許容最大励磁電流値以上の電流がタイマ22で設定され
る時間継続して流れるとき、ORゲート35を経てブラ
シレス励磁機故障検出信号36が発令される・遮断器1
7が開であることを示す遮断器開信号26が発せられ、
かつブラシレス励磁機4は無負荷定格励磁電流のn倍以
上検出信号25が発せられているということは(ここで
nは1より大きい値であって、一般にはn+1.5程度
である)、同′期発電機1が無負荷であるにも拘らずブ
ラシレス励磁機が無負荷定格励磁電流以上の励磁電流を
要求しているので、この両信号が発生したことを后のゲ
ート27を介してタイマ28に与え、このタイマ28の
設定時間以上になればORゲート35を経てブラシレス
励磁機故障検出信号36が発令される。
In FIG. 1, the detection signal 21 indicates a detection signal 21 for detecting an excitation current exceeding the allowable maximum excitation current value. When the raising excitation current, which is generally a value of 0 for the exciter's rated excitation current and is equal to or higher than this allowable maximum excitation current value, continues to flow for the time set by the timer 22, it passes through the OR gate 35. Brushless exciter failure detection signal 36 is issued - Circuit breaker 1
A circuit breaker open signal 26 is issued indicating that circuit breaker 7 is open;
In addition, the brushless exciter 4 is emitting a detection signal 25 that is n times or more the no-load rated excitation current (here, n is a value larger than 1, and is generally about n+1.5). Even though the generator 1 is under no load, the brushless exciter is requesting an excitation current higher than the no-load rated excitation current. 28, and when the set time of the timer 28 is exceeded, a brushless exciter failure detection signal 36 is issued via an OR gate 35.

同期発電機1は通常は遮断器17を介して母線に接続さ
れ、図示されていない他の交流電源と並列運転を行なう
。並列運転中の同期発電機lの励at電流を変更すると
、母線に接続されている他の交流電源とこの同期発電機
lとの間に無効横流が流れるので当該同期発電機10力
率が変化する。
The synchronous generator 1 is normally connected to a bus bar via a circuit breaker 17, and operates in parallel with another AC power source (not shown). When the excitation current of the synchronous generator l running in parallel is changed, a reactive cross current flows between this synchronous generator l and other AC power supplies connected to the bus, so the power factor of the synchronous generator 10 changes. do.

そこで計器用変圧器13が検出する発電機電圧と、主回
路変流器14が検出する発電機電流とを無効電力継電器
15に入力させる。同期発電機1の励磁を強めると遅れ
力率になるので無効電力継電器15の遅相側が動作し、
逆に励磁を弱めるとこの無効電力継電器150進相側が
動作する。よって無効電力継電器進相側動作信号32が
発令されており(すなわち同期発電機1の励磁電流不足
を意味する)、それにも拘らずブラシレス励磁機4は定
格励磁電流値以上検出信号31が発令されているならば
、この両信号はANDゲート33を介してタイマ34に
与えられ、この両信号がタイマ34の設定時間以上継続
すればORゲート35を経てブラシレス励磁機故障検出
信号36が発令されることになる◎ 〔発明の効果〕 この発明によれば、同期機を励磁する電力がブラシレス
励磁機の回転部から供給されるとき、この回転部を構成
する回転電機子と回転整流器のいずれかが故障して同期
機の励磁電力が不足あるいは零になるのを、この同期機
の運転状態と、この運転状態のときに必要なブラシレス
励磁機励磁電流をあらかじめ定めておき、その運転状態
において実際に流れるブラシレス励磁機励磁電流がこの
所定値を上廻って一定時間継続するならば当該ブラシレ
ス励磁機故障と判断するようにしている。
Therefore, the generator voltage detected by the instrument transformer 13 and the generator current detected by the main circuit current transformer 14 are input to the reactive power relay 15. When the excitation of the synchronous generator 1 is strengthened, the power factor becomes lagging, so the lagging side of the reactive power relay 15 operates,
Conversely, when the excitation is weakened, the 150 leading phase side of this reactive power relay operates. Therefore, the reactive power relay phase advance side operation signal 32 is issued (that is, it means that the excitation current of the synchronous generator 1 is insufficient), and in spite of this, the brushless exciter 4 does not issue the rated excitation current value or more detection signal 31. If so, these two signals are given to the timer 34 via the AND gate 33, and if these two signals continue for more than the set time of the timer 34, the brushless exciter failure detection signal 36 is issued via the OR gate 35. [Effects of the Invention] According to the present invention, when power for exciting a synchronous machine is supplied from the rotating section of the brushless exciter, either the rotating armature or the rotating rectifier that constitutes this rotating section To prevent the excitation power of a synchronous machine from becoming insufficient or zero due to a failure, the operating state of this synchronous machine and the excitation current of the brushless exciter required for this operating state are determined in advance, and the actual If the flowing excitation current of the brushless exciter exceeds this predetermined value and continues for a certain period of time, it is determined that the brushless exciter has failed.

このような故障検出方法は簡単な論理回路によ)容易に
達成できるものであり、従来のように回転している電機
子の中性点とアースの間の波形を監視する方法にくらべ
、簡単確実であり、低コストで実施できるなど大きな効
果が期待できる。
This fault detection method is easily accomplished (using simple logic circuits) and is simpler than the traditional method of monitoring the waveform between the neutral point of a rotating armature and ground. It is reliable, can be implemented at low cost, and can be expected to have great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す論理回路図であシ、第2
図はブラシレス励磁機により同期発電機を励磁する場合
の回路図である。 1・・・・・・同期発電機、2・・・・・・発電機電機
子(固定)、3・・・・・・発電機界磁巻線(回転)、
4・・・・・・ブラシレス励磁機、5・・・・・・回転
整流器、6・・・・・・回転電機子、7・・・・・・固
定界磁巻線、8・・・・・・ブラシレス励磁機回転部、
9・・・・・・サイリスタ整流器、10・・・・・・励
磁用変圧器、11・・・・・・励磁機用変流器、12・
・・・・・励磁機励磁電流検出器、13・・・・・・計
器用変圧器、14・・・・・・主値以上検出信号、22
 、28 、34・・・・・・タイマ、25・・・・・
・無負荷定格励磁電流のn倍以上検出信号、26・・・
・・・遮断器開信号、27.:j3・・・・・・AND
ゲート、3ト工・・・定格励磁電流値以上検出信号、3
2・・・・・・無効電力継電器進相側動作信号、35・
・・・・・ORゲート、36・・・・・・ブラシレス励
磁機故障検出信号。 25 七仇弁イj情二子名4L方り歳、tう糺σ)jl
恰)!A−1−、i!とイ言ちと 32無rtTJ竜力峙電零逍、刊頂1初111轟ち第1
図 同lN41 tilt”  ブラシレス万力心電り!第
2図
FIG. 1 is a logic circuit diagram showing an embodiment of the present invention.
The figure is a circuit diagram when a synchronous generator is excited by a brushless exciter. 1... Synchronous generator, 2... Generator armature (fixed), 3... Generator field winding (rotating),
4... Brushless exciter, 5... Rotating rectifier, 6... Rotating armature, 7... Fixed field winding, 8...・・Brushless exciter rotating part,
9... Thyristor rectifier, 10... Transformer for excitation, 11... Current transformer for exciter, 12.
... Exciter excitation current detector, 13 ... Instrument transformer, 14 ... Main value or higher detection signal, 22
, 28 , 34... Timer, 25...
・Detection signal of n times or more of the no-load rated excitation current, 26...
...breaker open signal, 27. :j3...AND
Gate, 3 toe...Detection signal of rated excitation current value or higher, 3
2... Reactive power relay phase advance side operation signal, 35.
...OR gate, 36...Brushless exciter failure detection signal. 25 7 enemy dialect i j Jojiko name 4L way year old, t 糺σ)jl
Wow)! A-1-, i! Tokototo 32 No RT
Figure 1N41 tilt” Brushless vise electrocardiograph! Figure 2

Claims (1)

【特許請求の範囲】 1)交流励磁機の固定界磁巻線に励磁電流を流して該励
磁機の回転電機子と回転整流器とにより得られる直流電
力を当該励磁機の回転部と同体で回転する同期機界磁巻
線に与えるように構成されているブラシレス励磁機にお
いて、前記同期機が所定の運転状態にあるときに前記交
流励磁機の励磁電流があらかじめ定められた値を超過す
れば故障と判断することを特徴とするブラシレス励磁機
の故障検出方法。 2)特許請求の範囲第1項記載の故障検出方法において
、前記同期機が運転しているときに前記交流励磁機の励
磁電流が許容最大励磁電流以上の値を一定時間継続すれ
ば故障と判断することを特徴とするブラシレス励磁機の
故障検出方法。 3)特許請求の範囲第1項記載の故障検出方法において
、前記同期機が無負荷運転しているときに前記交流励磁
機の励磁電流が無負荷定格励磁電流に所定倍率を乗じた
電流よりも大なる値を一定時間継続すれば故障と判断す
ることを特徴とするブラシレス励磁機の故障検出方法。 4)特許請求の範囲第1項記載の故障検出方法において
、前記同期機が発電機として運転する場合、当該同期発
電機の無効電力継電器進相側が動作するときに前記交流
励磁機の励磁電流が定格励磁電流以上の値を一定時間継
続すれば故障と判断することを特徴とするブラシレス励
磁機の故障検出方法。
[Claims] 1) An exciting current is passed through the fixed field winding of an AC exciter, and the DC power obtained by the rotating armature and rotating rectifier of the exciter is rotated together with the rotating part of the exciter. In a brushless exciter configured to supply a field winding to a synchronous machine field winding, a failure occurs if the excitation current of the AC exciter exceeds a predetermined value when the synchronous machine is in a predetermined operating state. A failure detection method for a brushless exciter characterized by determining that. 2) In the failure detection method according to claim 1, if the excitation current of the AC exciter continues at a value equal to or higher than the allowable maximum excitation current for a certain period of time while the synchronous machine is operating, a failure is determined. A failure detection method for a brushless exciter, characterized by: 3) In the failure detection method according to claim 1, when the synchronous machine is operating with no load, the excitation current of the AC exciter is higher than the current obtained by multiplying the no-load rated excitation current by a predetermined multiplier. A failure detection method for a brushless exciter, characterized in that a failure is determined if a large value continues for a certain period of time. 4) In the failure detection method according to claim 1, when the synchronous machine operates as a generator, the excitation current of the AC exciter is A failure detection method for a brushless exciter, characterized in that a failure is determined if a value greater than the rated excitation current continues for a certain period of time.
JP59219647A 1984-10-19 1984-10-19 Defect detecting method of brushless exciter Pending JPS6198199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59219647A JPS6198199A (en) 1984-10-19 1984-10-19 Defect detecting method of brushless exciter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59219647A JPS6198199A (en) 1984-10-19 1984-10-19 Defect detecting method of brushless exciter

Publications (1)

Publication Number Publication Date
JPS6198199A true JPS6198199A (en) 1986-05-16

Family

ID=16738792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59219647A Pending JPS6198199A (en) 1984-10-19 1984-10-19 Defect detecting method of brushless exciter

Country Status (1)

Country Link
JP (1) JPS6198199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220056628A (en) * 2020-10-28 2022-05-06 주식회사 위드피에스 Synchoronous generator, apparatus and method for monitoring of synchoronous generator, computer-readable storage medium and computer program
JP2023119860A (en) * 2022-02-17 2023-08-29 東芝プラントシステム株式会社 Protection device, method, and program for brushless exciter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589557A (en) * 1981-07-08 1983-01-19 Hitachi Ltd Detecting circuit for trouble of rotary type rectifier in brushless generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589557A (en) * 1981-07-08 1983-01-19 Hitachi Ltd Detecting circuit for trouble of rotary type rectifier in brushless generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220056628A (en) * 2020-10-28 2022-05-06 주식회사 위드피에스 Synchoronous generator, apparatus and method for monitoring of synchoronous generator, computer-readable storage medium and computer program
JP2023119860A (en) * 2022-02-17 2023-08-29 東芝プラントシステム株式会社 Protection device, method, and program for brushless exciter

Similar Documents

Publication Publication Date Title
US9625519B2 (en) Drive failure protection
US8405339B2 (en) System and method for detecting fault in an AC machine
EP2077613B1 (en) Shorted rotating diode detection and protection
EP0845681B1 (en) Electric motor monitoring arrangement
JP2015082968A (en) Operation method of stationary power generator connected with power supply network
US4492999A (en) Supervisory unit for rotary electrical machinery and apparatus
Darron et al. The influence of generator loss of excitation on bulk power system reliability
JPS6198199A (en) Defect detecting method of brushless exciter
JPH11346499A (en) Failure detector for rotary rectifier in brushless synchronous power generating facility
Miletic et al. Frequency converter influence on induction motor rotor faults detection using motor current signature analysis-experimental research
JPH0352600A (en) Fault detection method and exciting method of brushless exciter
JP2870559B2 (en) Rotary rectifier failure detection device for brushless generator
JPS5835026B2 (en) Brushless control unit
JPS6041815Y2 (en) Silicon fault detection device for rotating rectifier
WO2024047843A1 (en) Inverter apparatus
JP2703441B2 (en) Operation control device for wound induction generator
JPH08262085A (en) Three-phase unbalance detector and power converter
JPH0315235A (en) Uninterruptible power supply
Cheang A new research for the symptoms and diagnosis schemes of the inner-faults for three-phase induction motors
JPH04285459A (en) Field abnormality detector for brushless synchronous machine
JPH0330837B2 (en)
JPS6315696A (en) Operation of hysteresis motor
JP2003287557A (en) Motor insulation-monitoring system
JPH04285458A (en) Field abnormality detector for brushless synchronous machine
JPH0755858A (en) Insulation monitoring apparatus