WO2024047843A1 - Inverter apparatus - Google Patents

Inverter apparatus Download PDF

Info

Publication number
WO2024047843A1
WO2024047843A1 PCT/JP2022/032951 JP2022032951W WO2024047843A1 WO 2024047843 A1 WO2024047843 A1 WO 2024047843A1 JP 2022032951 W JP2022032951 W JP 2022032951W WO 2024047843 A1 WO2024047843 A1 WO 2024047843A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
winding
field
inverter device
axis
Prior art date
Application number
PCT/JP2022/032951
Other languages
French (fr)
Japanese (ja)
Inventor
活徳 竹内
真琴 松下
雄一 坪井
優介 小杉
Original Assignee
東芝インフラシステムズ株式会社
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝インフラシステムズ株式会社, 東芝三菱電機産業システム株式会社 filed Critical 東芝インフラシステムズ株式会社
Priority to JP2022576014A priority Critical patent/JP7362950B1/en
Priority to PCT/JP2022/032951 priority patent/WO2024047843A1/en
Publication of WO2024047843A1 publication Critical patent/WO2024047843A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/32Arrangements for controlling wound field motors, e.g. motors with exciter coils

Definitions

  • the present invention relates to an inverter device.
  • the stator of a synchronous machine is equipped with a general three-phase armature winding (distributed winding, concentrated winding, wave winding, etc.). Further, a field winding is provided on the rotor, and a field current is supplied through a slip ring or a brushless exciter.
  • torque field torque
  • the field magnetic flux can be freely adjusted by changing the field current, it is possible to always operate with a power factor of 1. Taking advantage of this advantage, it is mainly used as large-capacity motors of 1000 kW class or higher.
  • reactive power can also be freely controlled, leading to advance and delay control. For this reason, they are used as main generators in various power plants such as hydropower, thermal power, and nuclear power plants.
  • the rotor of the synchronous machine is provided with a short-circuit winding called a brake winding.
  • the damper winding is composed of a conductor rod (hereinafter referred to as a "damper bar”) that penetrates the iron core of the rotor, and a short-circuit ring that electrically connects each damper bar. Since no power source is connected to the damper winding, no current (damper current) flows during steady operation and there is no electrical effect.
  • a damper current is induced using the same principle as in the secondary winding of an induction machine.
  • Inductive torque is generated by the damper current, which can supplement the field torque, making it possible to self-start with acceleration using only commercial power.
  • induced torque is generated by the damper current during transient operation such as when the voltage or load suddenly changes. In this case, the induced torque is generated in a direction that resists fluctuations in voltage and load, so it is possible to suppress an increase in the load angle and improve the ability to withstand step-out. In this way, the brake winding is essential for stable operation of a synchronous machine.
  • the damper bar has a thin and long structure, so its mechanical strength is relatively weak. Synchronous machines are designed with the mechanical strength of the damper bar in mind, but in very rare cases, the damper bar breaks due to unexpected overload or deterioration over time. Since the damper bar is installed on the rotor core, it is usually not possible to visually determine a failure. If the rotor could be taken out from the stator, it would be possible to visually confirm the failure, but the weight of a 1000 kW class synchronous machine is extremely large, and disassembly work itself is not easy. Therefore, it is necessary to detect the breakage failure of the damper bar in a non-disassembled and non-destructive manner by some electrical method.
  • a method has been proposed that focuses on, for example, the one-sided component of the sideband and monitors the temporal change in the amplitude of the one-sided component of the current waveform during startup. Since the change in amplitude over time is different between when the damper bar is healthy and when it is broken, the aim is to detect breakage of the damper bar by measuring it every time it is started and analyzing its changes over time. Furthermore, instead of using the one-sided component of the current waveform, a method has been proposed in which detection is performed using the fact that the current amplitude at startup is reduced due to a breakage failure. Although these methods focus on different physical quantities, they are based on the same idea of ⁇ monitoring a specific physical quantity when the synchronous machine starts up, and detecting breakage based on the difference from the initial value.''
  • synchronous machines include not only those driven by commercial power sources but also those driven by inverters.
  • inverter-driven synchronous machines are used in synchronous machines that drive rolling mills in steel mills because they require precise torque control over a wide speed range.
  • variable voltage variable frequency (VVVF) power is supplied from the inverter, so slippage does not occur even when starting (accelerating). That is, the conventional method of monitoring physical quantities at the time of startup cannot be applied.
  • VVVF variable voltage variable frequency
  • An object of the present invention is to provide an inverter device that can detect breakage failure of a damper bar.
  • an inverter device includes a stator having an armature winding, a rotor core, a field winding, a plurality of damper bars, and a short circuit provided at both ends thereof.
  • an inverter device for driving a synchronous machine comprising: a rotor having a brake winding having a ring; an armature winding power converter for supplying power to the armature winding; It has a field winding power converter for supplying power to the field winding, and an armature current control system, and converts the three-phase current supplied by the armature winding power converter on the dq axis.
  • a simulator that calculates commands and field current commands used for control, and a brake winding failure detection device that detects a failure of the brake winding, and the brake winding failure detection device is configured to detect a failure of the inverter.
  • a switching unit that switches a state from a normal operation mode to a failure inspection mode and from the failure inspection mode to the normal operation mode; and a switch unit that switches the state from the normal operation mode to the failure inspection mode and from the failure inspection mode to the normal operation mode, and in the failure inspection mode, commands the d-axis current and the q-axis current in the normal operation mode.
  • a test current command value generation unit outputs a direct current equivalent value as the d-axis current command and an alternating current value as the q-axis current command, and measures a response signal at the field winding.
  • an inspection measurement/determination unit that determines whether or not there is a failure in the brake winding from the response signal.
  • FIG. 1 is a block diagram showing the configuration of an inverter device according to a first embodiment.
  • FIG. 2 is a cross-sectional view showing a configuration example of a synchronous machine targeted by the inverter device according to the first embodiment.
  • FIG. 2 is a perspective view showing an example of a brake winding of a synchronous machine targeted by the inverter device according to the first embodiment.
  • FIG. 2 is a configuration diagram for explaining the configuration and operation of a measurement/judgment section during inspection of the inverter device according to the first embodiment.
  • FIG. 3 is a flowchart showing the procedure of a damper bar breakage failure detection method using the inverter device according to the first embodiment.
  • FIG. 7 is a graph showing an example of the distribution of field voltage with respect to the current phase when the damper bar of the synchronous machine targeted by the inverter device according to the first embodiment is healthy and when a breakage failure has occurred.
  • Examples of the distribution of field voltage when the rotor electrical angle changes when the damper bar of the synchronous machine targeted by the inverter device according to the first embodiment is healthy and when a breakage failure has occurred are shown below.
  • This is a graph showing. The results are obtained through multiple inspections when the rotor electrical angle appears randomly, respectively, when the damper bar of the synchronous machine targeted by the inverter device according to the first embodiment is healthy and when the damper bar has a breakage failure.
  • 3 is a graph showing an example of a change in field voltage.
  • FIG. 7 is a configuration diagram for explaining the configuration and operation of an inspection measurement/judgment section of an inverter device according to a second embodiment.
  • FIG. 1 is a block diagram showing the configuration of an inverter device 100 according to the first embodiment.
  • the inverter device 100 is a drive device intended for the synchronous machine 1.
  • the input/output signal of each element is expressed, for example, as "angular velocity command” ⁇ * .
  • angular velocity command ⁇ *
  • the signal name and the signal level value are different things, it is correct to express them separately.
  • ⁇ * indicates the "angular velocity command signal” and also indicates the "level value of the angular velocity command signal”, and both are collectively expressed as "angular velocity command”. Note that the name and level value of the feedback signal are also shown together.
  • Inverter device 100 adjusts armature currents Iu, Iv, Iw, and field current if with respect to angular velocity command ⁇ * and magnetic flux command ⁇ * .
  • the inverter device 100 is roughly divided into an armature winding power converter 101, a field winding power converter 102, a speed control section 110, a field current control section 120, a simulator 130, and a brake winding failure detection device. It has 200.
  • the armature winding power converter 101 is a VVVF (variable voltage variable frequency) power source such as an inverter, and receives power from an AC power source such as a commercial power source (not shown), and converts the armature winding 22 of the synchronous machine 1 to supply power.
  • VVVF variable voltage variable frequency
  • the field winding power converter 102 is a DC power supply, receives power from an AC power supply (not shown), and supplies DC power to the field winding 13 of the synchronous machine 1.
  • the speed control unit 110 includes a subtracter 111, a speed calculator 112, a speed controller 113, and an armature winding current control system 110a.
  • the speed control unit 110 has a cascade control configuration including an armature winding current control system 110a as a minor loop for obtaining the corresponding torque current i T * under the speed control loop for obtaining the angular velocity command ⁇ * It becomes.
  • the speed control unit 110 outputs a voltage command to the armature winding power converter 101 through the armature winding current control system 110a, and converts the three-phase current supplied by the armature winding power converter 101 into dq Control on axis.
  • the armature winding current control system 110a includes a dq-axis current calculator 114, a subtracter 115, a subtracter 116, a 3-phase-dq converter 117, a dq-axis current controller 118, and a dq-3-phase converter 119.
  • the subtracter 111 of the speed control unit 110 converts the rotation angle ⁇ of the synchronous machine 1 measured by the rotation angle detector 106 (resolver, encoder, etc.) and calculated by the position calculator 107 into an angular velocity converted by the speed calculator 112.
  • be a negative feedback signal, and output the angular velocity deviation subtracted from the angular velocity command ⁇ * .
  • the speed controller 113 receives the angular velocity deviation and the magnetic flux command ⁇ * as input, and outputs a torque current command i T * .
  • the dq-axis current calculator 114 receives the torque current command i T * and calculates a d-axis current command i d * and a q-axis current command i q * . At this time, the dq-axis current calculator 114 uses the load angle ⁇ calculated by the simulator 130. In this embodiment, the load angle ⁇ is used to generate the d-axis current command i d * and the q-axis current command i q * , but these may be any physical quantities or calculated values that can be generated.
  • the simulator calculates the current phase angle (the tangent of the d-axis current and the q-axis current), inputs it to the dq-axis current calculator 114, and calculates the d-axis current command i d * and the q-axis current command i
  • the simulator calculates the current phase angle (the tangent of the d-axis current and the q-axis current), inputs it to the dq-axis current calculator 114, and calculates the d-axis current command i d * and the q-axis current command i
  • a configuration that generates q * may also be used.
  • the three-phase-dq converter 117 converts the armature phase currents Iu, Iv, and Iw detected by the armature current detector 104 into a q- axis current iq and a d-axis current id .
  • the three-phase-dq converter 117 uses the rotation angle ⁇ , which is the output of the position calculator 107, during this conversion.
  • the q-axis current i q and the d-axis current i d obtained by the three-phase-dq converter 117 are input as feedback signals to the subtracter 115 and the subtracter 116 .
  • the subtracter 115 receives the d-axis current command i d * and the d-axis current i d as a feedock signal as input, and outputs a d-axis current deviation obtained by subtracting the d-axis current i d from the d-axis current command i d * . do.
  • the subtracter 116 receives the q-axis current command i q * and the q-axis current i q as a feedock signal as input, and outputs a q-axis current deviation obtained by subtracting the q-axis current i q from the q-axis current command i q * . do.
  • the dq-axis current controller 118 receives the d-axis current deviation from the subtracter 115 and the q-axis current deviation from the subtracter 116 as input, and calculates the d-axis voltage command V d * and the q-axis voltage command V q *. and output.
  • the dq-3 phase converter 119 converts the d -axis voltage command V d * and the q-axis voltage command V q * calculated by the dq-axis current controller 118 into the voltage commands Vu * , Vv * , Vw of each of the three phases. Convert to * .
  • the armature winding power converter 101 generates three-phase armature voltages Vu, Vv, and Vw that are proportional to the voltage commands Vu * , Vv * , and Vw * for each of these three phases, and supplies them to the synchronous machine 1. .
  • phase currents Iu, Iv, and Iw flow through the armature winding 22 of the synchronous machine 1. These phase currents Iu, Iv, and Iw are each detected by armature current detector 104.
  • the field current control unit 120 receives the magnetic flux command ⁇ * and the feedback signal of the field current i f and calculates the field current command i fd * , and the field current controller 121 calculates the field current command i fd *.
  • a field voltage command V f * is calculated from fd * and output to the field winding power converter 102 .
  • the field winding power converter 102 generates a field voltage V f proportional to the field voltage command V f * , and supplies it to the field winding 13 of the synchronous machine 1 .
  • a field current if flows through the field winding 13 of the synchronous machine 1. This field current if is detected by a field current detector 105.
  • the simulator 130 calculates and outputs a load angle command ⁇ * and a field current command i fd * from the magnetic flux command ⁇ * and the field current i fd which is a feedback signal.
  • the d-axis current i d , the q-axis current i q , and the torque command are also accepted as inputs.
  • the field current i fd is the field current converted to the armature side.
  • the simulator 130 is configured by, for example, a dq-axis equivalent circuit or a look-up table.
  • the load angle command ⁇ * may be replaced with any physical quantity or calculated value in accordance with the input of the dq-axis current calculator 114. That is, the simulator 130 only needs to be able to generate an auxiliary signal for generating the d-axis current command i d * and the q-axis current command i q * in the dq-axis current calculator 114.
  • the brake winding failure detection device 200 detects failures in the brake winding 16 (FIG. 3), such as breakage of the damper bar 14 (FIG. 2) provided on the rotor 10 of the synchronous machine 1.
  • the brake winding failure detection device 200 includes a switching section 210, a test current command value generation section 220, and an inspection measurement/determination section 230.
  • the switching unit 210 switches the state of the inverter device 100 from the normal operation mode to the failure inspection mode and from the failure inspection mode to the normal operation mode.
  • the inspection current command value generation unit 220 In the failure inspection mode, the inspection current command value generation unit 220 generates a d-axis current command i d * and a q-axis current command i q * in place of the output of the dq-axis current calculator 114 in the normal operation mode, and performs switching.
  • the subtracter 115 and the subtracter 116 are output via the subtracter 210 .
  • the test current command value generation section 220 includes an alternating current command section 221 and a zero current command section 222.
  • the alternating current command unit 221 generates an alternating current as a q-axis current command i q * .
  • the alternating current is a periodic signal having an arbitrary waveform such as a sine wave, a rectangular wave, a triangular wave, or a sawtooth wave.
  • the zero current command section 222 outputs a zero value as the d-axis current command i d * .
  • a zero value is used as the command value of the zero current command unit 222, but if the command value does not result in an alternating current, there will be no problem with the detection operation, so it simulates a direct current instead of an alternating current. It is also possible to substitute a current command with a value equivalent to DC, that is, a value equivalent to DC.
  • each input/output signal within the controller may be converted into an equivalent arbitrary signal.
  • a normalized value proportional to it such as normalization using the unit method
  • torque output
  • magnetic flux voltage
  • magnetic flux multiplied by the number of rotations use d-axis magnetic flux and q-axis magnetic flux instead of load angle (load angle is the tangent of d-axis magnetic flux and q-axis magnetic flux), etc. .
  • FIG. 2 is a cross-sectional view showing a configuration example of the synchronous machine 1 targeted by the inverter device 100 according to the first embodiment.
  • the synchronous machine 1 has a rotor 10 and a stator 20.
  • the rotor 10 includes a rotor shaft 11 rotatably supported on both sides in the axial direction by two bearings (not shown), a rotor core 12 provided on the radially outer side of the rotor shaft 11, and a plurality of convexes on the rotor core 12.
  • the stator 20 includes a cylindrical stator core 21 provided on the radially outer side of the rotor 10 via a gap space 30, and a plurality of stator teeth 21a formed on the inner peripheral surface of the stator core 21. It has a turned armature winding 22. Note that the stator 20 is normally housed in a space formed by a frame (not shown) that supports a bearing or a bearing bracket (not shown).
  • FIG. 2 shows an example in which the rotor has a six-pole structure, the number of poles, the number of slots, the number of windings, and the number of damper bars are arbitrary. Further, although FIG. 2 shows a salient pole type synchronous machine, a cylindrical synchronous machine similarly provided with a damper bar can also be used as the synchronous machine targeted by the inverter device 100.
  • FIG. 3 is a perspective view showing an example of the brake winding 16 of the synchronous machine 1 targeted by the inverter device 100 according to the first embodiment.
  • the damper winding 16 includes a plurality of damper bars 14 passing through the rotor core 12 in the axial direction at each pole, and is provided at both ends of the damper bars 14 in the axial direction to mechanically and electrically connect the damper bars 14. It has two short circuit rings 15 connecting the two.
  • Each of the six damper bars 14 provided on each of the six poles of the rotor 10 passes through the convex portion 12a of the rotor core 12, and then the entirety is mechanically coupled to the shorting ring 15 provided at both ends. connected and electrically shorted.
  • the number, length, and cross-sectional shape of the damper bars 14 are arbitrary, and there are no restrictions as long as they satisfy the electrical properties as the damper winding 16.
  • a structure may be adopted in which a conductor plate is provided at the end of the shaft.
  • the damper bar 14 and the short-circuit ring 15 are assembled by welding, fitting, etc. copper materials, but they may be integrally molded such as aluminum die-casting.
  • FIG. 4 is a configuration diagram for explaining the configuration and operation of the inspection measurement/judgment section 230 of the inverter device 100 according to the first embodiment.
  • the field winding 13 of the rotor 10 is drawn out of the stator 20 via a slip ring (not shown) or the like, and is connected to the field winding power converter 102.
  • a field current detector 105 for detecting a feedback signal of the field current shown in FIG. 1 is provided in the circuit connecting the field winding 13 and the field winding power converter 102.
  • An inspection measurement/judgment section 230 is provided on the output side of the field current detector 105.
  • the inspection measurement/determination section 230 includes a field voltage detector 231, and a computing unit 233, a determination device 234, and an alarm indicator 235 that constitute the failure determination section shown in FIG.
  • the field voltage detector 231 is provided for the purpose of stepping down the voltage to a level that can be input to the arithmetic unit 233, and uses, for example, a transformer (PT), a resistive voltage divider, or the like.
  • PT transformer
  • resistive voltage divider resistive voltage divider
  • the arithmetic unit 233 has a part that performs a Fourier transform function, and outputs an amplitude equivalent of a component synchronized with the fundamental frequency of the alternating current in the failure inspection mode. Note that instead of the Fourier transform, an effective value (rms value), an average rectified effective value (mean value), or other calculations that can obtain an amount equivalent to the amplitude of the AC voltage may be used. Furthermore, the computing unit 233 stores a certain number of values of the input signal (for example, the values of the past 10 points from the latest value) or a certain period of time (for example, the values of the past week from the latest value). , perform numerical processing (for example, calculation of integral and differential) and statistical processing (for example, calculation of arithmetic mean, geometric mean, variance, etc.) on the value.
  • the determiner 234 accepts the output of the arithmetic unit 233 as an input signal.
  • the determiner 234 compares the numerically/statistically processed value with a threshold set in advance for the synchronous machine 1, and if the numerically/statistically processed value exceeds the threshold, the damper bar 14 It is determined that a breakage has occurred. At this time, a signal indicating the abnormality is output to the failure indicator.
  • the threshold value is determined by calculation or testing, and the setting can be changed.
  • the alarm display 235 is composed of, for example, a liquid crystal display, and upon receiving the abnormality signal from the determiner 234, displays a display indicating a failure.
  • the arithmetic unit 233 and the determiner 234 may be configured with a digital circuit such as an FPGA (Field Programmable Gate Array) or a PC (Personal Computer). Alternatively, it may be configured with an analog circuit using an operational amplifier or the like.
  • a digital circuit such as an FPGA (Field Programmable Gate Array) or a PC (Personal Computer). Alternatively, it may be configured with an analog circuit using an operational amplifier or the like.
  • a filter or shield may be provided as necessary. Further, when the synchronous machine 1 is operated at high voltage, an insulation circuit or a protection circuit may be provided as necessary.
  • FIG. 5 is a flowchart showing the steps of a damper bar breakage failure detection method using the inverter device according to the first embodiment.
  • step S10 the synchronous machine 1 is brought to a stopped state. That is, the rotor 10 is not rotated, and the field winding 13 and the armature winding 22 are not energized.
  • the field winding power converter 102 on the power source side of the field winding 13 is brought to a stopped state (step S20).
  • the gate of the semiconductor element of the field winding power converter 102 may be turned off (gate blocked).
  • the disconnector may be opened.
  • step S30 the switching unit 210 switches to failure inspection mode
  • step S40 the following operations are performed in the failure inspection mode.
  • the alternating current command section 221 of the test current command value generation section 220 causes an alternating current to flow through the armature winding 22 in the q-axis direction (direction between magnetic poles) of the rotor 10 (step S41).
  • zero current flows through the armature winding 22 in the d-axis direction of the rotor 10 by the zero current command unit 222 . That is, no current flows in the d-axis direction of the rotor 10.
  • the field voltage detector 231 measures the induced voltage induced in the field winding 13 (step S42).
  • the calculator 233 derives the amplitude value of the synchronous component with the alternating current for the induced voltage induced in the field winding 13 (step S43).
  • the determiner 234 determines whether there is a breakage failure of the damper bar 14 (step S44). That is, the amplitude value derived by the determiner in step S43 is compared with a threshold value, and if the amplitude value exceeds the threshold value, it is determined that a breakage failure of the damper bar 14 has occurred, and an abnormality signal is output.
  • FIG. 6 is a conceptual explanatory diagram along the circumferential direction showing a case where the damper bar 14 of the synchronous machine 1 targeted by the inverter device 100 according to the first embodiment is healthy.
  • FIG. 6 is a diagram schematically showing the damper bar 14 and the short-circuit ring 15 of two adjacent magnetic poles centered on the q-axis developed along the circumferential direction.
  • the q-axis alternating magnetic flux generated by the armature current (magnetic flux density distribution that is maximum at Ca (on the q-axis) in Fig. 6) is distributed in the damper winding.
  • a damper current is induced in the damper winding 16 composed of the damper bar 14 and the short-circuit ring 15 so as to cancel it. Since the loop through which this current flows is symmetrical with respect to the q-axis as shown in Figure 6, the direction of the magnetomotive force created by the damper current is also the direction of the q-axis (Ca in Figure 6 (on the q-axis)), which is the maximum. magnetic force distribution).
  • FIG. 7 is a conceptual explanatory diagram along the circumferential direction showing a case where a breakage failure occurs in a damper bar of a synchronous machine targeted by the inverter device according to the first embodiment.
  • the damper current not only has the effect of canceling the q-axis magnetic flux, but also has the effect of generating magnetic flux on the d-axis.
  • a d-axis magnetic flux is generated. This is called interference between d and q axes. Since the d-axis alternating magnetic flux generated by the interference between the d and q axes interlinks with the field winding, a field voltage that should not occur if the brake winding 16 is healthy will occur in this case. Become.
  • FIG. 8 is a graph showing an example of the gap magnetic flux density distribution when the damper bar 14 of the synchronous machine 1 targeted by the inverter device according to the first embodiment is healthy and when a breakage failure has occurred. It is.
  • the horizontal axis is the mechanical angle (degrees) at the rotor 10, and the vertical axis is the gap magnetic flux density (T).
  • the curve shown by a broken line shows a case where the damper bar 14 is in a healthy state
  • the curve shown by a solid line shows a case where a part of the damper bar 14 is broken.
  • the magnetic flux density is point symmetrical at the center of the figure (horizontal axis 90 degrees, vertical axis 0T).
  • the gap magnetic flux density is not point symmetrical. This indicates that not only the magnetic flux distribution on one axis (q-axis) but also the magnetic flux component on the other axis (d-axis) is occurring.
  • FIG. 9 shows an example of the distribution of field voltage with respect to the current phase when the damper bar of the synchronous machine targeted by the inverter device according to the first embodiment is healthy and when a breakage failure has occurred. It is a graph. The horizontal axis shows the electrical angle (degrees) at the rotor 10, and the vertical axis shows the field voltage (V).
  • the curve shown by a broken line shows a case where the damper bar 14 is in a healthy state
  • the curve shown by a solid line shows a case where a part of the damper bar 14 is broken.
  • the distribution of field voltage when a part of the damper bar 14 is broken is clearly out of phase from the distribution of field voltage when the damper bar 14 is in a healthy state. I can see that In other words, the field current at a rotor electrical angle of 90 degrees (i.e., q-axis) is zero when the damper bar 14 is healthy, but when a part of the damper bar 14 is broken, it becomes significant.
  • the value ⁇ V is shown.
  • the determination unit 234 determines whether or not ⁇ V is higher than a predetermined threshold, thereby determining whether or not the damper bar 14 has a breakage failure.
  • FIG. 10 shows the field when the rotor electrical angle changes when the damper bar 14 of the synchronous machine 1 targeted by the inverter device 100 according to the first embodiment is healthy and when a breakage failure has occurred. It is a graph showing an example of distribution of magnetic voltage.
  • the results shown in FIGS. 8 and 9 shown above are changes in field voltage when the rotor 10 is fixed at a certain position (angle). In reality, it is not easy to make the position of the rotor 10 exactly the same, so it is assumed that the mode shifts to the failure inspection mode at an arbitrary position. In this case, since there are magnetic irregularities caused by the slots of the stator core 21, the detected value fluctuates due to the difference in relative position between the stator 20 and the rotor 10. FIG. 10 shows this.
  • FIG. 11 shows that the rotor position (converted to electrical angle) is random when the damper bar of the synchronous machine targeted by the inverter device according to the first embodiment is healthy and when a breakage failure has occurred.
  • 3 is a graph showing an example of a change in field voltage obtained through multiple tests in the case where the above occurs.
  • the points plotted in FIG. 11 are pseudo-calculated field voltage detection values assuming that the measurement results in FIG. 10 appear randomly and that multiple inspections have been performed. It is assumed that the failure occurred at the 800th time, and a clear difference in the trends can be seen.
  • the solid line in FIG. 11 is a moving average (arithmetic average) of 10 points calculated for the plotted points.
  • the damper winding failure detection device 200 of the inverter device 100 detects a breakage failure of the damper bar 14 without disassembling the synchronous machine 1 using the principle of interference between d and q axes. be able to.
  • FIG. 12 is a configuration diagram for explaining the configuration and operation of the inspection measurement/judgment section 230a of the inverter device 100a according to the second embodiment.
  • This embodiment is a modification of the first embodiment, and the inverter device 100a differs from the first embodiment in the inspection measurement/determination section 230a.
  • the inspection measurement/judgment unit 230a includes a field current detector 105, a calculator 233a, a determiner 234a, an alarm indicator 235, and a contactor 236.
  • the field current detector 105 is composed of devices that measure current as voltage, such as a shunt resistor, current transformer (CT), and Hall CT.
  • the field current detector 105 is a detector for detecting a feedback signal of the field current in the field current control section 120, but the field current detector 105 is a detector for detecting a feedback signal of the field current in the field current control section 120.
  • a separate container may also be provided.
  • a filter or shield may be installed as necessary to avoid false detection, or a filter or shield may be installed as necessary. Similar to the first embodiment, an insulation circuit or a protection circuit may be provided as necessary when the second embodiment is operated at a high voltage.
  • the contactor 236 is provided between the field winding 13 and the field winding power converter 102.
  • the contactor 236 is automatically turned on when the switching unit 210 switches to the failure inspection mode, and the field winding 13 is placed in a short-circuited state. Note that instead of providing the contactor 236, the short circuit may be achieved by turning on (conducting) the gate of the semiconductor element of the power converter 102.
  • an induced voltage is generated in the field winding 13 when the brake winding 16 is in failure, as in the first embodiment.
  • a field current is induced by the induced voltage.
  • This field current is measured by the field current detector 105, and its output is input to the calculator 233a. While the inspection measurement/judgment section 230 in the first embodiment detects failures based on voltage values, the inspection measurement/judgment section 230a of the present embodiment makes judgments based on current values.
  • SYMBOLS 1 Synchronous machine, 10... Rotor, 11... Rotor shaft, 12... Rotor core, 12a... Convex part, 13... Field winding, 14, 14a... Damper bar, 15... Short circuit ring, 16... Brake winding , 20... Stator, 21... Stator core, 21a... Stator teeth, 22... Armature winding, 30... Gap space, 100, 100a... Inverter device, 101... Power converter for armature winding, 102... Field winding power converter, 103... Breaker, 104... Armature current detector, 105... Field current detector, 106... Rotation angle detector, 107... Position calculator, 110...
  • Speed controller 110a ...Armature winding current control system, 111...Subtractor, 112...Speed calculator, 113...Speed controller, 114...DQ-axis current calculator, 115, 116...Subtractor, 117...3-phase-dQ converter, 118... dq axis current controller, 119... dq-3 phase converter, 120... field current controller, 121... field current controller, 130... simulator, 200... damper winding failure detection device, 210... switching unit , 220... Inspection current command value generation unit, 221... Alternating current command unit, 222... Zero current command unit, 230, 230a... Measurement/judgment unit during inspection, 231... Field voltage detector, 233, 233a... Arithmetic unit, 234, 234a... Judgment device, 235... Alarm indicator, 236... Contactor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

According to one embodiment of the present invention, an inverter apparatus (100) comprises: a power converter (101) for an armature winding; a power converter (102) for a field winding; a velocity control unit (110) which controls three-phase current on dq-axes; a field current control unit (120) which controls field winding current; a simulator (130); and a damper winding failure detection device (200). The damper winding failure detection unit (200) has: a switching unit (210) which switches between a normal operation mode and a failure inspection mode; an inspection current command value generation unit (220) which outputs an AC as a q-axis current command and outputs a DC equivalent value as a d-axis current command in the failure inspection mode; and an inspection time measurement/determination unit (230) which measures a response in a field winding (13) and determines, from a response signal, the presence or absence of anomaly in the damper winding.

Description

インバータ装置inverter device
 本発明は、インバータ装置に関する。 The present invention relates to an inverter device.
 同期機の固定子には一般的な三相の電機子巻線(分布巻、集中巻、波巻など)が施されている。また、回転子には、界磁巻線が施されており、スリップリングやブラシレス励磁機を通じて界磁電流が供給される。電機子電圧の振幅や回転数に時間的な変動がない定常運転時においては、電機子巻線と界磁巻線の相互作用によってトルク(界磁トルク)が得られる。界磁電流を変更することにより界磁磁束が自由に調整できるため、常に力率1で運転することができる。この利点を活かして,主に1000kW級以上の大容量モータとして用いられている。また、界磁磁束を調整することによって無効電力も自由に制御でき進み、遅れ制御が可能となる。このため、水力、火力、原子力などの各種発電プラントにおいての主発電機として用いられている。 The stator of a synchronous machine is equipped with a general three-phase armature winding (distributed winding, concentrated winding, wave winding, etc.). Further, a field winding is provided on the rotor, and a field current is supplied through a slip ring or a brushless exciter. During steady operation, where there is no temporal variation in the amplitude or rotational speed of the armature voltage, torque (field torque) is obtained by the interaction between the armature winding and the field winding. Since the field magnetic flux can be freely adjusted by changing the field current, it is possible to always operate with a power factor of 1. Taking advantage of this advantage, it is mainly used as large-capacity motors of 1000 kW class or higher. Furthermore, by adjusting the field magnetic flux, reactive power can also be freely controlled, leading to advance and delay control. For this reason, they are used as main generators in various power plants such as hydropower, thermal power, and nuclear power plants.
 同期機の回転子には、界磁巻線に加えて、制動巻線と呼ばれる短絡巻線が設けられている。制動巻線は、回転子の鉄心部を貫く導体棒(以降「ダンパーバー」と称す)と、各ダンパーバーを電気的に接続する短絡環から構成される。制動巻線には電源が接続されていないため、定常運転時には電流(ダンパー電流)は流れず電気的な作用はない。 In addition to the field winding, the rotor of the synchronous machine is provided with a short-circuit winding called a brake winding. The damper winding is composed of a conductor rod (hereinafter referred to as a "damper bar") that penetrates the iron core of the rotor, and a short-circuit ring that electrically connects each damper bar. Since no power source is connected to the damper winding, no current (damper current) flows during steady operation and there is no electrical effect.
 一方、同期機の始動時などの滑りを伴う運転状態においては、誘導機の二次巻線と同様の原理でダンパー電流が誘導される。ダンパー電流によって誘導トルクが発生し、界磁トルクを補うことができ、商用電源のみで加速する自己始動が可能となる。また、電圧や負荷の急変時などの過渡運転時にもダンパー電流によって誘導トルクが発生する。この場合、誘導トルクは電圧や負荷の変動に抗する方向に生ずるので、負荷角の増大を抑制し脱調耐量を向上させることができる。このように、制動巻線は、同期機の安定運転に欠かすことができない。 On the other hand, in operating conditions involving slippage, such as when starting a synchronous machine, a damper current is induced using the same principle as in the secondary winding of an induction machine. Inductive torque is generated by the damper current, which can supplement the field torque, making it possible to self-start with acceleration using only commercial power. In addition, induced torque is generated by the damper current during transient operation such as when the voltage or load suddenly changes. In this case, the induced torque is generated in a direction that resists fluctuations in voltage and load, so it is possible to suppress an increase in the load angle and improve the ability to withstand step-out. In this way, the brake winding is essential for stable operation of a synchronous machine.
 しかしながら、鉄心や短絡環などの他の部品に比べると、ダンパーバーは細く長い構造であるため、相対的に機械的強度が弱い。同期機は、ダンパーバーの機械強度を考慮して設計されるが、予期しない過負荷や経年劣化などにより、ごくまれにダンパーバーが折損する故障が見られる。ダンパーバーは回転子鉄心に設けられていることから、通常は目視で故障を判断することができない。固定子から回転子を取り出すことができれば、目視にて故障を確認することもできるが、1000kW級の同期機の重量は非常に大きく、分解作業自体が容易に実施できるものではない。したがって、何らかの電気的な方法によって、非分解・非破壊でダンパーバーの折損故障を検知する必要がある。 However, compared to other parts such as the iron core and short-circuit ring, the damper bar has a thin and long structure, so its mechanical strength is relatively weak. Synchronous machines are designed with the mechanical strength of the damper bar in mind, but in very rare cases, the damper bar breaks due to unexpected overload or deterioration over time. Since the damper bar is installed on the rotor core, it is usually not possible to visually determine a failure. If the rotor could be taken out from the stator, it would be possible to visually confirm the failure, but the weight of a 1000 kW class synchronous machine is extremely large, and disassembly work itself is not easy. Therefore, it is necessary to detect the breakage failure of the damper bar in a non-disassembled and non-destructive manner by some electrical method.
 誘導機においては、これまでにも、ダンパーバー(誘導機の場合は制動巻線ではなく二次巻線と呼ばれる)の折損故障を検知する方法が知られている。これらはいずれも、折損したダンパーバーを有する誘導機を滑りsで運転すると、基本波周波数fの両側に 2sfの間隔で側波帯を有する電流が流れるという原理を用いたものである。 In induction machines, methods have been known to detect breakage failures in damper bars (in induction machines, this is called the secondary winding, not the damper winding). All of these methods use the principle that when an induction machine with a broken damper bar is operated with slip s, a current having sidebands at intervals of 2sf flows on both sides of the fundamental frequency f.
 一方、同期機は通常、同期速度、すなわちスリップsが0の状態で運転されるため、ダンパーバーが折損していても側波帯は発生せず、この技術は適用できない。 On the other hand, since a synchronous machine is normally operated at a synchronous speed, that is, with a slip s of 0, sidebands will not occur even if the damper bar is broken, and this technique cannot be applied.
 商用電源で駆動する同期機の場合は、自己始動する際には滑り状態が発生するため、理論上は上述の診断技術が適用できる。しかしながら、同期機の場合には、界磁磁束や突極性によっても2sfの成分が発生するため、ダンパーバーが折損したことによる側波帯と切り分ける必要がある。 In the case of a synchronous machine driven by commercial power, a slipping condition occurs when self-starting, so in theory the above diagnostic technique can be applied. However, in the case of a synchronous machine, the 2sf component is also generated due to field magnetic flux and saliency, so it is necessary to distinguish it from the sideband caused by a broken damper bar.
 これを解決するために、例えば側波帯の片側成分に着目し、始動時における電流波形の片側成分の振幅の時間変化を監視する方法が提案されている。健全時と折損時とでは振幅の時間変化が異なることから、始動毎に測定を行い、その経年変化を分析することによってダンパーバーの折損を検知しようとするものである。また、電流波形の片側成分による方法ではなく、折損故障によって始動時の電流振幅が小さくなることを用いて検出する方法が提案されている。これらは、着目する物理量は異なるものの、「同期機の始動時の特定の物理量を監視して、それの初期値に対する差異を根拠に折損を検知する」という点では同じ考え方に基づいている。 In order to solve this problem, a method has been proposed that focuses on, for example, the one-sided component of the sideband and monitors the temporal change in the amplitude of the one-sided component of the current waveform during startup. Since the change in amplitude over time is different between when the damper bar is healthy and when it is broken, the aim is to detect breakage of the damper bar by measuring it every time it is started and analyzing its changes over time. Furthermore, instead of using the one-sided component of the current waveform, a method has been proposed in which detection is performed using the fact that the current amplitude at startup is reduced due to a breakage failure. Although these methods focus on different physical quantities, they are based on the same idea of ``monitoring a specific physical quantity when the synchronous machine starts up, and detecting breakage based on the difference from the initial value.''
特開昭61-112548号公報Japanese Patent Application Laid-Open No. 61-112548 特開昭61-112548号公報Japanese Patent Application Laid-Open No. 61-112548 特開2000-92792号公報Japanese Patent Application Publication No. 2000-92792 特許第6722901号公報Patent No. 6722901
 ところで、同期機には、商用電源によって駆動されるものだけでなくインバータで駆動するものがある。例えば、製鉄所の圧延機を駆動する同期機には、幅広い速度範囲で精密なトルク制御が必要となることから、インバータ駆動の同期機が用いられている。 By the way, synchronous machines include not only those driven by commercial power sources but also those driven by inverters. For example, inverter-driven synchronous machines are used in synchronous machines that drive rolling mills in steel mills because they require precise torque control over a wide speed range.
 このような同期機においては、インバータから可変電圧可変周波数(VVVF)の電力が供給されるため、始動時(加速時)においても滑りが生じることはない。すなわち、始動時の物理量を監視するという従来手法を適用することができない。 In such a synchronous machine, variable voltage variable frequency (VVVF) power is supplied from the inverter, so slippage does not occur even when starting (accelerating). That is, the conventional method of monitoring physical quantities at the time of startup cannot be applied.
 インバータを制御して、意図的に始動時のような滑り状態を作り出すことは不可能ではないが、始動時には定格電流を大きく上回る起動電流が流れ、それに応じて大きなトルクが発生することになる。これによって、同期機に接続された機械設備を故障させる可能性があり現実的ではない。 It is not impossible to control the inverter and intentionally create a slipping condition similar to that at startup, but at startup, a starting current that greatly exceeds the rated current will flow, and a correspondingly large torque will be generated. This may cause mechanical equipment connected to the synchronous machine to malfunction, which is not practical.
 本発明の目的は、ダンパーバーの折損故障の検知を可能とするインバータ装置を提供することである。 An object of the present invention is to provide an inverter device that can detect breakage failure of a damper bar.
 上述の目的を達成するため、本発明の実施形態に係るインバータ装置は、電機子巻線を有する固定子と、回転子鉄心、界磁巻線並びに複数のダンパーバーおよびその両端に設けられた短絡環とを有する制動巻線を具備する回転子と、を備える同期機を駆動するインバータ装置であって、前記電機子巻線に電力を供給するための電機子巻線用電力変換器と、前記界磁巻線に電力を供給するための界磁巻線用電力変換器と、電機子電流制御系を有し前記電機子巻線用電力変換器により供給される三相電流をdq軸上で制御する速度制御部と、前記界磁巻線用電力変換器により供給される前記界磁巻線の電流を制御する界磁電流制御部と、前記速度制御部内でd軸電流およびq軸電流を制御する際に用いる指令と界磁電流指令を演算するシミュレータと、前記制動巻線の故障を検出する制動巻線故障検知装置と、を備え、前記制動巻線故障検知装置は、当該インバータ装置の状態を、通常運転モードから故障検査モードへ、および前記故障検査モードから前記通常運転モードへ切替える切替え部と、前記故障検査モードにおいて、前記通常運転モードにおける前記d軸電流および前記q軸電流の指令に代えて、前記d軸電流の指令として直流相当値を出力し、前記q軸電流の指令として交番電流を出力する検査電流指令値生成部と、前記界磁巻線での応答信号を測定し、前記応答信号から前記制動巻線の故障の有無を判定する検査時測定・判定部と、を備えることを特徴とする。 In order to achieve the above object, an inverter device according to an embodiment of the present invention includes a stator having an armature winding, a rotor core, a field winding, a plurality of damper bars, and a short circuit provided at both ends thereof. an inverter device for driving a synchronous machine comprising: a rotor having a brake winding having a ring; an armature winding power converter for supplying power to the armature winding; It has a field winding power converter for supplying power to the field winding, and an armature current control system, and converts the three-phase current supplied by the armature winding power converter on the dq axis. a field current control unit that controls the current of the field winding supplied by the field winding power converter; and a field current control unit that controls the d-axis current and the q-axis current within the speed control unit. A simulator that calculates commands and field current commands used for control, and a brake winding failure detection device that detects a failure of the brake winding, and the brake winding failure detection device is configured to detect a failure of the inverter. a switching unit that switches a state from a normal operation mode to a failure inspection mode and from the failure inspection mode to the normal operation mode; and a switch unit that switches the state from the normal operation mode to the failure inspection mode and from the failure inspection mode to the normal operation mode, and in the failure inspection mode, commands the d-axis current and the q-axis current in the normal operation mode. Instead, a test current command value generation unit outputs a direct current equivalent value as the d-axis current command and an alternating current value as the q-axis current command, and measures a response signal at the field winding. and an inspection measurement/determination unit that determines whether or not there is a failure in the brake winding from the response signal.
第1の実施形態に係るインバータ装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of an inverter device according to a first embodiment. 第1の実施形態に係るインバータ装置が対象とする同期機の構成例を示す横断面図である。FIG. 2 is a cross-sectional view showing a configuration example of a synchronous machine targeted by the inverter device according to the first embodiment. 第1の実施形態に係るインバータ装置が対象とする同期機の制動巻線の例を示す斜視図である。FIG. 2 is a perspective view showing an example of a brake winding of a synchronous machine targeted by the inverter device according to the first embodiment. 第1の実施形態に係るインバータ装置の検査時測定・判定部の構成および動作を説明するための構成図である。FIG. 2 is a configuration diagram for explaining the configuration and operation of a measurement/judgment section during inspection of the inverter device according to the first embodiment. 第1の実施形態に係るインバータ装置を用いたダンパーバーの折損故障検知方法の手順を示すフロー図である。FIG. 3 is a flowchart showing the procedure of a damper bar breakage failure detection method using the inverter device according to the first embodiment. 第1の実施形態に係るインバータ装置が対象とする同期機のダンパーバーが健全な場合を示す周方向に沿った概念的な説明図である。It is a conceptual explanatory view along the circumferential direction showing a case where the damper bar of the synchronous machine targeted by the inverter device according to the first embodiment is healthy. 第1の実施形態に係るインバータ装置が対象とする同期機のダンパーバーの折損故障が生じている場合を示す周方向に沿った概念的な説明図である。It is a conceptual explanatory view along the circumferential direction showing a case where a breakage failure occurs in a damper bar of a synchronous machine targeted by the inverter device according to the first embodiment. 第1の実施形態に係るインバータ装置が対象とする同期機のダンパーバーが健全な場合および折損故障が生じている場合のそれぞれについてのギャップ磁束密度の分布の例を示すグラフである。It is a graph which shows the example of distribution of the gap magnetic flux density for each case when the damper bar of the synchronous machine targeted by the inverter device according to the first embodiment is healthy and when a breakage failure has occurred. 第1の実施形態に係るインバータ装置が対象とする同期機のダンパーバーが健全な場合および折損故障が生じている場合のそれぞれについての電流位相に対する界磁電圧の分布の例を示すグラフである。7 is a graph showing an example of the distribution of field voltage with respect to the current phase when the damper bar of the synchronous machine targeted by the inverter device according to the first embodiment is healthy and when a breakage failure has occurred. 第1の実施形態に係るインバータ装置が対象とする同期機のダンパーバーが健全な場合および折損故障が生じている場合のそれぞれについて回転子電気角が変化した場合の界磁電圧の分布の例を示すグラフである。Examples of the distribution of field voltage when the rotor electrical angle changes when the damper bar of the synchronous machine targeted by the inverter device according to the first embodiment is healthy and when a breakage failure has occurred are shown below. This is a graph showing. 第1の実施形態に係るインバータ装置が対象とする同期機のダンパーバーが健全な場合および折損故障が生じている場合のそれぞれについて、回転子電気角がランダムに表れる場合における複数回の検査で得られた界磁電圧の変化の例を示すグラフである。The results are obtained through multiple inspections when the rotor electrical angle appears randomly, respectively, when the damper bar of the synchronous machine targeted by the inverter device according to the first embodiment is healthy and when the damper bar has a breakage failure. 3 is a graph showing an example of a change in field voltage. 第2の実施形態に係るインバータ装置の検査時測定・判定部の構成および動作を説明するための構成図である。FIG. 7 is a configuration diagram for explaining the configuration and operation of an inspection measurement/judgment section of an inverter device according to a second embodiment.
 以下、図面を参照して、本発明の実施形態に係るインバータ装置について説明する。ここで、互いに同一または類似の部分には、共通の符号を付して、重複説明は省略する。 Hereinafter, an inverter device according to an embodiment of the present invention will be described with reference to the drawings. Here, parts that are the same or similar to each other are given the same reference numerals, and redundant explanation will be omitted.
 [第1の実施形態]
 図1は、第1の実施形態に係るインバータ装置100の構成を示すブロック図である。インバータ装置100は、同期機1を対象とする駆動装置である。
[First embodiment]
FIG. 1 is a block diagram showing the configuration of an inverter device 100 according to the first embodiment. The inverter device 100 is a drive device intended for the synchronous machine 1.
 以下、インバータ装置100の構成を示す各図の説明において、各要素の入出力信号は、たとえば、「角速度指令」ωのように表現している。入出力信号については、詳細には、信号の名称と信号のレベル値とは別のものであるので、これらを別個に表現することが正しい。しかしながら、表現上、煩雑となるため、たとえばωは、「角速度指令信号」を示すとともに「角速度指令信号のレベル値」も示すものとし、両者を「角速度指令」と総称して表現する。なお、フィードバック信号についても、その信号の名称とレベル値を併せて示すものとする。 Hereinafter, in the description of each figure showing the configuration of the inverter device 100, the input/output signal of each element is expressed, for example, as "angular velocity command" ω * . Regarding input/output signals, in detail, since the signal name and the signal level value are different things, it is correct to express them separately. However, since the expression is complicated, for example, ω * indicates the "angular velocity command signal" and also indicates the "level value of the angular velocity command signal", and both are collectively expressed as "angular velocity command". Note that the name and level value of the feedback signal are also shown together.
 また、各物理量を表す記号において、添え字“*” が付いたものは指令値,それ以外はフィードバック値または演算値を表す。 Also, among the symbols representing each physical quantity, those with the suffix "*" represent command values, and the others represent feedback values or calculated values.
 インバータ装置100は、角速度指令ωおよび磁束指令Φに対して、電機子電流Iu、Iv、Iw、および界磁電流iを調節する。インバータ装置100は、大別して、電機子巻線用電力変換器101、界磁巻線用電力変換器102、速度制御部110、界磁電流制御部120、シミュレータ130、および制動巻線故障検知装置200を有する。 Inverter device 100 adjusts armature currents Iu, Iv, Iw, and field current if with respect to angular velocity command ω * and magnetic flux command Φ * . The inverter device 100 is roughly divided into an armature winding power converter 101, a field winding power converter 102, a speed control section 110, a field current control section 120, a simulator 130, and a brake winding failure detection device. It has 200.
 電機子巻線用電力変換器101は、インバータなどのVVVF(可変電圧可変周波数)電源であり、図示しないたとえば商用電源などの交流電源から電力供給を受けて、同期機1の電機子巻線22に電力を供給する。 The armature winding power converter 101 is a VVVF (variable voltage variable frequency) power source such as an inverter, and receives power from an AC power source such as a commercial power source (not shown), and converts the armature winding 22 of the synchronous machine 1 to supply power.
 界磁巻線用電力変換器102は、直流電源であり、図示しない交流電源から電力供給を受けて、同期機1の界磁巻線13に直流の電力を供給する。 The field winding power converter 102 is a DC power supply, receives power from an AC power supply (not shown), and supplies DC power to the field winding 13 of the synchronous machine 1.
 速度制御部110は、減算器111、速度演算器112、速度制御器113、および電機子巻線電流制御系110aを有する。速度制御部110は、角速度指令ωを得るための速度制御ループの下に、対応するトルク電流i を得るためのマイナーループとしての電機子巻線電流制御系110aを有するカスケード制御の構成となっている。速度制御部110は、電機子巻線電流制御系110aにより電機子巻線用電力変換器101への電圧指令を出力し、電機子巻線用電力変換器101により供給される三相電流をdq軸上で制御する。 The speed control unit 110 includes a subtracter 111, a speed calculator 112, a speed controller 113, and an armature winding current control system 110a. The speed control unit 110 has a cascade control configuration including an armature winding current control system 110a as a minor loop for obtaining the corresponding torque current i T * under the speed control loop for obtaining the angular velocity command ω * It becomes. The speed control unit 110 outputs a voltage command to the armature winding power converter 101 through the armature winding current control system 110a, and converts the three-phase current supplied by the armature winding power converter 101 into dq Control on axis.
 電機子巻線電流制御系110aは、dq軸電流演算器114、減算器115、減算器116、3相-dq変換器117、dq軸電流制御器118、dq-3相変換器119を有する。 The armature winding current control system 110a includes a dq-axis current calculator 114, a subtracter 115, a subtracter 116, a 3-phase-dq converter 117, a dq-axis current controller 118, and a dq-3-phase converter 119.
 速度制御部110の減算器111は、回転角検出器106(レゾルバやエンコーダなど)で計測され位置演算器107により算出された同期機1の回転角Θがさらに速度演算器112により変換された角速度ωを、負のフィードバック信号とし、角速度指令ωから減じた角速度偏差を出力する。速度制御器113は、角速度偏差および磁束指令Φを入力として、トルク電流指令i を出力する。 The subtracter 111 of the speed control unit 110 converts the rotation angle Θ of the synchronous machine 1 measured by the rotation angle detector 106 (resolver, encoder, etc.) and calculated by the position calculator 107 into an angular velocity converted by the speed calculator 112. Let ω be a negative feedback signal, and output the angular velocity deviation subtracted from the angular velocity command ω * . The speed controller 113 receives the angular velocity deviation and the magnetic flux command Φ * as input, and outputs a torque current command i T * .
 dq軸電流演算器114は、トルク電流指令i を入力として、d軸電流指令i およびq軸電流指令i を算出する。この際、dq軸電流演算器114は、シミュレータ130で算出された負荷角δを用いる。なお,この実施例では負荷角δを用いてd軸電流指令i およびq軸電流指令i を生成しているが,これらが生成できる任意の物理量や演算値であってよい。すなわち,例えば,シミュレータで電流位相角(d軸電流とq軸電流の正接)を算出し,それをdq軸電流演算器114に入力して,d軸電流指令i およびq軸電流指令i を生成するような構成でもよい。 The dq-axis current calculator 114 receives the torque current command i T * and calculates a d-axis current command i d * and a q-axis current command i q * . At this time, the dq-axis current calculator 114 uses the load angle δ calculated by the simulator 130. In this embodiment, the load angle δ is used to generate the d-axis current command i d * and the q-axis current command i q * , but these may be any physical quantities or calculated values that can be generated. That is, for example, the simulator calculates the current phase angle (the tangent of the d-axis current and the q-axis current), inputs it to the dq-axis current calculator 114, and calculates the d-axis current command i d * and the q-axis current command i A configuration that generates q * may also be used.
 3相-dq変換器117は、電機子電流検出器104で検出された電機子の各相電流Iu、Iv、およびIwを、q軸電流iおよびd軸電流iに変換する。3相-dq変換器117は、この変換の際に、位置演算器107の出力である回転角Θを用いる。3相-dq変換器117で得られたq軸電流iおよびd軸電流iは、減算器115および減算器116へのフィードバック信号として入力される。 The three-phase-dq converter 117 converts the armature phase currents Iu, Iv, and Iw detected by the armature current detector 104 into a q- axis current iq and a d-axis current id . The three-phase-dq converter 117 uses the rotation angle Θ, which is the output of the position calculator 107, during this conversion. The q-axis current i q and the d-axis current i d obtained by the three-phase-dq converter 117 are input as feedback signals to the subtracter 115 and the subtracter 116 .
 減算器115は、d軸電流指令i およびフィードック信号であるd軸電流iを入力として受け入れ、d軸電流指令i からd軸電流iを減じたd軸電流偏差を出力する。減算器116は、q軸電流指令i およびフィードック信号であるq軸電流iを入力として受け入れ、q軸電流指令i からq軸電流iを減じたq軸電流偏差を出力する。 The subtracter 115 receives the d-axis current command i d * and the d-axis current i d as a feedock signal as input, and outputs a d-axis current deviation obtained by subtracting the d-axis current i d from the d-axis current command i d * . do. The subtracter 116 receives the q-axis current command i q * and the q-axis current i q as a feedock signal as input, and outputs a q-axis current deviation obtained by subtracting the q-axis current i q from the q-axis current command i q * . do.
 dq軸電流制御器118は、減算器115からのd軸電流偏差、および減算器116からのq軸電流偏差を入力として受け入れ、d軸電圧指令V およびq軸電圧指令V を算出し、出力する。 The dq-axis current controller 118 receives the d-axis current deviation from the subtracter 115 and the q-axis current deviation from the subtracter 116 as input, and calculates the d-axis voltage command V d * and the q-axis voltage command V q *. and output.
 dq-3相変換器119は、dq軸電流制御器118により算出されたd軸電圧指令V およびq軸電圧指令V を、3相各相の電圧指令Vu、Vv、Vwに変換する。電機子巻線用電力変換器101は、これら3相各相の電圧指令Vu、Vv、Vwに比例した三相電機子電圧Vu、Vv、Vwを発生し、同期機1に供給する。これにより、同期機1の電機子巻線22に相電流Iu、Iv、Iwが流れる。この相電流Iu、Iv、Iwは、それぞれ電機子電流検出器104により検出される。 The dq-3 phase converter 119 converts the d -axis voltage command V d * and the q-axis voltage command V q * calculated by the dq-axis current controller 118 into the voltage commands Vu * , Vv * , Vw of each of the three phases. Convert to * . The armature winding power converter 101 generates three-phase armature voltages Vu, Vv, and Vw that are proportional to the voltage commands Vu * , Vv * , and Vw * for each of these three phases, and supplies them to the synchronous machine 1. . As a result, phase currents Iu, Iv, and Iw flow through the armature winding 22 of the synchronous machine 1. These phase currents Iu, Iv, and Iw are each detected by armature current detector 104.
 界磁電流制御部120は、磁束指令Φと、界磁電流iのフィードバック信号を受けて、界磁電流指令ifd を算出し、界磁電流制御器121が、界磁電流指令ifd から界磁電圧指令V を算出し、界磁巻線用電力変換器102に出力する。界磁巻線用電力変換器102は、界磁電圧指令V に比例した界磁電圧Vを発生し、同期機1の界磁巻線13に供給する。これにより、同期機1の界磁巻線13に界磁電流iが流れる。この界磁電流iは界磁電流検出器105により検出される。 The field current control unit 120 receives the magnetic flux command Φ * and the feedback signal of the field current i f and calculates the field current command i fd * , and the field current controller 121 calculates the field current command i fd *. A field voltage command V f * is calculated from fd * and output to the field winding power converter 102 . The field winding power converter 102 generates a field voltage V f proportional to the field voltage command V f * , and supplies it to the field winding 13 of the synchronous machine 1 . As a result, a field current if flows through the field winding 13 of the synchronous machine 1. This field current if is detected by a field current detector 105.
 シミュレータ130は、磁束指令Φとフィードバック信号である界磁電流ifdから、負荷角指令δと界磁電流指令ifd を演算し出力する。この演算のために、たとえば、図1の例では、d軸電流i、q軸電流i、およびトルク指令も入力として受け入れている。ここで、界磁電流ifdは、電機子側に換算した界磁電流である。シミュレータ130は、例えば、dq軸等価回路やルックアップテーブルによって構成されている。なお,dq軸電流演算器114の入力に合わせて,負荷角指令δを任意の物理量や演算値に置き換えてよい。すなわち,シミュレータ130は,dq軸電流演算器114でd軸電流指令i およびq軸電流指令i を生成するための補助信号が生成できればよい。 The simulator 130 calculates and outputs a load angle command δ * and a field current command i fd * from the magnetic flux command Φ * and the field current i fd which is a feedback signal. For this calculation, for example, in the example of FIG. 1, the d-axis current i d , the q-axis current i q , and the torque command are also accepted as inputs. Here, the field current i fd is the field current converted to the armature side. The simulator 130 is configured by, for example, a dq-axis equivalent circuit or a look-up table. Note that the load angle command δ * may be replaced with any physical quantity or calculated value in accordance with the input of the dq-axis current calculator 114. That is, the simulator 130 only needs to be able to generate an auxiliary signal for generating the d-axis current command i d * and the q-axis current command i q * in the dq-axis current calculator 114.
 制動巻線故障検知装置200は、当該同期機1の回転子10に設けられたダンパーバー14(図2)の折損等、制動巻線16(図3)の故障の検出を行う。制動巻線故障検知装置200は、切替え部210、検査電流指令値生成部220、および検査時測定・判定部230を有する。 The brake winding failure detection device 200 detects failures in the brake winding 16 (FIG. 3), such as breakage of the damper bar 14 (FIG. 2) provided on the rotor 10 of the synchronous machine 1. The brake winding failure detection device 200 includes a switching section 210, a test current command value generation section 220, and an inspection measurement/determination section 230.
 切替え部210は、当該インバータ装置100の状態を、通常運転モードから故障検査モードへ、および故障検査モードから通常運転モードへの切り替えを行う。 The switching unit 210 switches the state of the inverter device 100 from the normal operation mode to the failure inspection mode and from the failure inspection mode to the normal operation mode.
 検査電流指令値生成部220は、故障検査モードにおいて、通常運転モードにおけるdq軸電流演算器114の出力に代えて、d軸電流指令i およびq軸電流指令i を発生し、切替え部210を介して、減算器115および減算器116に出力する。 In the failure inspection mode, the inspection current command value generation unit 220 generates a d-axis current command i d * and a q-axis current command i q * in place of the output of the dq-axis current calculator 114 in the normal operation mode, and performs switching. The subtracter 115 and the subtracter 116 are output via the subtracter 210 .
 検査電流指令値生成部220は、交番電流指令部221とゼロ電流指令部222を有する。 The test current command value generation section 220 includes an alternating current command section 221 and a zero current command section 222.
 交番電流指令部221は、q軸電流指令i として交番電流を発生する。ここで、交番電流は、たとえば、正弦波、矩形波、三角波、ノコギリ波など任意の波形を有する周期的な信号である。 The alternating current command unit 221 generates an alternating current as a q-axis current command i q * . Here, the alternating current is a periodic signal having an arbitrary waveform such as a sine wave, a rectangular wave, a triangular wave, or a sawtooth wave.
 ゼロ電流指令部222は、d軸電流指令i としてゼロ値を出力する。ここで、ゼロ電流指令部222の指令値として、ゼロ値を用いた例を示しているが、交番電流にならない指令値であれば検出動作に支障はないので、交番電流ではなく、直流を模擬する値、すなわち直流相当値の電流指令で代用することもできる。 The zero current command section 222 outputs a zero value as the d-axis current command i d * . Here, an example is shown in which a zero value is used as the command value of the zero current command unit 222, but if the command value does not result in an alternating current, there will be no problem with the detection operation, so it simulates a direct current instead of an alternating current. It is also possible to substitute a current command with a value equivalent to DC, that is, a value equivalent to DC.
 なお、以上説明したインバータ装置100においては、所望の特性を得るために、図1に示されていないフィルタ、内部ループ、および各種演算器が設けられていてもよい。また,制御器内の各入出力信号は,等価な任意の信号に変換されていてよい。例えば,実際の物理値の代わりに,それに比例した規格化値(単位法による規格化など)を用いる,トルクの代わりに出力(トルクに回転数を乗じたもの)を用いる,磁束の代わりに電圧(磁束に回転数を乗じたもの)を用いる,負荷角の代わりにd軸磁束とq軸磁束(負荷角はd軸磁束とq軸磁束の正接)を用いる,などの変更がなされてもよい。 Note that the inverter device 100 described above may be provided with a filter, an internal loop, and various arithmetic units that are not shown in FIG. 1 in order to obtain desired characteristics. Furthermore, each input/output signal within the controller may be converted into an equivalent arbitrary signal. For example, instead of the actual physical value, a normalized value proportional to it (such as normalization using the unit method) is used, instead of torque, output (torque multiplied by the number of revolutions) is used, and instead of magnetic flux, voltage is used. (magnetic flux multiplied by the number of rotations), use d-axis magnetic flux and q-axis magnetic flux instead of load angle (load angle is the tangent of d-axis magnetic flux and q-axis magnetic flux), etc. .
 図2は、第1の実施形態に係るインバータ装置100が対象とする同期機1の構成例を示す横断面図である。 FIG. 2 is a cross-sectional view showing a configuration example of the synchronous machine 1 targeted by the inverter device 100 according to the first embodiment.
 同期機1は、回転子10および固定子20を有する。 The synchronous machine 1 has a rotor 10 and a stator 20.
 回転子10は、図示しない2つの軸受により軸方向の両側を回転可能に支持されたロータシャフト11、ロータシャフト11の径方向外側に設けられた回転子鉄心12、回転子鉄心12の複数の凸部12aのそれぞれに巻回された界磁巻線13、回転子鉄心12の凸部12aのそれぞれの径方向の端部近傍において回転子鉄心12を貫通する各6本のダンパーバー14を有する。 The rotor 10 includes a rotor shaft 11 rotatably supported on both sides in the axial direction by two bearings (not shown), a rotor core 12 provided on the radially outer side of the rotor shaft 11, and a plurality of convexes on the rotor core 12. There are six damper bars 14 each passing through the rotor core 12 in the vicinity of the radial ends of the field windings 13 wound around the respective portions 12a and the convex portions 12a of the rotor core 12.
 固定子20は、回転子10の径方向外側にギャップ空間30を介して設けられた円筒状の固定子鉄心21、固定子鉄心21の内周面に形成された複数の固定子ティース21aに巻回された電機子巻線22を有する。なお、通常、固定子20は、軸受を支持するフレーム(図示せず)あるいは軸受けブラケット(図示せず)により形成される空間内に収納されている。 The stator 20 includes a cylindrical stator core 21 provided on the radially outer side of the rotor 10 via a gap space 30, and a plurality of stator teeth 21a formed on the inner peripheral surface of the stator core 21. It has a turned armature winding 22. Note that the stator 20 is normally housed in a space formed by a frame (not shown) that supports a bearing or a bearing bracket (not shown).
 なお,図2では、回転子が6極構造の場合を例にとって示したが、極数、スロットの数、巻線の数、ダンパーバーの数は任意である。また,図2では突極形の同期機を示しているが,同様にダンパーバーが設けられている円筒形の同期機についても、インバータ装置100が対象とする同期機とすることができる。 Although FIG. 2 shows an example in which the rotor has a six-pole structure, the number of poles, the number of slots, the number of windings, and the number of damper bars are arbitrary. Further, although FIG. 2 shows a salient pole type synchronous machine, a cylindrical synchronous machine similarly provided with a damper bar can also be used as the synchronous machine targeted by the inverter device 100.
 図3は、第1の実施形態に係るインバータ装置100が対象とする同期機1の制動巻線16の例を示す斜視図である。 FIG. 3 is a perspective view showing an example of the brake winding 16 of the synchronous machine 1 targeted by the inverter device 100 according to the first embodiment.
 制動巻線16は、各極において回転子鉄心12を軸方向に貫通する複数のダンパーバー14と、これらのダンパーバー14の軸方向の両端に設けられて、機械的および電気的にダンパーバー14を接続する2つの短絡環15を有する。 The damper winding 16 includes a plurality of damper bars 14 passing through the rotor core 12 in the axial direction at each pole, and is provided at both ends of the damper bars 14 in the axial direction to mechanically and electrically connect the damper bars 14. It has two short circuit rings 15 connecting the two.
 回転子10の6極のそれぞれに設けられた各6本のダンパーバー14は、回転子鉄心12の凸部12aを貫通したのち、全体が、両端に設けられた短絡環15に機械的に結合され、電気的に短絡されている。 Each of the six damper bars 14 provided on each of the six poles of the rotor 10 passes through the convex portion 12a of the rotor core 12, and then the entirety is mechanically coupled to the shorting ring 15 provided at both ends. connected and electrically shorted.
 ここで、ダンパーバー14の本数や長さ、断面形状は任意であり、制動巻線16としての電気的性質を満足するものであれば制限はない。例えば,リング状の導体で短絡環15を構成するのではなく、導体板を軸端部に設けるような構造であってもよい。また、多くの場合、ダンパーバー14や短絡環15は、銅材を溶接、篏合等により組み立てられるが、アルミダイキャストのような一体成型であってもよい。 Here, the number, length, and cross-sectional shape of the damper bars 14 are arbitrary, and there are no restrictions as long as they satisfy the electrical properties as the damper winding 16. For example, instead of forming the short circuit ring 15 with a ring-shaped conductor, a structure may be adopted in which a conductor plate is provided at the end of the shaft. Further, in many cases, the damper bar 14 and the short-circuit ring 15 are assembled by welding, fitting, etc. copper materials, but they may be integrally molded such as aluminum die-casting.
 図4は、第1の実施形態に係るインバータ装置100の検査時測定・判定部230の構成および動作を説明するための構成図である。 FIG. 4 is a configuration diagram for explaining the configuration and operation of the inspection measurement/judgment section 230 of the inverter device 100 according to the first embodiment.
 電機子巻線22、その電源側である電力変換器101、および電機子巻線電流制御系110aについては、すでに図1を引用しながら説明しているので、ここでは説明を省略する。 The armature winding 22, the power converter 101 on its power supply side, and the armature winding current control system 110a have already been described with reference to FIG. 1, so their description will be omitted here.
 回転子10の界磁巻線13は、図示しないスリップリング等を介して、固定子20の外部に引き出され、界磁巻線用電力変換器102に接続されている。 The field winding 13 of the rotor 10 is drawn out of the stator 20 via a slip ring (not shown) or the like, and is connected to the field winding power converter 102.
 界磁巻線13と界磁巻線用電力変換器102を接続する回路には、図1で示す界磁電流のフィードバック信号検出用の界磁電流検出器105が設けられている。 A field current detector 105 for detecting a feedback signal of the field current shown in FIG. 1 is provided in the circuit connecting the field winding 13 and the field winding power converter 102.
 界磁電流検出器105の出力側には、検査時測定・判定部230が設けられている。 An inspection measurement/judgment section 230 is provided on the output side of the field current detector 105.
 検査時測定・判定部230は、界磁電圧検出器231、および図1に示した故障判定部を構成する演算器233、判定器234、および警報表示器235を有する。 The inspection measurement/determination section 230 includes a field voltage detector 231, and a computing unit 233, a determination device 234, and an alarm indicator 235 that constitute the failure determination section shown in FIG.
 界磁電圧検出器231は、演算器233に入力可能なレベルまで電圧を降圧する目的で設けられており、たとえば、変圧器(PT)や抵抗分圧器などが用いられる。 The field voltage detector 231 is provided for the purpose of stepping down the voltage to a level that can be input to the arithmetic unit 233, and uses, for example, a transformer (PT), a resistive voltage divider, or the like.
 演算器233は、フーリエ変換機能を実行する部分を有し、故障検査モードにおいて、交番電流の基本波周波数に同期した成分の振幅相当を出力する。なお、フーリエ変換に代えて、実効値(rms値)や、平均値整流実効値(mean値)、その他,交流電圧の振幅相当量が得られる演算であってもよい。さらに,演算器233は,入力信号の値を、ある一定数(例えば、最新の値から過去10点の値),またはある一定期間(例えば、最新の値から過去一週間の値)を保存し、その値に対して数値処理(例えば、積分や微分の計算など)や統計処理(例えば、相加平均、相乗平均、分散などの計算)を行う。 The arithmetic unit 233 has a part that performs a Fourier transform function, and outputs an amplitude equivalent of a component synchronized with the fundamental frequency of the alternating current in the failure inspection mode. Note that instead of the Fourier transform, an effective value (rms value), an average rectified effective value (mean value), or other calculations that can obtain an amount equivalent to the amplitude of the AC voltage may be used. Furthermore, the computing unit 233 stores a certain number of values of the input signal (for example, the values of the past 10 points from the latest value) or a certain period of time (for example, the values of the past week from the latest value). , perform numerical processing (for example, calculation of integral and differential) and statistical processing (for example, calculation of arithmetic mean, geometric mean, variance, etc.) on the value.
 判定器234は、演算器233の出力を入力信号として受け入れる。判定器234は、あらかじめ当該同期機1に合わせて設定されたしきい値と、数値・統計処理した値を比較し、数値・統計処理した値がしきい値を超えた場合に、ダンパーバー14の折損が生じたと判定する。この時、故障表示器に異常を知らせる信号を出力する。しきい値は、計算あるいは試験により決定され、設定変更が可能である。 The determiner 234 accepts the output of the arithmetic unit 233 as an input signal. The determiner 234 compares the numerically/statistically processed value with a threshold set in advance for the synchronous machine 1, and if the numerically/statistically processed value exceeds the threshold, the damper bar 14 It is determined that a breakage has occurred. At this time, a signal indicating the abnormality is output to the failure indicator. The threshold value is determined by calculation or testing, and the setting can be changed.
 警報表示器235は、例えば、液晶ディスプレイなどで構成されており、判定器234からの異常信号を受けて、故障を知らせる表示を出す。 The alarm display 235 is composed of, for example, a liquid crystal display, and upon receiving the abnormality signal from the determiner 234, displays a display indicating a failure.
 なお、演算器233や判定器234は、FPGA(Field Progarammable Gate Array)やPC(Pesonal Computer)等によるデジタル回路で構成されていても良い。あるいは、演算増幅器(Operational Amplifier)などを用いたアナログ回路で構成されていてもよい。 Note that the arithmetic unit 233 and the determiner 234 may be configured with a digital circuit such as an FPGA (Field Programmable Gate Array) or a PC (Personal Computer). Alternatively, it may be configured with an analog circuit using an operational amplifier or the like.
 また、同期機1が設置される環境が電磁ノイズの観点で良好な状態ではない場合には、誤検知を回避するために、界磁電圧検出器231、演算器233、判定器234の間には、必要に応じてフィルタやシールドを設けても良い。また、同期機1が高電圧で運転される場合には、必要に応じて、絶縁回路や保護回路を設けてもよい。 In addition, if the environment in which the synchronous machine 1 is installed is not in a good condition from the viewpoint of electromagnetic noise, in order to avoid false detection, it is necessary to A filter or shield may be provided as necessary. Further, when the synchronous machine 1 is operated at high voltage, an insulation circuit or a protection circuit may be provided as necessary.
 図5は、第1の実施形態に係るインバータ装置を用いたダンパーバーの折損故障検知方法の手順を示すフロー図である。 FIG. 5 is a flowchart showing the steps of a damper bar breakage failure detection method using the inverter device according to the first embodiment.
 まず、同期機1を停止状態とする(ステップS10)。すなわち、回転子10を無回転、界磁巻線13および電機子巻線22を無通電状態とする。 First, the synchronous machine 1 is brought to a stopped state (step S10). That is, the rotor 10 is not rotated, and the field winding 13 and the armature winding 22 are not energized.
 次に、界磁巻線13の電源側の界磁巻線用電力変換器102を停止状態とする(ステップS20)。界磁巻線用電力変換器102の半導体素子のゲートをオフ(ゲートブロック)してもよい。あるいは、界磁巻線13と界磁巻線用電力変換器102の間に断路器が設けられている場合は、断路器を開放することでもよい。 Next, the field winding power converter 102 on the power source side of the field winding 13 is brought to a stopped state (step S20). The gate of the semiconductor element of the field winding power converter 102 may be turned off (gate blocked). Alternatively, if a disconnector is provided between the field winding 13 and the field winding power converter 102, the disconnector may be opened.
 次に、切替え部210で、故障検査モードに切り替える(ステップS30)。 Next, the switching unit 210 switches to failure inspection mode (step S30).
 次に、故障検査モードにおいて以下の動作がなされる(ステップS40)。 Next, the following operations are performed in the failure inspection mode (step S40).
 まず、検査電流指令値生成部220の交番電流指令部221によって、電機子巻線22には、回転子10のq軸方向(磁極間方向)に交番電流が流れる(ステップS41)。一方、電機子巻線22には、ゼロ電流指令部222により、回転子10のd軸方向にはゼロ電流が流れる。すなわち、回転子10のd軸方向には電流が流れない。 First, the alternating current command section 221 of the test current command value generation section 220 causes an alternating current to flow through the armature winding 22 in the q-axis direction (direction between magnetic poles) of the rotor 10 (step S41). On the other hand, zero current flows through the armature winding 22 in the d-axis direction of the rotor 10 by the zero current command unit 222 . That is, no current flows in the d-axis direction of the rotor 10.
 次に、界磁電圧検出器231が、界磁巻線13に誘導される誘導電圧を測定する(ステップS42)。 Next, the field voltage detector 231 measures the induced voltage induced in the field winding 13 (step S42).
 次に、演算器233が、界磁巻線13に誘導される誘導電圧について、交番電流との同期成分の振幅値を導出する(ステップS43)。 Next, the calculator 233 derives the amplitude value of the synchronous component with the alternating current for the induced voltage induced in the field winding 13 (step S43).
 次に、判定器234が、ダンパーバー14の折損故障の有無を判定する(ステップS44)。すなわち、ステップS43で判定器によって導出された振幅値をしきい値と比較し、それがしきい値を超えた場合に、ダンパーバー14の折損故障が生じたと判定し、異常信号を出力する。 Next, the determiner 234 determines whether there is a breakage failure of the damper bar 14 (step S44). That is, the amplitude value derived by the determiner in step S43 is compared with a threshold value, and if the amplitude value exceeds the threshold value, it is determined that a breakage failure of the damper bar 14 has occurred, and an abnormality signal is output.
 図6は、第1の実施形態に係るインバータ装置100が対象とする同期機1のダンパーバー14が健全な場合を示す周方向に沿った概念的な説明図である。図6は、q軸を中心とした互いに隣接する2つの磁極のそれぞれにおけるダンパーバー14および短絡環15を、模式的に周方向に沿って展開した図である。 FIG. 6 is a conceptual explanatory diagram along the circumferential direction showing a case where the damper bar 14 of the synchronous machine 1 targeted by the inverter device 100 according to the first embodiment is healthy. FIG. 6 is a diagram schematically showing the damper bar 14 and the short-circuit ring 15 of two adjacent magnetic poles centered on the q-axis developed along the circumferential direction.
 図6に示すようにダンパーバー14が健全な場合は、電機子電流によって発生したq軸の交番磁束(図6のCa(q軸上)において最大となるような磁束密度分布)が制動巻線16に鎖交するため、それを打ち消すように、ダンパーバー14および短絡環15で構成される制動巻線16には、ダンパー電流が誘導される。この電流が流れるループは、図6に示すようにq軸に関して対称であるため、ダンパー電流が作る起磁力の方向もq軸方向(図6のCa(q軸上)において最大となるような起磁力分布)となる。すなわち、軸Caが軸Cdと重なることを意味しており、ダンパー電流が作る起磁力は、電機子電流によって生成されたq軸交番磁束を打ち消す作用を有するのみで、d軸には作用せず、d軸磁束が生成されることはない。 As shown in Fig. 6, when the damper bar 14 is healthy, the q-axis alternating magnetic flux generated by the armature current (magnetic flux density distribution that is maximum at Ca (on the q-axis) in Fig. 6) is distributed in the damper winding. 16, a damper current is induced in the damper winding 16 composed of the damper bar 14 and the short-circuit ring 15 so as to cancel it. Since the loop through which this current flows is symmetrical with respect to the q-axis as shown in Figure 6, the direction of the magnetomotive force created by the damper current is also the direction of the q-axis (Ca in Figure 6 (on the q-axis)), which is the maximum. magnetic force distribution). This means that axis Ca overlaps axis Cd, and the magnetomotive force created by the damper current only has the effect of canceling the q-axis alternating magnetic flux generated by the armature current, and does not act on the d-axis. , no d-axis magnetic flux is generated.
 図7は、第1の実施形態に係るインバータ装置が対象とする同期機のダンパーバーの折損故障が生じている場合を示す周方向に沿った概念的な説明図である。 FIG. 7 is a conceptual explanatory diagram along the circumferential direction showing a case where a breakage failure occurs in a damper bar of a synchronous machine targeted by the inverter device according to the first embodiment.
 図7に示すようにダンパーバーの一部が折損している場合、そのバーには電流が流れない。したがって、制動巻線16において誘導されたダンパー電流は,折損か所を迂回するように、隣接するダンパーバー等に流れる。この場合、ダンパー電流が流れるループの中心がq軸からずれることになる。すなわち、図7において、q軸からずれた位置にある軸Cdにおいて、ダンパー電流が作る起磁力が最大となる。 If a part of the damper bar is broken as shown in Figure 7, no current will flow through that bar. Therefore, the damper current induced in the damper winding 16 flows to the adjacent damper bar etc. so as to bypass the broken point. In this case, the center of the loop through which the damper current flows will be shifted from the q-axis. That is, in FIG. 7, the magnetomotive force produced by the damper current is maximum at the axis Cd located at a position offset from the q-axis.
 この結果、ダンパー電流は、q軸磁束を打ち消す作用だけでなく、d軸に磁束を発生させる作用も有する。すなわち、q軸の電機子電流しか流れていないにもかかわらず、d 軸の磁束が発生することになる。これをdq軸間干渉と呼ぶ。dq軸間干渉によって発生したd軸の交番磁束が界磁巻線に鎖交するため、制動巻線16が健全な場合には発生しないはずの界磁電圧が、この場合には発生することとなる。 As a result, the damper current not only has the effect of canceling the q-axis magnetic flux, but also has the effect of generating magnetic flux on the d-axis. In other words, even though only the q-axis armature current is flowing, a d-axis magnetic flux is generated. This is called interference between d and q axes. Since the d-axis alternating magnetic flux generated by the interference between the d and q axes interlinks with the field winding, a field voltage that should not occur if the brake winding 16 is healthy will occur in this case. Become.
 図8は、第1の実施形態に係るインバータ装置が対象とする同期機1のダンパーバー14が健全な場合および折損故障が生じている場合のそれぞれについてのギャップ磁束密度の分布の例を示すグラフである。横軸は、回転子10における機械角(度)、縦軸は、ギャップ磁束密度(T)である。 FIG. 8 is a graph showing an example of the gap magnetic flux density distribution when the damper bar 14 of the synchronous machine 1 targeted by the inverter device according to the first embodiment is healthy and when a breakage failure has occurred. It is. The horizontal axis is the mechanical angle (degrees) at the rotor 10, and the vertical axis is the gap magnetic flux density (T).
 図8において、破線で示す曲線はダンパーバー14が健全な状態の場合、実線で示す曲線はダンパーバー14の一部に折損が生じている場合を示す。図8に示すように、ダンパーバー14が健全な場合は、磁束密度が図中の中心(横軸90度、縦軸0T)において点対称となっている。これに対して、ダンパーバー14の一部に折損が生じている場合のギャップ磁束密度は、点対称になっていない。これは、片方の軸(q軸)の磁束分布だけでなく、もう片方の軸(d軸)の磁束成分が生じていることを示している。 In FIG. 8, the curve shown by a broken line shows a case where the damper bar 14 is in a healthy state, and the curve shown by a solid line shows a case where a part of the damper bar 14 is broken. As shown in FIG. 8, when the damper bar 14 is healthy, the magnetic flux density is point symmetrical at the center of the figure (horizontal axis 90 degrees, vertical axis 0T). On the other hand, when a portion of the damper bar 14 is broken, the gap magnetic flux density is not point symmetrical. This indicates that not only the magnetic flux distribution on one axis (q-axis) but also the magnetic flux component on the other axis (d-axis) is occurring.
 図9は、第1の実施形態に係るインバータ装置が対象とする同期機のダンパーバーが健全な場合および折損故障が生じている場合のそれぞれについての電流位相に対する界磁電圧の分布の例を示すグラフである。横軸は、回転子10における電気角(度)、縦軸は、界磁電圧(V)を示す。 FIG. 9 shows an example of the distribution of field voltage with respect to the current phase when the damper bar of the synchronous machine targeted by the inverter device according to the first embodiment is healthy and when a breakage failure has occurred. It is a graph. The horizontal axis shows the electrical angle (degrees) at the rotor 10, and the vertical axis shows the field voltage (V).
 図9において、破線で示す曲線はダンパーバー14が健全な状態の場合、実線で示す曲線はダンパーバー14の一部に折損が生じている場合を示す。図9に示すように、ダンパーバー14の一部に折損が生じている場合の界磁電圧の分布は、ダンパーバー14が健全な状態の場合の界磁電圧の分布から、明らかに位相がずれていることが分かる。すなわち、回転子電気角90度(すなわちq軸)における界磁電流は、ダンパーバー14が健全な場合はゼロであるが、ダンパーバー14の一部に折損が生じている場合には、有意な値ΔVを示す。 In FIG. 9, the curve shown by a broken line shows a case where the damper bar 14 is in a healthy state, and the curve shown by a solid line shows a case where a part of the damper bar 14 is broken. As shown in FIG. 9, the distribution of field voltage when a part of the damper bar 14 is broken is clearly out of phase from the distribution of field voltage when the damper bar 14 is in a healthy state. I can see that In other words, the field current at a rotor electrical angle of 90 degrees (i.e., q-axis) is zero when the damper bar 14 is healthy, but when a part of the damper bar 14 is broken, it becomes significant. The value ΔV is shown.
 したがって、端的には、ΔVが所定のしきい値より高いか否かを判定器234が判定することにより、ダンパーバー14の折損故障の有無を判定することができる。 Therefore, in short, the determination unit 234 determines whether or not ΔV is higher than a predetermined threshold, thereby determining whether or not the damper bar 14 has a breakage failure.
 図10は、第1の実施形態に係るインバータ装置100が対象とする同期機1のダンパーバー14が健全な場合および折損故障が生じている場合のそれぞれについて回転子電気角が変化した場合の界磁電圧の分布の例を示すグラフである。
 先に示した図8および図9の結果は、回転子10をある位置(角度)に固定した場合の界磁電圧の変化であった。実際には,回転子10の位置まで正確に同じとすることは容易ではないため,任意の位置で故障検査モードへ移行することが想定される。この場合,固定子鉄心21のスロットに起因した磁気的凹凸の存在があるため,固定子20と回転子10の相対位置の違いによって,検出値に揺らぎが生じる。これを示したものが図10である。同じ振幅,同じ周波数の交番電流を与えても,界磁電圧の振幅は異なる。したがって,回転子10が任意の位置となりうる場合,健全状態と故障状態で電圧差は見られるが,故障検査モードを一度試行しただけ(界磁電圧を一度測定しただけ)で故障を判定することは難しい。
FIG. 10 shows the field when the rotor electrical angle changes when the damper bar 14 of the synchronous machine 1 targeted by the inverter device 100 according to the first embodiment is healthy and when a breakage failure has occurred. It is a graph showing an example of distribution of magnetic voltage.
The results shown in FIGS. 8 and 9 shown above are changes in field voltage when the rotor 10 is fixed at a certain position (angle). In reality, it is not easy to make the position of the rotor 10 exactly the same, so it is assumed that the mode shifts to the failure inspection mode at an arbitrary position. In this case, since there are magnetic irregularities caused by the slots of the stator core 21, the detected value fluctuates due to the difference in relative position between the stator 20 and the rotor 10. FIG. 10 shows this. Even if an alternating current with the same amplitude and frequency is applied, the amplitude of the field voltage will be different. Therefore, if the rotor 10 can be in any position, a voltage difference will be seen between the healthy state and the faulty state, but it is possible to determine a fault by just trying the fault inspection mode once (measuring the field voltage once). is difficult.
 図11は、第1の実施形態に係るインバータ装置が対象とする同期機のダンパーバーが健全な場合および折損故障が生じている場合のそれぞれについて、回転子の位置(電気角に換算)がランダムに表れる場合における複数回の検査で得られた界磁電圧の変化の例を示すグラフである。
 図11にプロットした点は,図10の測定結果がランダムに表れると仮定し,複数回の検査を実施したと想定した場合における界磁電圧検出値を疑似的に算出したものである。800回目で故障に至ったと仮定しており,傾向に明確な差が見られている。プロットした点に対して,10点の移動平均(相加平均)を計算したものが,図11の実線である。故障に至った800回目を境に,それ以前のダンパーバー健全状態と、それ以降のダンパーバー折損状態との間では明確な差が見られる。このように,界磁電圧検出値に揺らぎがある場合でも,検出信号をそのまま判定するのではなく、図11に示す界磁電圧検出値のトレンドに基づく等、何らかの数値・統計処理を経ることによって,故障を検知することができる。
FIG. 11 shows that the rotor position (converted to electrical angle) is random when the damper bar of the synchronous machine targeted by the inverter device according to the first embodiment is healthy and when a breakage failure has occurred. 3 is a graph showing an example of a change in field voltage obtained through multiple tests in the case where the above occurs.
The points plotted in FIG. 11 are pseudo-calculated field voltage detection values assuming that the measurement results in FIG. 10 appear randomly and that multiple inspections have been performed. It is assumed that the failure occurred at the 800th time, and a clear difference in the trends can be seen. The solid line in FIG. 11 is a moving average (arithmetic average) of 10 points calculated for the plotted points. After the 800th time that a failure occurred, a clear difference can be seen between the sound state of the damper bar before that point and the broken state of the damper bar after that point. In this way, even if there is a fluctuation in the field voltage detection value, rather than judging the detection signal as it is, it can be determined by going through some kind of numerical/statistical processing, such as based on the trend of the field voltage detection value shown in Figure 11. , failures can be detected.
 以上のように、本実施形態によるインバータ装置100の制動巻線故障検知装置200は、dq軸間干渉の原理を用いて、同期機1を分解することなく、ダンパーバー14の折損故障を検知することができる。 As described above, the damper winding failure detection device 200 of the inverter device 100 according to the present embodiment detects a breakage failure of the damper bar 14 without disassembling the synchronous machine 1 using the principle of interference between d and q axes. be able to.
 本実施形態によるインバータ装置100では、ダンパーバー14の折損故障の検知のために、電機子巻線22のq軸に交番電流を流すだけであるため,トルクはほとんど発生せず、回転子は静止状態を保つことできる。 In the inverter device 100 according to the present embodiment, in order to detect a breakage failure of the damper bar 14, an alternating current is simply passed through the q-axis of the armature winding 22, so almost no torque is generated and the rotor is stationary. It is possible to maintain the condition.
 [第2の実施形態]
 図12は、第2の実施形態に係るインバータ装置100aの検査時測定・判定部230aの構成および動作を説明するための構成図である。
[Second embodiment]
FIG. 12 is a configuration diagram for explaining the configuration and operation of the inspection measurement/judgment section 230a of the inverter device 100a according to the second embodiment.
 本実施形態は、第1の実施形態の変形であり、インバータ装置100aは、第1の実施形態とは、検査時測定・判定部230aの部分が異なる。 This embodiment is a modification of the first embodiment, and the inverter device 100a differs from the first embodiment in the inspection measurement/determination section 230a.
 本実施形態に係る検査時測定・判定部230aは、界磁電流検出器105、演算器233a、判定器234a、警報表示器235、および接触器236を有する。 The inspection measurement/judgment unit 230a according to this embodiment includes a field current detector 105, a calculator 233a, a determiner 234a, an alarm indicator 235, and a contactor 236.
 界磁電流検出器105は,シャント抵抗器や変流器(CT)、ホールCTなど、電流を電圧として計測する機器で構成される。 The field current detector 105 is composed of devices that measure current as voltage, such as a shunt resistor, current transformer (CT), and Hall CT.
 なお、図12においては、界磁電流検出器105は、界磁電流制御部120における界磁電流のフィードバック信号検出用の検出器であるが、検査時測定・判定部230a専用の界磁電流検出器を別途設けることでもよい。 In addition, in FIG. 12, the field current detector 105 is a detector for detecting a feedback signal of the field current in the field current control section 120, but the field current detector 105 is a detector for detecting a feedback signal of the field current in the field current control section 120. A separate container may also be provided.
 また、同期機1が設置される環境が電磁ノイズの観点で良好な状態ではない場合には、誤検知を回避するために、必要に応じてフィルタやシールドを設けてもよいし、同期機1が高電圧で運転される場合には、必要に応じて、絶縁回路や保護回路を設けてもよい点は、第1の実施形態と同様である。 In addition, if the environment in which the synchronous machine 1 is installed is not in a good condition in terms of electromagnetic noise, a filter or shield may be installed as necessary to avoid false detection, or a filter or shield may be installed as necessary. Similar to the first embodiment, an insulation circuit or a protection circuit may be provided as necessary when the second embodiment is operated at a high voltage.
 接触器236は、界磁巻線13と界磁巻線用電力変換器102との間に設けられている。接触器236は、切替え部210により故障検査モードに切り替わると自動的に投入され、界磁巻線13が短絡された状態となる。なお,接触器236を設けるのではなく,電力変換器102の半導体素子のゲートをオン(導通状態)とすることで短絡しても良い。 The contactor 236 is provided between the field winding 13 and the field winding power converter 102. The contactor 236 is automatically turned on when the switching unit 210 switches to the failure inspection mode, and the field winding 13 is placed in a short-circuited state. Note that instead of providing the contactor 236, the short circuit may be achieved by turning on (conducting) the gate of the semiconductor element of the power converter 102.
 故障検査モードにおいては、第1の実施形態と同様に、制動巻線16が故障している場合には界磁巻線13に誘起電圧が発生する。本実施形態においては、界磁巻線13が短絡されているため、誘起電圧によって界磁電流が誘導される。 In the failure inspection mode, an induced voltage is generated in the field winding 13 when the brake winding 16 is in failure, as in the first embodiment. In this embodiment, since the field winding 13 is short-circuited, a field current is induced by the induced voltage.
 この界磁電流は、界磁電流検出器105で計測され、その出力は、演算器233aに入力される。第1の実施形態における検査時測定・判定部230が電圧値に基づいて故障を検出するのに対し、本実施形態の検査時測定・判定部230aにおいては電流値に基づいて判定を行う。 This field current is measured by the field current detector 105, and its output is input to the calculator 233a. While the inspection measurement/judgment section 230 in the first embodiment detects failures based on voltage values, the inspection measurement/judgment section 230a of the present embodiment makes judgments based on current values.
 以上、説明した実施形態によれば、ダンパーバーの折損故障の検知を可能とするインバータ装置を提供することが可能となる。 According to the embodiments described above, it is possible to provide an inverter device that makes it possible to detect a breakage failure of a damper bar.
 [その他の実施形態]
 以上、本発明の実施形態を説明したが、実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。また、各実施形態の特徴を組み合わせてもよい。さらに、実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
[Other embodiments]
Although the embodiments of the present invention have been described above, the embodiments are presented as examples and are not intended to limit the scope of the invention. Moreover, the features of each embodiment may be combined. Furthermore, the embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. The embodiments and their modifications are included within the scope and gist of the invention as well as within the scope of the invention described in the claims and its equivalents.
 1…同期機、10…回転子、11…ロータシャフト、12…回転子鉄心、12a…凸部、13…界磁巻線、14、14a…ダンパーバー、15…短絡環、16…制動巻線、20…固定子、21…固定子鉄心、21a…固定子ティース、22…電機子巻線、30…ギャップ空間、100、100a…インバータ装置、101…電機子巻線用電力変換器、102…界磁巻線用電力変換器、103…遮断器、104…電機子電流検出器、105…界磁電流検出器、106…回転角検出器、107…位置演算器、110…速度制御部、110a…電機子巻線電流制御系、111…減算器、112…速度演算器、113…速度制御器、114…dq軸電流演算器、115、116…減算器、117…3相-dq変換器、118…dq軸電流制御器、119…dq-3相変換器、120…界磁電流制御部、121…界磁電流制御器、130…シミュレータ、200…制動巻線故障検知装置、210…切替え部、220…検査電流指令値生成部、221…交番電流指令部、222…ゼロ電流指令部、230、230a…検査時測定・判定部、231…界磁電圧検出器、233、233a…演算器、234、234a…判定器、235…警報表示器、236…接触器 DESCRIPTION OF SYMBOLS 1... Synchronous machine, 10... Rotor, 11... Rotor shaft, 12... Rotor core, 12a... Convex part, 13... Field winding, 14, 14a... Damper bar, 15... Short circuit ring, 16... Brake winding , 20... Stator, 21... Stator core, 21a... Stator teeth, 22... Armature winding, 30... Gap space, 100, 100a... Inverter device, 101... Power converter for armature winding, 102... Field winding power converter, 103... Breaker, 104... Armature current detector, 105... Field current detector, 106... Rotation angle detector, 107... Position calculator, 110... Speed controller, 110a ...Armature winding current control system, 111...Subtractor, 112...Speed calculator, 113...Speed controller, 114...DQ-axis current calculator, 115, 116...Subtractor, 117...3-phase-dQ converter, 118... dq axis current controller, 119... dq-3 phase converter, 120... field current controller, 121... field current controller, 130... simulator, 200... damper winding failure detection device, 210... switching unit , 220... Inspection current command value generation unit, 221... Alternating current command unit, 222... Zero current command unit, 230, 230a... Measurement/judgment unit during inspection, 231... Field voltage detector, 233, 233a... Arithmetic unit, 234, 234a... Judgment device, 235... Alarm indicator, 236... Contactor

Claims (7)

  1.  電機子巻線を有する固定子と、回転子鉄心、界磁巻線並びに複数のダンパーバーおよびその両端に設けられた短絡環とを有する制動巻線を具備する回転子と、を備える同期機を駆動するインバータ装置であって、
     前記電機子巻線に電力を供給するための電機子巻線用電力変換器と、
     前記界磁巻線に電力を供給するための界磁巻線用電力変換器と、
     電機子電流制御系を有し前記電機子巻線用電力変換器により供給される三相電流をdq軸上で制御する速度制御部と、
     前記界磁巻線用電力変換器により供給される前記界磁巻線の電流を制御する界磁電流制御部と、
     前記速度制御部内でd軸電流およびq軸電流を制御する際に用いる指令と界磁電流指令を演算するシミュレータと、
     前記制動巻線の故障を検出する制動巻線故障検知装置と、
     を備え、
     前記制動巻線故障検知装置は、
     当該インバータ装置の状態を、通常運転モードから故障検査モードへ、および前記故障検査モードから前記通常運転モードへ切替える切替え部と、
     前記故障検査モードにおいて、前記通常運転モードにおける前記d軸電流および前記q軸電流の指令に代えて、前記d軸電流の指令として直流相当値を出力し、前記q軸電流の指令として交番電流を出力する検査電流指令値生成部と、
     前記界磁巻線での応答信号を測定し、前記応答信号から前記制動巻線の故障の有無を判定する検査時測定・判定部と、
     を備えることを特徴とするインバータ装置。 
    A synchronous machine comprising a stator having an armature winding, and a rotor having a rotor core, a field winding, and a damper winding having a plurality of damper bars and short circuit rings provided at both ends thereof. An inverter device for driving,
    an armature winding power converter for supplying power to the armature winding;
    a field winding power converter for supplying power to the field winding;
    a speed control unit having an armature current control system and controlling the three-phase current supplied by the armature winding power converter on the dq axis;
    a field current control unit that controls the current of the field winding supplied by the field winding power converter;
    a simulator that calculates a command and a field current command used when controlling the d-axis current and the q-axis current in the speed control unit;
    a brake winding failure detection device that detects a failure of the brake winding;
    Equipped with
    The brake winding failure detection device includes:
    a switching unit that switches the state of the inverter device from a normal operation mode to a failure inspection mode and from the failure inspection mode to the normal operation mode;
    In the failure inspection mode, instead of the d-axis current and q-axis current commands in the normal operation mode, a direct current equivalent value is output as the d-axis current command, and an alternating current is output as the q-axis current command. a test current command value generation unit to output;
    an inspection measurement/judgment unit that measures a response signal in the field winding and determines whether or not there is a failure in the brake winding from the response signal;
    An inverter device comprising:
  2.  前記検査時測定・判定部は、
     前記界磁巻線の電圧を検出する電圧検出器と、
     前記電圧検出器の出力の振幅相当を計算する演算器と、
     前記演算器の出力を所定のしきい値と比較して大小を判定する比較器と、
     を具備することを特徴とする請求項1に記載のインバータ装置。
    The inspection measurement/judgment section includes:
    a voltage detector that detects the voltage of the field winding;
    an arithmetic unit that calculates an amplitude equivalent of the output of the voltage detector;
    a comparator that compares the output of the arithmetic unit with a predetermined threshold value to determine whether it is large or small;
    The inverter device according to claim 1, comprising:.
  3.  前記検査時測定・判定部は、
     前記界磁電流制御部で検出した界磁電流の振幅相当を計算する演算器と、
     前記演算器の出力を所定のしきい値と比較して大小を判定する比較器と、
     を具備することを特徴とする請求項1に記載のインバータ装置。
    The inspection measurement/judgment section includes:
    an arithmetic unit that calculates an amplitude equivalent of the field current detected by the field current control unit;
    a comparator that compares the output of the arithmetic unit with a predetermined threshold value to determine whether it is large or small;
    The inverter device according to claim 1, comprising:.
  4.  前記演算器は、前記応答信号のフーリエ変換により前記交番電流の基本波周波数と同期した成分の振幅を算出することを特徴とする請求項2または請求項3に記載のインバータ装置。 The inverter device according to claim 2 or 3, wherein the arithmetic unit calculates the amplitude of a component synchronized with a fundamental frequency of the alternating current by Fourier transform of the response signal.
  5.  前記演算器は、前記応答信号の全実効値を算出することを特徴とする請求項2または請求項3に記載のインバータ装置。 The inverter device according to claim 2 or 3, wherein the arithmetic unit calculates a total effective value of the response signal.
  6.  前記演算器は,計算した振幅相当の値を,最新の値から数えてある一定数を保持し,前記保持した値の集合に対して数値・統計処理を加えることを特徴とする請求項2または請求項3に記載のインバータ装置。 3. The computer according to claim 2, wherein the arithmetic unit holds a certain number of calculated values equivalent to the amplitude, counting from the latest value, and applies numerical and statistical processing to the set of the held values. The inverter device according to claim 3.
  7.  前記交番電流は正弦波であることを特徴とする請求項1ないし請求項6のいずれか一項に記載のインバータ装置。 The inverter device according to any one of claims 1 to 6, wherein the alternating current is a sine wave.
PCT/JP2022/032951 2022-09-01 2022-09-01 Inverter apparatus WO2024047843A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022576014A JP7362950B1 (en) 2022-09-01 2022-09-01 inverter device
PCT/JP2022/032951 WO2024047843A1 (en) 2022-09-01 2022-09-01 Inverter apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032951 WO2024047843A1 (en) 2022-09-01 2022-09-01 Inverter apparatus

Publications (1)

Publication Number Publication Date
WO2024047843A1 true WO2024047843A1 (en) 2024-03-07

Family

ID=88328287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032951 WO2024047843A1 (en) 2022-09-01 2022-09-01 Inverter apparatus

Country Status (2)

Country Link
JP (1) JP7362950B1 (en)
WO (1) WO2024047843A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184658A (en) * 1998-12-11 2000-06-30 Osaka Gas Co Ltd Diagnostic device for induction motor
JP2017225224A (en) * 2016-06-14 2017-12-21 東芝三菱電機産業システム株式会社 Winding field magnet type synchronous machine controller
WO2021074248A1 (en) * 2019-10-14 2021-04-22 Norwegian University Of Science And Technology (Ntnu) Fault detection in synchronous machines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184658A (en) * 1998-12-11 2000-06-30 Osaka Gas Co Ltd Diagnostic device for induction motor
JP2017225224A (en) * 2016-06-14 2017-12-21 東芝三菱電機産業システム株式会社 Winding field magnet type synchronous machine controller
WO2021074248A1 (en) * 2019-10-14 2021-04-22 Norwegian University Of Science And Technology (Ntnu) Fault detection in synchronous machines

Also Published As

Publication number Publication date
JP7362950B1 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
Drif et al. Stator fault diagnostics in squirrel cage three-phase induction motor drives using the instantaneous active and reactive power signature analyses
Yun et al. Detection and classification of stator turn faults and high-resistance electrical connections for induction machines
JP5543981B2 (en) Robust online stator winding fault identification system
US10782351B2 (en) Diagnosing a winding set of a stator
US8587244B2 (en) Method and system for determining deterioration of permanent magnets of electric apparatus
US20110187304A1 (en) Motor phase winding fault detection method and apparatus
KR20180049722A (en) On-line fault diagnosis method for motor of machine tool
US20110089883A1 (en) Motor phase winding fault detection method and apparatus
Saleh et al. Survivability-based protection for electric motor drive systems-part II: Three phase permanent magnet synchronous motor drives
JP7362950B1 (en) inverter device
JP2009118689A (en) Controller of motor
KR101585770B1 (en) System for detecting single phase opem fault of interior permanent magnet synchronous motor
Kumar et al. LabVIEW based condition monitoring of induction machines
KR102212084B1 (en) Fault diagnosis method of synchronous motor
Kral et al. Condition monitoring and fault detection of electric drives
EP3652853B1 (en) Monitoring a multi-winding set stator
KR101046328B1 (en) Three phase ac motor stator core state diagnosis apparatus, method, and a medium having recorded thereon a computer readable program for executing the method
JP2870559B2 (en) Rotary rectifier failure detection device for brushless generator
Benouzza et al. Slot harmonic frequency detection as a technique to improve stator current spectrum approach for broken rotor bars fault diagnosis
US20240045000A1 (en) Method for detecting a short circuit and control unit
CN110837042B (en) Motor interlayer short circuit fast screening method
JP2004328899A (en) Motor controller
Babu et al. Performance analysis of medium voltage induction motor using stator current profile
Wang et al. Quantification of Induction Motor Bearing Fault based on Modified Winding Function Method
Dahi et al. Wound-rotor IM diagnosis method based on neutral voltage signal analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957438

Country of ref document: EP

Kind code of ref document: A1